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Abstract: The conditional mean of the response variable Y given the covariates

X = x ∈ Rp is usually modelled by a parametric function g(βx), where g(·) is a

known function and β is a row vector of p unknown parameters. In this paper, a new

method for testing the goodness of fit of the model g(βx) for the mean function is

presented. The new test depends on the selection of weight functions. An expression

for the efficacy of the proposed test under a sequence of local alternatives will be

given. With the application of this result one can direct the choice of the optimal

weight functions in order to maximize the efficacy. The new test is simple in

computation and consistent against a broad class of alternatives. Asymptotically,

the null distribution is independent of the underlying distribution of Y given X = x.

Two pratical examples are given to illustrate the method. Further, simulation

studies are given to show the advantages of the proposed test.

Key words and phrases: Consistency, estimation equation, goodness of fit, mean

function, pitman efficiency.

1. Introduction

The regression analysis of independent observations with a quasi-likelihood
model has been studied extensively (see McCullagh and Nelder (1989)). The
quasi-likelihood approach has a number of attractive features that can be sum-
marized as follows. First, one only needs to specify the models for the con-
ditional mean and variance of the response variable Y given covariate values
X = (x1, . . . , xp). Second, the approach provides consistent estimators for the
regression parameters that only require that the model for the mean function is
correctly specified. Thus, regardless of whether the “working” variance function
is correctly specified, consistent estimators of the regression parameters are ob-
tained. In addition, robust variance estimators that are consistent even when
the working variance function is misspecified can easily be obtained (see Liang
and Zeger (1986)). Extension of the quasi-likelihood approach for longitudinal
responses was also considered by Liang and Zeger (1986). They proposed the
generalized estimating equations approach.

From the above it is seen that a fundamental step in parametric regression
analysis is to select a correct model for the mean function. Usually a functional
form for the mean function is postulated that depends upon a 1 × p parameter



478 K. F. CHENG AND J. W. WU

vector. Such a parametric approach can generally display great advantages in
terms of interpretability and precision, and can be found in most introductory
courses in regression analysis. This is because often the main interest of the
regression analysis is to draw inferences about covariate effects on the marginal
means of individual observations. This paper proposes a test for the mean func-
tion models. The test can be used to detect the adequacy of the parametric
models, such as a linear model or a logit model, for the mean function.

Su and Wei (1991) also proposed a test procedure for testing the misspeci-
fication of the mean function model. They defined their test statistic using the
supremum of the partial sum of residuals. Their test is designed to test the valid-
ity of the assumed model against very general alternatives. In contrast, our new
procedure is designed to test the null hypothesis against particular alternatives.
This can be done because the test statistic depends on the selection of weight
functions. With proper choice of weight functions, one can achieve this objective.
In fact, we shall derive the efficacies of the proposed test under sequences of local
alternatives. One can apply this result to guide the choice of optimal weight
functions in order to maximize the efficacy.

To test the adequacy of a particular hypothesized model for the means, one
can also apply nonparametric regression method. Recent papers on this general
topic include Cox, Koh, Wahba, and Yandell (1988), Staniswalis and Severini
(1991), and Firth, Glosup and Hinkley (1991), etc.

Suppose one has additional assumptions about the conditional distributuion
of the response variable given covariate values; then the statistics based on the
deviance residuals can also be used to detect certain departure from a hypothe-
sized model for the means (see McCullagh and Nelder (1989)). This likelihood-
based approach, however, can no longer be applied without assumptions about
the error distribution. The approach considered in the present paper is not a
likelihood-based method. In section 2, the basic structure of the test procedure
is described. Section 3 gives the efficacy of the test under local atternatives and
derives optimal weight functions. Practical examples and simulation studies are
given in Section 4. Conclusions are given in Section 5.

