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E-OPTIMALITY FOR REGRESSION DESIGNS

UNDER CORRELATIONS
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Abstract: In a regression setting, the greatest lower bound for the largest eigen-

value of the covariance matrix of the generalized least squares estimator when the

experimental errors are correlated is derived under the experimental region con-

sidered by Chan and Li (1989). A neat and efficient algorithm for constructing

an E-optimal design matrix via a CL vector is then achieved. It is also shown

that for the E-optimal design matrix the generalized least squares and the ordinary

least squares estimators are identical, and thus the two estimators have the same

E-optimal design matrix.
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1. Introduction

Consider the linear regression model

y = Xβ + ε,

where y is an n× 1 vector of observations, X is an n× p (n ≥ p) real matrix to
be called the design matrix, β is a p × 1 vector of unknown parameters, and ε is
an n × 1 random vector with mean the n × 1 zero vector and covariance matrix
σ2Λ, where σ is an unknown parameter and Λ is a known n× n positive definite
matrix. Denote the transpose of X by X ′. For a given design matrix X of rank p,
the best linear unbiased estimator of the parameter β based on the observation y

is the generalized least squares estimator (X ′Λ−1X)−1X ′Λ−1y, whose covariance
matrix is given by σ2Σ, where

Σ = (X ′Λ−1X)−1. (1)

Another unbiased estimator of the parameter β is the ordinary least squares
estimator (X ′X)−1X ′y. Bhaumik (1995) gave reasons for using ordinary least
squares rather than generalized least squares when the experimental errors in ε

are correlated. In optimal design problems, different criteria are suggested in
the choice of a design matrix in a prescribed experimental region H, say. For a
given estimator of β, a design matrix Z ∈ H is said to be E-optimal in H if the
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largest eigenvalue of the covariance matrix of the estimator with respect to all
design matrices X ∈ H is minimized at X = Z. A design matrix Z is said to be
A-optimal in H if the trace of the covariance matrix is minimized at X = Z.

The experimental region H considered in this paper is the set of all n × p

real matrices of rank p whose ith column has a Euclidean norm not exceeding
ci, i = 1, . . . , p, where ci’s are given positive numbers. Restrictions to column
norms (rather than row norms) in a reproducing kernel inner product space
formulation have long been considered in the time series literature (see Parzen
(1961) for a comprehensive review). In the context of optimal regression designs,
Rao (1965), p.193 considered a design region in terms of the column norms for
an n-dimensional inner product (with kernel Λ−1) space; here we prefer to use
the region H which does not depend on the matrix Λ.

The choice of our experimental region H also has a close relation with the
imposition of energy constraints on the input signals for identifying parameters
in linear systems (Levadi (1966), Mehra (1974a, 1974b) and Kalaba and Spingarn
(1982)). Pázman (1986), chapter 7 considered the applications of optimal regres-
sion designs to the physical fields such as the gravitational field, the electrostatic
field, etc. The column norm restriction was also adopted in Chang and Wong
(1981) for the optimal control of a regression experiment. Specifically we have
the following:

Example. Dorogovcev (1971) (see also Chang (1979) and Chang and Wong
(1981)) considered the model :

z(t) =
p∑

i=1

βifi(t) + ξ(t), (2)

where z(t) is a continuous time output process, fi(t), i = 1, . . . , p, are p input
functions, βi’s are unknown parameters, and ξ(t) is a colored noise with zero
mean. The output process z(t) is to be observed from time a to b. The input
functions, to be selected by the researcher, are subject to the energy constraints∫ b

a
f2

i (t)dt ≤ c2
i , i = 1, . . . , p,

the left hand side being the energy content of the input signal fi(t). Suppose
that each fi(t) is decomposable as

fi(t) =
n∑

j=1

ajigj (t), (3)

where the aji’s are constants (n ≥ p) to be specified, and gj (t), j = 1, . . . , n,
are given continuous and orthonormal functions on the interval [a, b]. Write
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yj =
∫ b
a z(t)gj (t)dt, j = 1, . . . , n, y = [y1 , . . . , yn ]′, β = [β1, . . . , βp]′, and A = [aji]

which is an n × p matrix. Consider the model

y = Aβ + ζ, (4)

where ζ = [ζ1, . . . , ζn]′ with ζj =
∫ b
a ξ(t)gj (t)dt, j = 1, . . . , n . It is easy to see

that under the conditions in (3) the least squares estimator of β for the model
in (2) is tantamount to that for the model in (4). The energy constraint is then
equivalent to the ith column norm of the design matrix A in (4) not exceeding
ci, i = 1, . . . , p.

