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1. Introduction

Analysis of covariance structures (Jöreskog (1978), Browne (1982), Bentler
(1980)) is an important multivariate method in analyzing behavioral, medical
and social science data. It has been shown by Jöreskog (1970) that this method
covers multivariate analysis of variance, regression, principal component and fac-
tor analysis as special cases. In its general setting, the method involves the
covariance structure that corresponds to a system of structural equations which
relate the observed variables with the latent variables. This covariance structure
Σ(θ) is a function of a vector of parameters θ, which contains all the unknown
parameters in the model: the unknown coefficients of the system and the vari-
ances/covariances of the latent variables. Traditionally, one of the main objec-
tives is to estimate θ based on a random sample of independently and identically
distributed (i.i.d.) observations from N(0,Σ(θ)). However, in many situations,
the assumption of identically distributed observations is not satisfied. In the
literature, there are asymptotic results for the independent non-identically dis-
tributed (i.n.i.d.) case in the general context of maximum likelihood estimation
(see for example Hoadley (1971)). However, these results were established under
certain conditions which unfortunately are difficult to verify. Hence, in deal-
ing with special models, it is necessary to identify more flexible conditions that
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are easier to verify (see, for examples, Wu (1981) for nonlinear regression mod-
els; Fahrmeir and Kaufmann (1985) for the generalized linear model; Nordberg
(1980) for estimation of exponential family models, etc). In this paper, the cor-
responding problem will be investigated in the context of covariance structures
analysis. We will first develop some asymptotic properties such as consistency
and asymptotic normality for the maximum likelihood estimation for i.n.i.d. ob-
servations. Then, analogous results for the generalized least squares estimation
will be provided. Applications of the general theory to two specific models are
discussed and results from a simulation study are presented to illustrate the
theory developed.

In the following sections, for any p by pmatrix A, Vec(A) represents the p2 by
1 vector which formed by stacking all the elements of A row by row sequentially.

2. Maximum Likelihood Estimation

Let X1, . . . ,XG be i.n.i.d. observations such that Xg is distributed as
N(0,Σg(θ0)), where θ0 is an unknown q×1 parameter vector, and the dimension
of Xg is Ng. The maximum likelihood (ML) estimate of θ0, θ̂G, is the vector that
minimizes the following log-likelihood function

lG(θ) =
1
2

G∑
g=1

[
log

∣∣∣Σg(θ)
∣∣∣ + X ′

gΣ
−1
g (θ)Xg

]
. (1)

Differentiating lG(θ) twice, it can be shown that the gradient vector and the
Hessian matrix are respectively equal to

l̇G(θ) =
∂lG(θ)
∂θ

= −1
2

G∑
g=1

[
∆g(θ)[Σ−1

g (θ) ⊗ Σ−1
g (θ)]Vec[XgX

′
g − Σg(θ)]

]
, (2)

and

HG(θ) =
∂ l̇G(θ)
∂θ

=
1
2

G∑
g=1

[
∆g(θ)[Σ−1

g (θ) ⊗ Σ−1
g (θ)]∆ ′

g(θ)
]

−1
2

G∑
g=1

[
Wg(θ){Iq ⊗ Vec[XgX

′
g − Σg(θ)]}

]
, (3)

where Iq is an q × q identity matrix,

∆g(θ) =
∂Σg(θ)
∂θ

, and Wg(θ) =
∂{∆g(θ)[Σ−1

g (θ) ⊗ Σ−1
g (θ)]}

∂θ
.

Let JG(θ) be the information matrix, and RG(θ) = JG(θ) − HG(θ). From (3),

JG(θ) = E[HG(θ)] =
1
2

G∑
g=1

[
∆g(θ)[Σ−1

g (θ) ⊗ Σ−1
g (θ)]∆ ′

g(θ)
]
.
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For simplicity, let JG = JG(θ0), Σg = Σg(θ0) and ∆g = ∆g(θ0).
The asymptotic properties of the maximum likelihood estimation based on

i.n.i.d. observations will be derived with the following conditions.

Condition (A). (a) All elements of Σg(θ) and all their partial derivatives of
the first three orders with respect to elements of θ are continuous and bounded
uniformly for all g in a neighborhood of θ0; (b) θ is identifiable, i.e., Σg(θ1) =
Σg(θ2) for all g implies that θ1 = θ2; and (c) Σg(θ0) is positive definite for all g.

Condition (B). There exist a neighborhood of θ0: N(δ) = {θ : ‖θ − θ0‖ < δ},
and positive constants c and G∗ such that for all G > G∗ and all θ in N(δ),
λmin(JG(θ)/G) ≥ c, where λmin(JG(θ)/G) is the minimum eigenvalue of the
matrix JG(θ)/G.