2. Construction of Test Statistics

Let {(Yi,Xi), i = 1, . . . , n} denote a random sample, where the Yi’s are real-
valued independent response variables and Xi = (Xi1, . . . ,Xip)T is a p-dimensional
column vector of covariates. The expectation of Y |X = x is denoted by µ(x).
We assume the parametric model g(βx) for µ(x) and thus the null hypothesis is
H0 : µ(x) = g(βx), for some p-dimensional row vector of regression coefficients
β. To satisfy the usual indentifiability constraint under H0, we also assume that
there exists a unique set of parameter values β0 such that the mean function
µ(x) = g(β0x) for all x in the covariate space.
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Under the hypothesized link function g−1(·), the estimate β̂c of β can be
obtained by considering the solution of the estimating equations

n∑
i=1

{yi − g(βxi)}Ċ{g(βxi)}ġ(βxi)xi = 0, (1)

where C(·) is considered as a weight function. Given some regularity conditions,
there exists a sequence of solutions β̂c to (1) such that β̂c converges in probability
to a constant vector βc satisfying

E{µ(X) − g(βcX)}Ċ{g(βcX)}ġ(βcX)X = 0. (2)

Suppose Ċ(·) = constant; then the system of equations (1) gives the least squares
extimates. Further if [Ċ{g(βx)}]−1 = Var (Y | X = x), then the system of
equations (1) is exactly the system of the quasi-likelihood estimating equations
(see Wedderburn (1974)). Wedderburn also showed that the quasi-likelihood
estimates are the same as the maximum likelihood estimates based on the natural
exponential family with variance function C−1(µ), when such a family exists.

Under H0 and provided that the solution to (2) is unique, we have βc = β0.
Thus, for any different weight functions C(·) and C∗(·) such that C(t) is not
proportional to C∗(t) the result implies that, for large sample size, the differ-
ence between β̂c and β̂c∗ should be small. Also, the random vector Hn(β̂c) =
n−1 ∑n

i=1{yi − g(β̂cxi)}Ċ∗{g(β̂cxi)}ġ(β̂cxi)xi should be close to zero. On the
other hand, under the alternative hypothesis, Hn(β̂c) in general will converge in
probability to a nonzero vector H(βc) = E{µ(X)−g(βcX)}Ċ∗{g(βcX)}ġ(βcX)X.
Thus the test based on the statistic Hn(β̂c) seems to have the potential to detect
a broad range of model misspecifications.

The exact sampling distribution of
√

nHn(β̂c) is difficult to derive. How-
ever, large sample results can be used to approximate the sampling distribution
of

√
nHn(β̂c). Under H0 and assuming that certain regularity conditions are

satisfiesed, one can show that
√

nHn(β̂c)
d→ MVN(0,

∑
c) as n → ∞. Denote a

consistent estimator of the covariance matrix by
∑̂

c. Then the Wald chi-squared
Statistic Wn = nHT

n (β̂c)
∑̂−1

c Hn(β̂c) can be used to test H0. The null distri-
bution of Wn converges weakly to a central chi-squared variable with p degrees
of freedom, and a large value of Wn means that one should reject H0. More
precisely, to carry out the test, one simply computes Wn and compares it to the
critical value of the χ2

p distribution for a given size of the test.
Asymptotically, the goodness-of-fit test based on Wn has good properties.

Particularly, the test Wn is consistent against any misspecification of the mean
function model under which H(βc) is nonzero. However, for small sample sizes,
the performance of Wn depends on the dimension p of X. In some special cases
such as p ≤ 3, the test gives quite satisfactory performance. But for p > 3, it
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may simply be impossible to test all indicators in Hn(β̂c) jointly. Sometimes the
test tends to reject the null hypothesis more often than it should when H0 is
true. An explanation of this undesirable behaviour of Wn is that most of the

∑̂
c

matrices are nearly singular and lead to large simulated values of Wn. In such
a situation, the χ2

p distribution is not an appropriate approximation of the null
distribution of Wn.

Based on Hn(β̂c), another approach to test H0 is to consider linear combi-
nations of the components in Hn(β̂c). In this paper we consider the test statistic
Sn(β̂c) = β̂cHn(β̂c). The reasons are simple. First, the test based on Sn(β̂c) is
seen to be efficient under various situations discussed in Section 4. Further, it is
easier to establish a rule for selecting optimal weight functions C(·) and C∗(·).
The latter result will be derived in Section 3.