A concise construction method of an A-optimal design in H for the ordinary
least squares estimator has been suggested (Chan and Li (1989) and Li and
Chan (1989)). A key part in the construction algorithm is the computation of
a CL vector. Li and Chan (1989) introduced an algorithm that can produce a
CL vector in a finite number of steps. In Section 2 we provide a simpler and
more efficient algorithm for finding the CL vector. Based on the new algorithm,
a method of constructing an E-optimal design matrix in H for the generalized
least squares estimator is proposed in Section 3. The same design matrix is
also E-optimal in H for the ordinary least squares estimator. The construction
algorithm is illustrated by an example in Section 4.

2. CL Vector

In studying A-optimality for the ordinary least squares estimator in the
design region H as given in Section 1, Chan and Li (1989) defined a CL sequence,
which was also referred to as CL vector in Li and Chan (1989). Given two ordered
vectors of dimension p, say a1 ≤ · · · ≤ ap and b1 ≤ · · · ≤ bp, the vector [ai] is said
to majorize [bi], written as [ai] � [bi], if

∑i
j=1 aj ≤ ∑i

j=1 bj, i = 1, . . . , p − 1, and∑p
j=1 aj =

∑p
j=1 bj ( see, for example, Marshall and Olkin (1979), p.5). Denote

D = {[di] : 0 ≤ d1 ≤ · · · ≤ dp},
and D+ to be the subset of D with d1 > 0.

Definition. Given [ai], [bi] ∈ D+, there exists a unique vector [di] such that
(a) [di] ∈ D+ and [di] � [bi];
(b) di/ai ≤ di+1/ai+1, i = 1, . . . , p − 1;
(c) if di/ai < di+1/ai+1, then

∑i
j=1 dj =

∑i
j=1 bj.

This unique vector [di] is called the CL vector of the pair ([ai], [bi]).

The existence and uniqueness of a CL vector are proved in Chan and Li
(1989). There it is also shown that

min
{ p∑

i=1

t−1
i a2

i : [ti] ∈ D, [ti] � [bi]
}

=
p∑

i=1

d−1
i a2

i .
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Li and Chan (1989) proposed an algorithm for finding a CL vector. In what
follows, we introduce an alternative approach which leads to a simpler and yet
more efficient algorithm for constructing the CL vector.

Theorem 1. Given [ai] and [bi] in D+, let

h = max
{ i∑

j=1

aj/
i∑

j=1

bj : i = 1, . . . , p
}
.

Suppose k (1 ≤ k ≤ p) is an integer such that
∑k

j=1 aj/
∑k

j=1 bj = h. Write
di = ai/h, i = 1, . . . , k , and if k < p, let [dk+1, . . . , dp] be the CL vector of
([ak+1, . . . , ap], [bk+1, . . . , bp]). Then [d1, . . . , dp] is the CL vector of ([ai], [bi]).

Proof. The vector [di] is shown to satisfy the conditions listed in the Definition
above as follows :

(a) We show that

di/ai ≤ di+1/ai+1, i = 1, . . . , p − 1. (5)

As di/ai = 1/h for i = 1, . . . , k, the inequalities in (5) hold for i = 1, . . . , k − 1.
The proof of (5) is trivial if k = p. Suppose that k < p. The inequalities in (5)
hold for i > k as [dk+1, . . . , dp] is a CL vector. For i = k, let v be the smallest
integer greater than k such that

∑v
j=k+1 dj =

∑v
j=k+1 bj . From the definition of

a CL vector, di/ai = di+1/ai+1 for k + 1 ≤ i < v. Therefore,

dk+1/ak+1 =
v∑

j=k+1

dj/
v∑

j=k+1

aj =
v∑

j=k+1

bj/
v∑

j=k+1

aj ;

from the definitions of h and k, the last quotient is not less than 1/h, which is
equal to dk/ak.