Condition (A) includes some mild regularity assumptions which are usually
satisfied in practice. Since 2−1∆g(θ)[Σ−1

g (θ)⊗Σ−1
g (θ)]∆ ′

g(θ) is the information
matrix corresponding to Xg, JG(θ)/G can be interpreted as the mean of the
information matrices. Under Condition (B), the minimum eigenvalue of this
mean of the information matrices is larger than a positive constant within a
neighborhood of θ0 for all G > G∗. This means that there is enough information
to describe every unknown parameter as the sample size gets sufficiently large.

Condition (C). There exists a neighborhood of θ0, N(δ), such that for all θ in
N(δ), limG→∞(JG(θ)/G) = K(θ), where K(θ) is a positive definite matrix.

Under Conditions (A) and (C), there exist a sufficient large number G1 and
a neighborhood N(δ), such that for any ε > 0 and η �= 0,

| 1
G

η ′JG(θ)η − η ′K(θ0)η|

≤ | 1
G

η ′JG(θ)η − 1
G

η ′JG(θ0)η| + | 1
G

η ′JG(θ0)η − η ′K(θ0)η| < ε,

when G>G1 and θ∈N(δ). Therefore, we can choose an ε such that G−1η ′JG(θ)η
> η ′K(θ0)η − ε > 0. Hence, Condition (C) implies Condition (B).

The consistency of θ̂G will be established based on the following lemmas.

Lemma 1. If {yg, g = 1, 2, . . .} is a sequence of mutually independent random
variables with E(yg) = 0 and Var (yg) = σ2

g , then

lim
G→∞

1
G

G∑
g=1

σ2
g < +∞ implies lim

G→∞
1
G

G∑
g=1

yg = 0, a.s..

In the above lemma, ‘a.s.’ stands for almost surely, which means that
limG→∞

∑G
g=1 yg/G = 0 with probability one. This lemma can be proved im-

mediately if we take n = G,An = G and δ = 1/2 in Wu’s (1981) Lemma 2.
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Lemma 2. Under Condition (A),there exists a neighborhood of θ0, such that
limG→∞G−1 l̇G(θ) = 0, a.s., for any θ in this neighborhood.

Proof. The jth element of G−1 l̇G(θ) is equal to G−1d ′
j l̇G(θ)=−(2G)−1 ∑G

g=1 ygj,
where dj denotes a q × 1 unit vector with the jth element equal to 1 and zero
elsewhere, and ygj = d ′

j{∆g(θ)[Σ−1
g (θ) ⊗ Σ−1

g (θ)]Vec[XgX
′
g − Σg(θ)]}. Hence,

ygj are mutually independent for g = 1, . . . , G. Since Xg is distributed as a
normal distribution N(0,Σg), XgX

′
g is distributed as a Wishart distribution,

W (Σg, Ng, 1). The mean and covariance matrix of XgX
′
g are Σg and 2(Σg⊗Σg),

respectively (see Eaton (1983), p305). Thus, E(ygj) = 0 and

Var (ygj) = 2d ′
j∆g(θ)[Σ−1

g (θ) ⊗ Σ−1
g (θ)](Σg ⊗ Σg)[Σ−1

g (θ) ⊗ Σ−1
g (θ)]∆ ′

g(θ)dj .

From (a) and (c) of Condition (A), there exist a neighborhood of θ0 and a real
number M such that M is independent of g and Var(ygj) ≤ M for all θ in
this neighborhood. Therefore,

∑G
g=1 Var(ygj)/G ≤ M < ∞. From Lemma 1,

limG→∞G−1 ∑G
g=1 ygj = 0, a.s.. Since j is taken from 1 to q, this lemma is

proved.

Let N̄(δ) = {θ : ‖θ − θ0‖ ≤ δ} and ∂N(δ) = {θ : ‖θ − θ0‖ = δ} be the
closure and the boundary of N(δ) respectively; then based on reasoning similar
to above, the following lemma is valid.

Lemma 3. Under Condition (A), there exist a positive integer G1 and a δ > 0
such that Pr{supθ∈N̄(δ) ‖RG(θ)‖/G < ε} = 1 for any G > G1.

Theorem 1. Under Conditions (A) and (B), there exists a sequence {θ̂G, G =
1, 2, . . .} of random vectors such that (i) limG→∞ Pr{l̇G(θ̂G) = 0} = 1; and (ii)
limG→∞ θ̂G = θ0, a.s..