The large sample null distribution of
√

nSn(β̂c) is stated in the following. The
proof is simple and hence will be omitted. We first assume the regularity condi-
tions being satisfied so that for n → ∞, one can show

√
n(β̂c −β0)

d→MVN(0,
∑

),
where the asymptotic covariance matrix can be consistenly estimated by

∑̂
=

A−1
n ( 1

n

∑n
i=1 C⊗2

ni )A−1
n , where An = n−1 ∑n

i=1 ġ2(zi)Ċ{g(zi)}x⊗2
i , Cni = {yi −

g(zi)}Ċ{g(zi)}ġ(zi)xi, zi = β̂cxi, and for any column vector a, a⊗2 denotes the
matrix aaT . Further, by applying the delta method, one can establish the asymp-
totic result:

√
nSn(β̂c)

d→N(0, σ2) as n → ∞. Here, the variance can be consistenly
estimated by using the estimator

σ̂2 = Bn

∑̂
BT

n + (n−1
n∑

i=1

D2
ni) − 2{n−1

n∑
i=1

(BnA−1
n Cni)Dni},

where Bn =n−1 ∑n
i=1 ġ2(zi)Ċ∗{g(zi)}zix

T
i and Dni={Yi−g(zi)}Ċ∗{g(zi)}ġ(zi)zi.

Thus to carry out the test, one computes Z2 = nS2
n(β̂c)/σ̂2 and compares it to

the critical value of the χ2
1 distribution for a given size of the test.

Before closing this section, we exhibit a simple simulation study to compare
the performance of Wn and Z2. We consider the problem of testing a probit model
H0 : g(βX) = Φ(β1X1+β2X2+β3X3+β4X4), where Φ(t) is the cdf of the N(0, 1)
distribution. Let the true model be Yi = Y ∗

i /50, and for each i, Y ∗
i is from a

binomial (50, p(Xi)) distribution, where p(Xi) = Φ(Xi1+Xi2+Xi3+Xi4+γXi5),
(Xi1,Xi2,Xi3 +Xi4 +Xi5) is from MVN((0.5, 0.5,−0.1,−0.5,−0.5), .01 I), and I
is the usual identity matrix. In the study we choose Ċ(t) = 1 and Ċ∗(t) = {t(1−
t)}−1 so that β̂c is the usual least squares estimate and under H0, Ċ−1∗ {g(βX)} =
50 Var (Y |X) = g(βX)·{1−g(βX)}. Further, we note that a consistent estimator∑̂

c of
∑

needed for computing Wn is given by
∑̂

c =
∑̂

11 + 2
∑̂

12 +
∑̂

22, where∑̂
11 = n−1 ∑n

i=1{A(β̂c,Xi, Yi) − Ā}{A(β̂c,Xi, Yi) − Ā}T ,

∑̂
12

= n−1
n∑

i=1

[
{A(β̂c,Xi, Yi) − Ā}BT (β̂c,Xi, Yi){−n−1

n∑
i=1

∂B(β̂c,Xi, Yi)
∂β

}−1
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·{n−1
n∑

i=1

∂A(β̂c,Xi, Yi)
∂β

}T
]
,

∑̂
22

=
{
n−1

n∑
i=1

∂A(β̂c,Xi, Yi)
∂β

}T {
n−1

n∑
i=1

∂B(β̂c,Xi, Yi)
∂β

}−1

·
{
n−1

n∑
i=1

B(β̂c,Xi, Yi)BT (β̂c,Xi, Yi)
}{

n−1
n∑

i=1

∂B(β̂c,Xi, Yi)
∂β

}−1

·
{
n−1

n∑
i=1

∂A(β̂c,Xi, Yi)
∂β

}T
,

A(β,X, Y ) = {Y − g(βX)}ġ(βX)Ċ∗{g(βX)}X,

B(β,X, Y ) = {Y − g(βX)}ġ(βX)Ċ{g(βX)}X,

and Ā = n−1 ∑n
i=1 A(β̂c,Xi, Yi).

The estimated powers of the tests Z2 and Wn at level α = .05 are given in Table
1. All the empirical powers reported in the table were based on 500 replications
of {(Xi, Yi), i = 1, 2, . . . , 50}. These results clearly show that the test based on
Z2 is definitely better than that based on Wn.

Table 1. Empirical powers of Z2 and Wn tests

γ Z2 Wn

.00 .045 .064

.25 .230 .100

.50 .240 .130

.75 .250 .150
1.00 .250 .150
1.25 .260 .180

3. Efficacy and Optimal Weights

For the purpose of simplicity, we assume in this section that the conditional
distribution of Y depends on x only throught βx. Thus under the local alterna-
tives considered below, Var (Y | x) depends on n and βx. Assume this variance
function converges to V (βx) as n → ∞.