(b) We show that if di/ai < di+1/ai+1, then
∑i

j=1 dj =
∑i

j=1 bj . Clearly the
statement holds for i > k. It also holds for i ≤ k because for i = 1, . . . , k − 1,
we always have di/ai = di+1/ai+1, and for i = k, we necessarily have

∑k
j=1 dj =∑k

j=1 bj .
(c) The inequalities in (5) imply that d1 ≤ · · · ≤ dp. It remains to show

that [di] � [bi]. Clearly
∑p

j=1 dj =
∑p

j=1 bj. From the definitions of h and k,∑i
j=1 dj ≤∑i

j=1 bj holds for i≤k. The inequality also holds for i > k because of
the fact that

∑k
j=1 dj =

∑k
j=1 bj , and the choice of [dk+1, . . . , dp].

3. An E-optimal Design Matrix

Write the p×p diagonal matrix with the ith diagonal element ai, i = 1, . . . , p,
as diag[a1, . . . , ap]. Without loss of generality, assume that c1 ≤ · · · ≤ cp. Let
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0 < λ1 ≤ · · · ≤ λp ≤ · · · ≤ λn be the eigenvalues of the matrix Λ arranged in
ascending order of magnitude, and P be an n × p real matrix whose columns
are the orthonormal eigenvectors of Λ (implying that P ′P is the p × p iden-
tity matrix) with ΛP = P diag[λ1, . . . , λp]. Let [d1, . . . , dp] be the CL vector of
([λ1, . . . , λp], [c2

i ]). As [di] � [c2
i ], we may construct a p × p orthogonal matrix Q

such that the ith diagonal element

(Q diag[d1, . . . , dp] Q′)ii = c2
i , i = 1, . . . , p, (6)

using the algorithm given in Chan and Li (1983). Define

Z = P diag[d1/2
1 , . . . , d1/2

p ] Q′. (7)

Theorem 2. In the region H as given in Section 1, the design matrix Z in (7)
is E-optimal for the generalized least squares estimator. The largest eigenvalue
of (Z ′Λ−1Z)−1 is simply

µ = max
{ i∑

j=1

λj/
i∑

j=1

c2
j : i = 1, . . . , p

}
.

The proof consists of two parts.
PART (a). The largest eigenvalue of the matrix Σ in (1) for any X ∈ H is

greater than or equal to µ.
Proof. By the singular value decomposition of an n×p real matrix X ∈ H of rank
p, we may write X = ARB′, where A is an n × p real matrix with orthonormal
columns, R = diag[r1, . . . , rp] with 0 < r1 ≤ · · · ≤ rp (and so [ri] ∈ D+), and
B is a p × p orthogonal matrix. Since X ′X = BR2B′ and the norm of the ith
column of X does not exceed ci, i = 1, . . . , p, it can be shown that [r2

i ] upper
weakly majorizes [c2

i ] in the sense that r2
1 + · · · + r2

i ≤ c2
1 + · · · + c2

i , i = 1, . . . , p.
The matrix Σ in (1) becomes (X ′Λ−1X)−1 = BR−1(A′Λ−1A)−1R−1B′. Thus the
eigenvalues of Σ are also the eigenvalues of R−1(A′Λ−1A)−1R−1. From Theorem
3 of Wang and Zhang (1992), the largest eigenvalue of R−1(A′Λ−1A)−1R−1 is
greater than or equal to the ith smallest eigenvalue of (A′Λ−1A)−1 divided by
r2
i for all i = 1, . . . , p. By the Poincaré separation theorem, the ith smallest

eigenvalue of (A′Λ−1A)−1, which is equal to the reciprocal of the ith largest
eigenvalue of A′Λ−1A, is greater than or equal to the ith smallest eigenvalue of
Λ, which is λi. Therefore, for any X ∈ H with singular values ri, i = 1, . . . , p (so
that [r2

i ] upper weakly majorizes [c2
i ]) we have

largest eigenvalue of Σ ≥ max{λi/r
2
i : i = 1, . . . , p}

≥ max
{ i∑

j=1

λj/
i∑

j=1

r2
j : i = 1, . . . , p

}
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≥ max
{ i∑

j=1

λj/
i∑

j=1

c2
j : i = 1, . . . , p

}
= µ;

the second inequality follows as

i∑
j=1

λj/
i∑

j=1

r2
j ≤ max{λj/r

2
j : j = 1, . . . , i}.