Proof. From (3), G−1HG(θ) = G−1JG(θ) − G−1RG(θ). Also, from Condition
(B) and Lemma 3, there exists a δ > 0 such that

Pr{λmin(G−1HG(θ)) ≥ c− ε,G > G1} = 1, (4)

for any θ ∈ N(δ). It means that HG(θ) is positive definite in N(δ). Thus, the
event

lG(θ) − lG(θ0) > 0, for all θ ∈ ∂N(δ) and G > G1 (5)

implies the existence of a local minimum inside N(δ). This minimum must be
located at θ̂G, so (5) implies (i). Moreover, since δ is arbitrary, (ii) can be deduced
from (5) with a sufficiently small δ. Hence, it suffices to prove that (5) is true
with probability one.

Let τ = (θ − θ0)/δ; then θ ∈ ∂N(δ) if and only if the norm of τ is equal to
1. By Taylor’s expansion, lG(θ) − lG(θ0) = δτ ′l̇G(θ0) + 2−1δ2τ ′HG(θ̂

∗
G)τ, where
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θ̂
∗
G = tGθ0 + (1 − tG)θ with 0 ≤ tG ≤ 1. For simplicity, let l̇G = l̇G(θ0); hence

(5) is equivalent to |τ ′l̇G|/G < 2−1δτ ′(HG(θ̂∗G)/G)τ for any τ with ‖τ‖ = 1 and
G > G1. By the Cauchy-Schwarz inequality, |τ ′l̇G|/G ≤ ‖τ‖‖l̇G‖/G. Hence, from
Lemma 2, |τ ′l̇G|/G converges to zero with probability one. Combining this result
with (4), it can be seen that (5) is true with probability one.

Lemma 4. Under Conditions (A) and (C), J
−1/2
G l̇G

L−→ N(0, Iq), where L−→
denotes convergence in distribution.

Proof. From (2), it can be shown that J
−1/2
G l̇G =

∑G
g=1 BgVec(Yg − INg), where

Bg = −2−1J
−1/2
G ∆g(Σ

−1/2
g ⊗ Σ

−1/2
g ) and Yg = Σ

−1/2
g XgX

′
gΣ

−1/2
g . Clearly, the

distribution of Yg is Wishart W (INg , Ng, 1), and its covariance matrix is 2(INg ⊗
INg). Hence,

Var (J−1/2
G l̇G) =

1
2

G∑
g=1

J
−1/2
G ∆g(Σ−1

g ⊗ Σ−1
g )∆ ′

gJ
−1/2
G = J

−1/2
G JGJ

−1/2
G = Iq.

Moreover, ‖Bg‖ ≤ (2G1/2)−1‖(JG/G)−1/2‖‖∆g(Σ
−1/2
g ⊗Σ

−1/2
g )‖ by the Cauchy-

Schwarz inequality. Under Conditions (A) and (C), ‖Bg‖ tends to zero uniformly
for all g as G tends to infinity. So, for every ε > 0,

∫
‖BgVec(Yg−INg )‖>ε

‖BgVec(Yg − INg)‖2dFi ≤ ‖Bg‖2
∫

‖Vec(Yg − INg )‖2dFi.

Since the distribution of Yg is Wishart, W (INg , Ng, 1), and Ng is finite and
bounded for all g, ‖Vec(Yg−INg )‖2 is uniformly bounded and the right hand side
of the above inequality tends to zero uniformly with probability one. Therefore,
based on the multivariate central limit theorem (Rao (1973), p147), the lemma
is proved.

Theorem 2. Under Conditions (A) and (C), G1/2(θ̂G − θ0)
L−→ N(0,K−1(θ0)).

Proof. Using Taylor’s expansion, it can be shown that

J
−1/2
G l̇G(θ0) = [J−1/2

G HG(θ̂∗G)J−1/2
G ][J1/2

G (θ̂G − θ0)],

for some θ̂
∗
G between θ0 and θ̂G. Hence,

G1/2(θ̂G − θ0) = (JG/G)−1/2S−1
G J

−1/2
G l̇G(θ0), (6)

where SG=J
−1/2
G HG(θ̂

∗
G)J−1/2

G =(JG/G)−1/2[JG(θ̂
∗
G)/G−RG(θ̂

∗
G)/G](JG/G)−1/2.

It follows from Lemma 3 that RG(θ̂
∗
G)/G tends to zero. Also, since θ̂G tends to

θ0, θ̂
∗
G tends to θ0 as well. Therefore, JG(θ̂

∗
G)/G tends to K(θ0), and SG tends

to Iq. From (6), Lemma 4 and Condition (C), the theorem is proved.
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It should be noted that if X1, . . . ,XG are i.i.d. random observations, we
have Σg(θ) = Σ(θ), Σg = Σ, Ng = p, ∆g(θ) = ∆(θ) and K(θ) = JG(θ)/G =
2−1∆(θ)[Σ−1(θ) ⊗ Σ−1(θ)]∆ ′(θ). Hence, Theorem 2 implies that G1/2(θ̂G −
θ0) converges to N(0, 2[∆(Σ−1 ⊗ Σ−1)∆ ′]−1) in distribution. This gives the
classical result in the literature (e.g. Browne (1982)). Moreover, it can be shown
that if there are only a finite number of distinct distributions, results developed
here reduced back to the classical theory of covariance structures analysis in
several populations (e.g. Jöreskog and Sörbom (1989)).

