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Abstract: In the present paper we examine the strict stationarity and the existence

of higher-order moments for the GARCH(p,q) model under general and tractable

assumptions.
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1. Introduction

Consider the following non-linear time series model{
xt = εtht

1
2

ht = α0 + α1x
2
t−1 + · · · + αpx

2
t−p + φ1ht−1 + · · · + φqht−q,

(1.1)

where α0 > 0, αi ≥ 0, i = 1, . . . , p, φj ≥ 0, j = 1, . . . , q, {εt} is a sequence of
independent identically distributed(i.i.d.) random variables with zero mean and
unit variance, and εt is independent of xt−s, s > 0.

The model (1.1) is called the GARCH(p,q) model, which is proposed by
Bollerslev (1986) and is one of many generalizations of the so-called ARCH (au-
toregressive conditional heteroskedasticity) model proposed by Engle (1982) in
the literature. The GARCH models have been widely applied in modelling mon-
etary and financial data such as inflation rate, interest rate and stock prices. The
recent review by Bollerslev et al. (1992) contains an extensive literature on this
subject.

The strict stationarity and the existence of moments for a time series model
are fundamental for statistical inference. Therefore, it is significant to find nec-
essary and sufficient conditions for the strict stationarity and the existence of
moments for a time series model. Bougeral and Picard (1992) gave a necessary
and sufficient condition for the strict stationarity of the GARCH model. How-
ever, as they pointed out, the conditions proposed are difficult to verify and can
only be checked by Monte Carlo methods. Bollerslev (1986) discussed conditions
for the existence of higher-order moments for GARCH(1,1) model. So far it ap-
pears that there is not any paper about the existence of higher-order moments
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for the GARCH(p, q) model in the literature. The purpose of this paper is to give
some sufficient conditions for the strict stationarity and the existence of moments
for the GARCH(p, q) model.

2. The Strict Stationarity of the GARCH Model

First, we introduce some notation. Let {xt} conform to model (1.1). De-
fine yt = xt

2, ηt = εt
2, Yt = (yt, . . . , yt−p+1, ht, . . . , ht−q+1)τ , Bt = (α0ηt, 0, . . . ,

0, α0, 0, . . . , 0)τ , where “τ” denotes the transposition of a matrix, and

At =




α1ηt · · · αp−1ηt αpηt φ1ηt · · · φq−1ηt φqηt

1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 1 0 0 · · · 0 0
α1 · · · αp−1 αp φ1 · · · φq−1 φq

0 · · · 0 0 1 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · 1 0




The expectation of the random matrix At is defined element-wise, hence it is
obvious that EAt is a constant matrix, and

EAt =




α1 · · · αp−1 αp φ1 · · · φq−1 φq

1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 1 0 0 · · · 0 0
α1 · · · αp−1 αp φ1 · · · φq−1 φq

0 · · · 0 0 1 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · 1 0




≡ A.

Similarly, EBt = B ≡ (α0, 0, . . . , 0, α0, 0, . . . , 0)τ . Then from (1.1) we have

xt
2 = εt

2
(
α0 +

p∑
i=1

αixt−i
2 +

q∑
j=1

φjht−j

)

=
p∑

i=1

αiεt
2xt−i

2 +
q∑

j=1

φjεt
2ht−j + α0εt

2, (2.1)

which implies

yt =
p∑

i=1

αiηtyt−i +
q∑

j=1

φjηtht−j + α0ηt. (2.2)
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Thus, {yt} is a solution of (2.2) if and only if {Yt} is a solution of the following
stochastic difference equation

Yt = AtYt−1 +Bt. (2.3)

Lemma 2.1. If
∑p

i=1 αi +
∑q

j=1 φj < 1, then the series of random vectors

∞∑
k=1

( k−1∏
j=0

At−j

)
Bt−k

converges almost surely. Furthermore if

Yt = Bt +
∞∑

k=1

( k−1∏
j=0

At−j

)
Bt−k, (2.4)

then {Yt} is a strictly stationary, vector-valued process satisfying (2.3).

Proof. By the definition of At and Bt, it is easy to see that both {At} and
{Bt} are sequence of independent, non-negative random vectors and At−j is
independent of Bt−k for k �= j. Therefore, we have

E
( k−1∏

j=0

At−j

)
Bt−k =

( k−1∏
j=0

EAt−j

)
EBt−k = AkB.

It is easy to verified that the characteristic polynomial of A is given by
det(λA− I) = 1−∑m

i=1(αi + φi)λi, where m = max{p, q}, and αi = 0, for i > p,
φi = 0, for i > q. Let ρ(A) be the spectral radius of the matrix A, hence ρ(A) < 1
if and only if

∑p
i=1 αi +

∑q
j=1 φj < 1. Thus, if

∑p
i=1 αi +

∑q
j=1 φj < 1, then (see

Horn and Johnson (1985))
∞∑

k=1

Ak <∞,

which implies that
∞∑

k=1

E
( k−1∏

j=0

At−j

)
Bt−k <∞,

and hence
∞∑

k=1

( k−1∏
j=0

At−j

)
Bt−k <∞, a.s.

It is obvious that the vector-valued stochastic process {Yt} defined by (2.4)
is strictly stationary. Furthermore, we have

Yt = Bt + At

[
Bt−1 +

∞∑
k=2

(
k−1∏
j=0

At−j)Bt−k

]
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= Bt + At

[
Bt−1 +

∞∑
l=1

(
l−1∏
j=0

At−1−l)Bt−1−l

]
= Bt + AtYt−1.

Lemma 2.2. If (2.3) admits a strictly stationary solution with finite first mo-
ment, then

∑p
i=1 αi +

∑q
j=1 φj < 1. Moreover, the strictly stationary solution of

(2.3) is unique.