PART (b). The matrix Z constructed in (7) is a design matrix in H that
attains the lower bound µ.

Proof. The matrix Z is in H in view of the equations in (6). Also,

the largest eigenvalue of (Z ′Λ−1Z)−1

= the largest eigenvalue of (diag[d1/2
1 , . . . , d1/2

p ]P ′Λ−1P diag[d1/2
1 , . . . , d1/2

p ])−1

= max{λi/di : i = 1, . . . , p}.

As [di] is the CL vector of ([λi], [c2
i ]), d1/λ1 ≤ · · · ≤ dp/λp. Therefore, the largest

eigenvalue of (Z ′Λ−1Z)−1 is λ1/d1, which is equal to µ from Theorem 1 in Section
2.

It can be proved directly or through the use of Theorem 3.6 in Seber (1977),
p.63 that the ordinary least squares and the generalized least squares estimators
for the design matrix Z in (7) are identical. Therefore, Z in (7) is also E-optimal
in H when the ordinary least squares estimator is used.

4. An Example

Suppose that an output discrete time process yj is affected by two input
signals x1j and x2j and an MA(1) disturbance εj such that

yj = β1x1j + β2x2j + εj ;

we aim at choosing an n×2 E-optimal design matrix X = [xji] for the estimation
of the parameters β1 and β2. The experimental region H is such that the norm of
each column of X is less than or equal to n1/2. In this case it can be shown that
the inequality constraints may be replaced by the equalities that

∑n
j=1 x2

ij/n = 1
for i = 1, 2. This restriction is similar to that used by Box and Jenkins (1970),
pp. 416-420 in studying a case in which n tends to infinity and the stationary
distribution of the input process has zero mean and unit variance.

Let the MA(1) process be εj = buj−1 + uj , with uj a Guassian white noise
with constant variance σ2. Then Λ is a tridiagonal matrix with diagonal elements
equal to (1 + b2), and sub-diagonal elements b. From Parlett (1980), p.130, the
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eigenvalues of Λ are 1+ b2 +2b cos(jπ/(n+1)), j = 1, . . . , n, with corresponding
orthonormal eigenvectors

[2/(n + 1)]1/2[sin(jπ/(n + 1)), sin(2jπ/(n + 1)), . . . , sin(njπ/(n + 1))].

Thus the two smallest eigenvalues of Λ are

λ1 = 1 + b2 + 2b cos{[(n + 1)Ib≥0 − 1]π/(n + 1)},
and

λ2 = 1 + b2 + 2b cos{[(n + 1)Ib≥0 − 2]π/(n + 1)},
where Ib≥0 is an indicator function taking the value 1 when b ≥ 0 and 0 otherwise.
Clearly the desired CL-vector as in (6) is [d1, d2] = 2n[λ1, λ2]/(λ1 + λ2), and we
may choose

Q = 2−1/2

[
1 1

−1 1

]
.

The E-optimal design matrix in (7) is therefore

Z = {2n/[(n + 1)(λ1 + λ2)]}1/2 V

[
λ

1/2
1 −λ

1/2
1

λ
1/2
2 λ

1/2
2

]
,

where V is an n × 2 matrix with the (j, i)th element equal to sin{[(n + 1)Ib≥0 −
i]jπ/(n + 1)}. This optimal design matrix depends on the MA(1) coefficient b.
If b is not known except for its sign, and n is large, we may use, instead, the
approximate optimal design matrix :

Z∗ = [n/(n + 1)]1/2 V

[
1 −1
1 1

]
,

which has (componentwise) relative error of order O(n−2).
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