3. Generalized Least Squares Estimation

Another important estimation method in covariance structures analysis is
the generalized least squares (GLS) approach. Consider the following generalized
least squares objective function:

QG(θ) =
1
2

G∑
g=1

tr
[
[XgX

′
g − Σg(θ)]Vg

]2
,

where Vg is some Ng ×Ng positive definite weight matrix. The generalized least
squares (GLS) estimate θ̃G of θ0 is the vector that minimizes QG(θ). The first
two derivatives of QG(θ) are respectively

Q̇G(θ) =
∂QG(θ)
∂θ

= −
G∑

g=1

[
∆g(θ)(Vg ⊗ Vg)Vec[XgX

′
g − Σg(θ)]

]
, (7)

and Q̈G(θ) = ∂Q̇G(θ)/∂θ = JQG(θ) − RQG(θ), where

RQG(θ) =
G∑

g=1

{
∇g(θ){Iq ⊗ [(Vg ⊗ Vg)Vec(XgX

′
g − Σg(θ))]}

}
,

JQG(θ) =
G∑

g=1

(
∆g(θ)(Vg ⊗ Vg)∆ ′

g(θ)
)
, and ∇g(θ) = ∂∆g(θ)/∂θ.

The consistency and asymptotic normality of θ̃G can be established with the
following conditions similar to those in the ML case:

Condition (B’). There exist a neighborhood N(δ) of θ0, and positive constants
c and G1 such that λmin(JQG(θ)/G) ≥ c, for all G > G1 and θ ∈ N(δ).

Condition (C’). There exists a neighborhood N(δ) of θ0 such that for all θ ∈
N(δ),

lim
G→∞

[JQG(θ)/(2G)] = M1(θ), and lim
G→∞

[JV G(θ)/(2G)] = M2(θ),
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where M1(θ) and M2(θ) are positive definite matrices, and

JV G(θ) =
G∑

g=1

[
∆g(θ)[(VgΣg(θ)Vg) ⊗ (VgΣg(θ)Vg)]∆ ′

g(θ)
]
.

Note that Q̇G(θ) in (7) and l̇G(θ) in (2) are very similar, the only difference
is that [Σ−1

g (θ) ⊗ Σ−1
g (θ)] is replaced by [Vg ⊗ Vg]. Hence, interpretations of

the above conditions are similar to those in the ML case. In addition, based on
reasoning similar to that in the last section, the following results can be proved.

Lemma 5. Under Condition (A), there exists a neighborhood N(δ) of θ0, such
that limG→∞G−1Q̇G(θ) = 0, a.s., uniformly for any θ in N(δ).

Lemma 6. Under Condition (A), there exist a positive integer G1 and a δ > 0
such that Pr{supθ∈N̄(δ) ‖RQG(θ)‖/G < ε} = 1 for any G > G1.

Theorem 3. Under Conditions (A) and (B’), there exists a sequence {θ̃G, G =
1, 2, . . .} of random vectors such that (i) limG→∞ Pr{Q̇G(θ̃G) = 0} = 1; and (ii)
limG→∞ θ̃G = θ0, a.s..

It should be noted that the proof of Theorem 3 is very similar to the proof
of Theorem 1, the only difference is that lG, l̇G,HG,JG and RG are replaced by
QG,Q̇G,Q̈G,JQG and RQG, respectively. Also, under conditions (A) and (C’),

2−1/2J
−1/2
V G Q̇G

L−→ N(0, Iq). Based on this result and reasoning similar to that
in the proof of Theorem 2, the following result can be established.

Theorem 4. Under Conditions (A) and (C’), G1/2(θ̃G − θ0)
L−→ N(0,M(θ0)),

where M(θ0) = M−1
1 (θ0)M2(θ0)M−1

1 (θ0).

The following theorem shows that as G tends to infinity, θ̂G and θ̃G are very
close to each other. The proof of this theorem is rather straightforward and hence
omitted.

Theorem 5. Under Conditions (A), (C) and (C’), limG→∞[G1/2−γ(θ̃G − θ̂G)] =
0, a.s. for any positive real number γ.