Proof. By (2.3), we have

Y0 = A0Y−1 +B0

= B0 + A0B−1 + A0A−1Y−2

... (2.5)

= B0 +
n−1∑
k=1

(
k−1∏
j=0

A−j)B−k + (
n−1∏
j=0

A−j)Y−n.

Noting that all An, Bn and Yn are non-negative, {At} is a sequence of
independent random matrices, An−j and Bn−k are independent for k �= j, and
EY0 <∞. By taking expectation of each side of (2.5), it follows that

EY0 ≥
n−1∑
k=1

E
( k−1∏

j=0

A−j

)
B−k =

n−1∑
k=1

AkB.

This shows that
n∑

k=1

AkB <∞.

Therefore,
lim

n→∞AnB = 0. (2.6)

Let {δi, i = 1, . . . , p + q} be the canonical basis of Rp+q, i.e. δi = (δi,1, . . . ,
δi,p+q)τ , where δij = 0, for i �= j, δii = 1. If we can prove that for 1 ≤ i ≤ p+ q,

lim
n→∞Anδi = 0, (2.7)

then (2.7) implies that limn→∞ An = 0, which again implies that ρ(A) < 1. As
we showed before the later is equivalent to

∑p
i=1 αi +

∑q
j=1 φj < 1, which leads

to the first part of this lemma.
In fact, since B = α0(δ1 + δp+1) and 0 < α0 <∞, by (2.6) and the definition

of matrix A, (2.7) holds for i = 1 and i = p + 1. Again by the definition of A
and B, Aδp+q = φq(δ1 + δp+1). If φq = 0, then Aδp+q = 0, hence (2.7) holds. If
φq > 0, by the above equalities,

lim
n→∞Anδp+q = lim

n→∞An−1φq(δ1 + δp+1) = 0.
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It is easy to see that for 2 ≤ i < p,

Aδi = αiδ1 + δi+1 + αiδp+1.

Since (2.7) holds for i = 1 and i = p+ 1, by a backward recursion (2.7) holds for
i = p, p− 1, . . . , 1, respectively. Similarly, for p+ 1 < i < p+ q,

Aδi = φi(δ1 + δp+1) + δi+1.

Noting that (2.7) holds for i = p + q, by a backward recursion, (2.7) holds for
i = p+ q − 1, p + q − 2, . . . , p+ 2. Finally, (2.7) holds for any i = 1, 2, . . . , p+ q.

For the proof of the uniqueness, let {Ut} be another strictly stationary solu-
tion satisfying (2.3). Then {Ut} also satisfies an equation similar to (2.5). Note
that the third term on the right hand side of the last line in (2.5) goes to zero in
probability. Then the uniqueness follows immediately.

Theorem 2.1. The GARCH(p, q) model (1.1) admits a strictly stationary solu-
tion with finite variance if and only if

∑p
i=1 αi +

∑q
j=1 φj < 1. Moreover, this

strictly stationary solution is also unique.

Proof. The desired resultis obtained by combining Lemma 2.1 and Lemma
2.2.

3. The Existence of Higher-Order Moments

Let
Ls = {x : ‖x‖s = E

1
s |x|s <∞, s > 0},

where x is a random variable.We need the Kronecker product (⊗), the direct
operations (“vec” operations ), the notation A⊗m = A ⊗ A ⊗ · · · ⊗ A, and the
basic identity vec(ABC) = (Cτ ⊗A)vec(B). We denote the (i, j)th element of a
matrix D by (D)ij and define Σm = E(At

⊗m).

Theorem 3.1. Let {xt} be specified to be the strictly stationary solution of model
(1.1) and

∑p
i=1 αi +

∑q
j=1 φj < 1.

(i) If E|εt|4 <∞ and ρ(Σ2) < 1, then |xt|2 ∈ L2.
(ii) If E|εt|4(s−1) <∞, for some integer s > 2, and ρ(Σs) < 1, then |xt|2 ∈ Ls.

Proof. Let Ỹt be generated according to (2.3) with the starting value Ỹ0 = 0.
Let Y be a random variable having the same distribution as that of (2.4) with
t = 0, which is the (marginal) distribution of the unique stationary solution of
(2.3). It is clear that Ỹt → Y in distribution. Let ψ(Y ) be a random variable.
From weak convergence theory (Billingsley (1968)), it is known that to show
Eψ(Y ) < ∞, it suffices to show lim infEψ(Ỹt) < ∞. Let V (t) = E(Ỹt). Then,
taking expectation on both sides of (2.3), we get

V (t) = AV (t− 1) +B.
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It is well know that lim V (t) exists and is finite if the spectral radius of A is less
than 1(cf. Subba Rao (1981)). Hence if the spectral radius of A is less than 1,
{V (t)} is bounded. Next, let V1(t) = E(vec(ỸtỸ

τ
t )). Then

V1(t) = E(At ⊗At)V1(t− 1) + E(Bt ⊗At)V1(t− 1)

+E(At ⊗Bt)V1(t− 1) + vec(E(BtB
τ
t )).

Note that the matices E(At⊗At), E(Bt⊗At), E(At⊗Bt) and vec(E(BtB
τ
t ))

are constant and finite matrices. As {V (t)} is bounded, it is clear that lim V1(t)
exists and is finite if the spectral radius of Σ2 = E(At ⊗At) is less than 1. Note
that the first element of V1(t) is E(x̃4

t ). Because x̃4
t converges in distribution to

x4
0 and limV1(t) is finite, E(x4

0) <∞. This completes the proof of (i). The proof
of (ii) is similar and hence omitted.
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