It should be noted that for any arbitrary weight matrix Vg, M(θ0)−K−1(θ0)
is positive definite; thus, asymptotically, the GLS estimator is less efficient than
the ML estimator. However, if Vg tends to Σ−1

g (θ0) in probability, it can be
shown by reasoning similar to that in Wu (1981), Lemma 2 that G1/2(θ̃G − θ̂G)
tends to zero in probability, and M(θ0) = K−1(θ0). Under this situation, θ̂G

and θ̃G are asymptotically equivalent. In practice, this ‘Best’ GLS estimator
can be obtained via the iteratively reweighted Gauss-Newton algorithm (Lee and
Jennrich (1979)) in which the Vg at the jth step was iteratively set equal to
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Σ−1
g (θ(j)) from iteration to iteration, where θ(j) is the current parameter vector

at the jth step.
In this section, the GLS theory based on the normality assumption is pre-

sented. However, we expect that this GLS development can be generalized to
the non-normal case as considered in Bentler (1983) and Browne (1984). Based
on interpretations similar to those given in Section 2 about Conditions (B) and
(C), it can be seen that the corresponding non-normal conditions for consistency
and asymptotic normality can be naturally satisfied with social and behavioral
science data.

4. Specific Models

In this section, the general results obtained in previous sections will be ap-
plied to two special models in covariance structures analysis. It will be seen that
the conditions for obtaining the asymptotic properties can be verified to be true
for these particular cases. Hence, some previous results in the literature can be
generalized with the present development.

4.1. Models with missing data

Firstly, we discuss the model with missing data that are missing completely at
random. Consider a p-dimensional multivariate normal distribution N(0,Σ(θ0)).
The problem is to analyze the covariance structure Σ(θ) based on complete and
incomplete random observations. Let m be the number of distinct missing pat-
terns and Ti, i = 1, . . . ,m, be the number of random vectors of pattern i. Let
Xij be a random observation in pattern i with dimension pi, and Fi be an pi × p

matrix with elements equal to zero or one such that Σ0i = FiΣ0F
′
i is the covari-

ance matrix of Xij . Let Si be the sample covariance matrix obtained from the
observations in pattern i. The ML estimator of θ is the vector that minimizes
the following function

l(θ) = 2−1
m∑

i=1

ci
{

log |Σi| + tr(Σ−1
i Si) − log |Si| − pi

}
,

where ci = Ti/G,G =
∑m

i=1 Ti,Σi = FiΣ(θ)F ′
i . The GLS approach in estimating

θ is to minimize the function

Q(θ) = 2−1
m∑

i=1

citr[(Si − Σi)Vi]2,

where Vi is a positive definite weight matrix. Under this situation, the infor-
mation matrices JG(θ) and JQG(θ) of the ML and GLS approaches are equal
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to

JG(θ) = 2−1∆
{ m∑

i=1

[ci(F ′
iΣ

−1
i Fi) ⊗ (F ′

iΣ
−1
i Fi)]

}
∆ ′,

and

JQG(θ) = E(−Q̈(θ)) = ∆
{ m∑

i=1

[ci(F ′
iViFi) ⊗ (F ′

iViFi)]
}

∆ ′,

respectively, where ∆ = ∂Σ(θ)/∂θ. Moreover, for the GLS approach, the matrix
JV G(θ) defined in Condition (C’) is equal to

JV G(θ) = ∆
{ m∑

i=1

{ci[(F ′
iViFiΣF ′

iViFi) ⊗ (F ′
iViFiΣF ′

iViFi)]}
}

∆ ′.

From results developed in previous sections, the consistency and the asymptotic
normality of the ML and the GLS estimators can be established if Conditions
{A,B,C} and {A,B’,C’} on the models, JG(θ) and {JQG(θ),JV G(θ)} respectively
are satisfied.

Based on the above model and missing-mechanism, Lee (1986) showed that
the ML and the GLS estimators are consistent and asymptotically normal under
the following conditions: (i) Condition (A) as given in Section (2), (ii) ∆ is of
full rank, and (iii) for all i = 1, . . . ,m, ci tends to a constant γi > 0 as G tends to
infinity. The practical implication of the third condition means that the number
of observations in each missing pattern must be sufficiently large. For some
situations, this may not be true. The results developed in this paper depend on
(i) and (ii) but some weaker condition than (iii). For example, Conditions (B)
and (C) will be satisfied if

∑m
i=1[ci(F

′
iΣ

−1
i Fi) ⊗ (F ′

iΣ
−1
i Fi)] is positive definite

as G tends to infinity. Hence, the present development is more general and has
more practical value.

Computationally, the ML estimate of θ can be obtained via the following
scoring algorithm: θ(j+1) − θ(j) = −ρΓ(θ(j))−1v(θ(j)), where ρ is the step-size
parameter, Γ(θ) = JG(θ) and v(θ) = −∆

∑m
i=1 ciVec[F ′

iΣ
−1
i (Si − Σi)Σ−1

i Fi],
the gradient vector of l(θ). The GLS estimate can be obtained via the Gauss-
Newton algorithm in which the basic step is also defined as above but with
Γ(θ) = JQG(θ) and v(θ) = −∆

∑m
i=1 ciVec[F ′

iVi(Si−Σi)ViFi], the gradient vector
of Q(θ). Clearly, these algorithms also give the estimates of the asymptotic
covariance matrices in terms of J−1

G (θ̂) and J−1
QG(θ̃) at the last iteration.

4.2. Multilevel structure equation models

For simplicity, we just consider the two-level case, but the results can be
extended to general multilevel models. Suppose

Zgj = u∗
g + ugj, g = 1, . . . , G and j = 1, . . . , Tg, (8)
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where u∗
g are p× 1 group-level random vectors which are independent and iden-

tically distributed as N(0,ΩB(θ0)), and ugj are p × 1 individual-level random
vectors which are also independent and identically distributed as N(0,Ωgw(θ0)),
and θ0 is an unknown q×1 parameter vector. Note that Zgj are not independent
due to the presence of u∗

g. This kind of two-level data is very common in practice.
For examples, data obtained from randomly drawn students (individual-level)
from randomly drawn schools (group-level), or randomly drawn officials from
randomly drawn companies, etc. McDonald and Goldstein (1989) provided some
analyses for a model with balanced sampling designs where Tg are all equal, and
Muthén (1989) discussed the application of some package in obtaining the ML
solution of their model. Lee (1990) developed the asymptotic theory for the ML
and GLS estimations with unbalanced sampling designs by assuming G and Tg

are sufficiently large. Under the special case where Ωgw(θ) = Ωw(θ) for all g,
Lee and Poon (1992) derived certain asymptotic results with small individual-
level sample sizes. Below, it will be shown that results obtained from Section
2 are generalizations of Lee and Poon (1992) to general models with unequal
individual-level covariance structures Ωgw(θ) and small Tg.

Let Xg = (Z ′
g1, . . . ,Z

′
gTg

)′ be a pTg by 1 random vector with distribution
N(0,Σg(θ)), where Σg(θ) = Eg ⊗ ΩB(θ) + Ig ⊗ Ωgw(θ), with Eg be a Tg by
Tg matrix with unit entries and Ig be an identity matrix of order Tg. Hence,
{X1, . . . ,XG} is a sample of i.n.i.d. observations. The negative log-likelihood
function of this sample is proportional to

lG(θ) =
1
2

G∑
g=1

[
log |Σg(θ)| + X ′

gΣ
−1
g (θ)Xg

]
.

It can be shown (see, Lee (1990)) that the information matrix, JG(θ), is equal to

1
2

G∑
g=1

{
(Tg−1)∆∗

gw(θ)[Ω−1
gw (θ)⊗Ω−1

gw (θ)]∆∗ ′
gw(θ)+∆∗

g(θ)[Ω−1
g (θ)⊗Ω−1

g (θ)]∆∗′
g (θ)

}
,

(9)

where ∆∗
g(θ) = ∂Ωg(θ)/∂θ, ∆∗

gw(θ) = ∂Ωgw(θ)/∂θ, and Ωg(θ) = Ωgw(θ) +
TgΩB(θ). To establish the asymptotic properties as given in previous sections,
similar regularity conditions are required. For example, the condition analogous
to Condition (A) is given as below:

Condition (AM). (a) All elements of ΩB(θ) and Ωgw(θ) and their partial
derivatives of the first three orders with respect to θ are continuous and bounded
uniformly in a neighborhood of θ0; (b) θ is identifiable, i.e., ΩB(θ1) = ΩB(θ2)
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and Ωgw(θ1) = Ωgw(θ2) for all g implies θ1 = θ2; (c) Ωgw(θ0) and ΩB(θ0) are
positive definite for all g.

Conditions (B) and (C) are defined similarly as before with JG(θ) given by
(9). Clearly, since Ω−1

gw (θ) and Ω−1
g (θ) are positive definite, these conditions are

satisfied with some full rank matrices ∆∗
g(θ) and ∆∗

gw(θ). Hence, the consistency
and asymptotic normality of the ML estimate can be achieved for most practical
applications.

Moreover, the GLS analysis of this model can be similarly established based
on results developed in previous sections and Lee (1990). The scoring algorithm
and the Gauss-Newton algorithm can be used respectively to obtain the ML and
the GLS solutions.

5. A Simulation Study

To study the empirical behaviors of the ML and GLS estimators, a simula-
tion study has been conducted based on the confirmatory factor analysis model
(Lawley and Maxwell (1971)) with missing data that are missing completely at
random. The basic model is defined as Σ = ΛΦΛ ′ + Ψ, where Λ is the factor
loading matrix, Φ and Ψ are covariance matrices of the factors and error measure-
ments, respectively. To obtain the ML and GLS estimates of these parameters, a
scoring algorithm and a reweighted Gauss-Newton algorithm were implemented
based on the results developed in previous sections.

Part of the data set described in Wheaton, Muthén, Alwin and Summers
(1977) was used for this simulated study. The data set consists 6 variables and
from previous studies (see, e.g. Jöreskog and Sörbom (1989), Lee (1986)) it is
known that the covariance structure can be fitted by a confirmatory factor anal-
ysis model, in which Φ is a 3 × 3 unknown covariance matrix, and

Λ =




1 0 0
Λ21 0 0
0 1 0
0 Λ42 0
0 0 1
0 0 Λ63



, Ψ =




Ψ11 Sym.
0 Ψ22

Ψ31 0 Ψ33

0 Ψ42 0 Ψ44

0 0 0 0 Ψ55

0 0 0 0 0 Ψ66



,

where the zeros and ones are fixed values and not to be treated as unknown pa-
rameters. The total number of unknown parameters in this model is 17. Firstly,
the ML estimates of these unknown parameters were obtained based on the orig-
inal data, then these estimates were taken as the population values to define the
population covariance matrix Σ(θ0). Random observations were simulated from
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N(0,Σ(θ0)) via the IMSL (1991) subroutines. Various missing patterns were
created by randomly deleting certain entries in the simulated observations. Data
structure corresponding to the missing patterns with different Ti for consideration
is given in Table 1, in which ‘1’ represents the entry is present, while ‘0’ represents
the entry is missing. The ML and GLS estimates of the unknown parameters were
obtained, and the process was repeated until 100 replications were completed.
The sample means of the estimates from the 100 replications are reported in
Table 2. We observed that the ML and GLS estimates are quite accurate. When
comparing the means of the estimates with the true values, we found that the ML
estimates are slightly better. To give some idea about the variation of the esti-
mates, the deviations {∑i(θ̂i(k)−θ0(k))2/100}1/2, k = 1, . . . , q, of the parameter
estimates around the true values are presented under the column STD0 in Table
2. The Shapiro-Wilk (1965) W-test was used to test the asymptotic normality
of each estimator. The p-values associated with the W-test are also presented in
Table 2. These results show that the normality of most parameter estimates is
not rejected, and hence basically agree with the theory developed in previous sec-
tions. For completeness, the eigenvalues of the matrices JG(θ0)/G and J−1

G (θ0)
are reported in Table 2 as well. We found that λmin(JG(θ0)/G) = 0.0015. Hence,
from the results in Theorems 1 to 4, the consistency and the asymptotic nor-
mality of the ML and GLS estimates can be established. Moreover, we observed
that λmax(J−1

G (θ0)) = 2.00; so as expected, the standard deviations of the ML
and GLS estimates are approximately bounded by 21/2.

Table 1. The patterns of missing entries in the first data set

Number missing pattern Number missing pattern
Ti y1 y2 y3 y4 y5 y6 Ti y1 y2 y3 y4 y5 y6
40 1 1 1 1 1 1 15 1 0 1 1 0 1
41 0 1 1 1 1 1 15 1 0 1 1 1 0
41 1 0 1 1 1 1 10 1 1 0 0 1 1
41 1 1 0 1 1 1 10 1 1 0 1 0 1
41 1 1 1 0 1 1 10 1 1 0 1 1 0
41 1 1 1 1 0 1 10 1 1 1 0 0 1
41 1 1 1 1 1 0 10 1 1 1 0 1 0
15 0 0 1 1 1 1 10 1 1 1 1 0 0
15 0 1 0 1 1 1 5 0 0 0 1 1 1
15 0 1 1 0 1 1 4 1 0 0 0 1 1
15 0 1 1 1 0 1 4 1 1 0 0 0 1
15 0 1 1 1 1 0 3 0 0 1 1 1 0
15 1 0 0 1 1 1 2 0 1 1 1 0 0
15 1 0 1 0 1 1 1 1 1 1 0 0 0
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Table 2. ML and GLS analyses of the first data set

True MLE GLSE Eigenvalues
Value Mean STD0 p-value Mean STD0 p-value JG(θ0)/G J−1

G (θ0)
λ21 0.987 .997 .099 .124 .997 .100 .138 .00100 2.00412
λ42 0.935 .953 .109 .841 .952 .108 .862 .00207 .96540
λ63 0.526 .527 .069 .357 .528 .071 .135 .00384 .52134
ψ11 4.753 4.747 .690 .661 4.527 .691 .592 .00498 .40180
ψ22 2.450 2.421 .738 .356 2.292 .721 .148 .01235 .16188
ψ31 1.658 1.599 .553 .634 1.516 .544 .461 .01279 .15640
ψ33 4.424 4.447 .900 .244 4.230 .867 .444 .01688 .11848
ψ42 0.860 .805 .475 .246 .759 .469 .742 .02376 .08419
ψ44 2.947 2.812 .784 .414 2.696 .785 .155 .03241 .06171
ψ55 2.716 2.648 .839 .094 2.559 .824 .165 .03601 .05554
ψ66 2.632 2.679 .300 .295 2.553 .302 .353 .04624 .04326
φ11 7.221 7.221 .957 .644 6.834 .992 .448 .05748 .03479
φ21 5.338 5.283 .738 .628 5.001 .786 .483 .06415 .03118
φ22 8.273 8.132 1.259 .033 7.712 1.331 .010 .10220 .01957
φ31 -3.954 -3.942 .500 .750 -3.720 .540 .658 1.87126 .00107
φ32 -3.959 -3.849 .582 .163 -3.654 .625 .657 2.62989 .00076
φ33 6.938 6.921 1.000 .122 6.553 1.017 .091 2.74207 .00073

Table 3. Eigenvalues of the information matrices

Complete data MD2 MD3
JG(θ0)/G J−1

G (θ0) JG(θ0)/G J−1
G (θ0) JG(θ0)/G J−1

G (θ0)
.00152 1.31840 .00020 10.24577 .00007 26.83721
.00328 .60899 .00073 2.72297 .00028 7.17648
.00637 .31377 .00161 1.24122 .00063 3.19110
.00686 .29171 .00193 1.03436 .00117 1.70563
.01694 .11808 .00217 .92104 .00188 1.06417
.01846 .10832 .00345 .58034 .00219 .91162
.02777 .07202 .00817 .24488 .00797 .25079
.04401 .04545 .01468 .13620 .01460 .13700
.04832 .04139 .03223 .06205 .03191 .06269
.07580 .02639 .04343 .04605 .04296 .04655
.08678 .02305 .04617 .04332 .04551 .04394
.09340 .02141 .05460 .03663 .05391 .03710
.09797 .02041 .07594 .02634 .07563 .02644
.18784 .01065 .14508 .01379 .14449 .01384

2.57577 .00078 1.89764 .00105 1.85404 .00108
3.69730 .00054 2.38208 .00084 2.37501 .00084
4.33624 .00046 3.87892 .00052 3.86923 .00052
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To study the impact of Condition (C) on the estimation, in addition to the
complete data (CD) set and the data set (MD1) with missing patterns given in
Table 1, we also included in our study two more data sets with the following
three missing patterns: (1,1,1,1,1,1), (0,1,1,1,1,1) and (0,1,1,1,1,0). The sample
sizes for each missing pattern in the new data sets are given by MD2: T1 = 20,
T2 = 240, T3 = 240; and MD3: T1 = 8, T2 = 246, T3 = 246. The eigenvalues
of the matrices JG(θ0)/G and J−1

G (θ0) were computed and reported in Table
3. From this table, we observe that the minimum eigenvalues of the matrix
JG(θ0)/G corresponding to the complete data set and MD1 are quite close and
large. Because more entries are missing in data sets MD2 and MD3, the corre-
sponding minimum eigenvalues are smaller. The behaviors of the eigenvalues for
J−1

G (θ0) are similar but in the opposite direction. Therefore, according to the
results given in Theorems 1 and 2, the ML estimates corresponding to complete
data and data set MD1 should be consistent. The ML estimates corresponding
to data sets MD2 and MD3 may exist but their standard deviations may be
quite large. Moreover, the minimization process in getting the ML estimates for
MD2 and MD3 was rather unstable. Similar phenomena are observed in the GLS
estimation.

6. Discussion

In this paper, the ML and GLS analyses for covariance structures with i.n.i.d.
observations are discussed. Conditions for obtaining the consistency and asymp-
totic normality of the estimators are identified. In the analyses, it is assumed that
the mean vectors of the random observations are zero vectors. For most practical
applications in the field, this assumption is satisfied. Moreover, it should be noted
that even for the more general case with Xg distributed as N [µg(β0),Σ(θ0)],
where β0 and θ0 are distinct parameter vectors, analogous ML and GLS theory
can be developed based on an approach similar to that presented in this paper.

Analyses of two special models that have important applications are pre-
sented to demonstrate the applicability of the general results. These are the
multilevel models and models with certain data missing completely at random.
It is shown that the conditions for obtaining the asymptotic results can be verified
easily in these cases. Moreover, it is expected that the general results developed
can be utilized to analyze other models with non-identically distributed observa-
tions.
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