Consider a sequence of local alternatives with link functions g−1
0,n(t) such that,

uniformly on t, √
n{g0,n(t) − g(t)} → h(t), n → ∞, (3)

where h(t) is some function. Under such a sequence of local alternatives, and as-
suming that the proper regularity conditions are satisfied, one can show

√
nSn(β̂c)
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d→N(µ, σ2) as n → ∞. Here, taking W = β0X, we have

µ = E[h(W )Ċ{g(W )}ġ(W )Wσ2
∗/σ

2
i ] − E[h(W )Ċ∗{g(W )}ġ(W )W ],

σ2 = E[Ċ∗{g(W )} − Ċ{g(W )}σ2
∗/σ

2
c ]

2ġ2(W )W 2V (W ),
σ2

c = E[Ċ{g(W )}ġ2(W )], and σ2
∗ = E[Ċ∗{g(W )}ġ2(W )].

Appealing to the notion of Pitman efficiency, we find that the efficacy e(Sn)
of the test against the local alternatives satisfying expression (3) is given by

e(Sn) =
[E[Ċ∗{g(W )} − Ċ{g(W )}σ2∗/σ2

c ]h(W )ġ(W )W ]2

E[Ċ∗{g(W )} − Ċ{g(W )}σ2∗/σ2
c ]2ġ2(W )W 2V (W )

.

Note that the efficacy is invariant under a sclar multiplication of the weight
function C(·)(C∗(·)). By the Cauchy-Schwartz inequality, e(Sn) ≤ E{h2(W )/
V (W )}, which is independent of C(·) and C∗(·). The inequality is an equality if
and only if

Ċ∗{g(t)}ġ(t)t = Ċ{g(t)}ġ(t)t σ2
∗/σ

2
c + d · h(t)/V (t). (4)

for some nonzero constant d and all t in the space of β0X. Since the weight
functions can be multiplied by some proper scalar constants so that σ2

c = σ2∗;
thus, for such weight functions, application of result (4) shows that Sn is the
optimal test of H0 against the local alternatives (3) with h(t) satisfying h(t) =
d · V (t)[Ċ∗{g(t)} − Ċ{g(t)}]ġ(t)t.

4. Examples and Simulations

4.1. Examples

We use two examples to illustrate the proposed method. Let β̂c be defined
as the least squares estimate (that is choose Ċ(t) = 1) and Ċ∗{g(t)} = V −1(t).
Thus, the test is optimal for testing H0 against local alternatives (3.1) with
h(t) = {d − (dσ2∗/σ2

c )V (t)}ġ(t)t for some constant d. The first example is taken
from Bissell (1972). There are 32 independent counts of the number y of flaws
in rolls of fabric of length x. The data are given in Table 1 of Firth et al.
(1991). They assumed that there is a constant flaw rate and thus the mean
count E(Y | X = x) = βx. The least squares estimate is β̂c = .0151. Following
Firth et al. (1991), we also assume Y to be a Poisson variate; thus, we chose
Ċ∗(βx) = V −1(βx) = (βx)−1. The corresponding value of nS2

n(β̂c)/σ̂2 is .0593.
The approximated p value is .808, showing a strong support for the constant flaw
rate assumption. This agrees with the conclusion stated in Firth et al. (1991).

The second example considers the data given by Finney (1947); see also Table
2 of Su and Wei (1991). The purpose of the analysis is to study the effect of the
rate and volume of air inspired on a transient vasoconstriction in the skin of the
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digits. Su and Wei (1991) suggested that the logistic regression model should be
proper for this data set since their test has an approximated p value equal to .34.
We also assume the logistic regression model to determine Ċ∗{g(t)} = V −1(t) and
apply the new method to this data set. The approximated p value of the new test
is .55. This also shows that the logit of E(Y | X = x) should be approximately
linear.

4.2. Testing linearity

In this subsection we give one simulation to study the power performance of
the new test. Consider the problem of testing linearity, H0 : E(Y | x) = β1x,

against H1 : E(Y | x) = β1x+β2x
2, β2 �= 0, in the analysis of regression functions

of one variable. Let the true model be Yi = Xi + γX2
i + εi, where the εi’s

are independent N(0, 1) random variables, and the design points Xi’s were also
generated from a N(0, 1) distribution independent of the εi’s. In this context, the
most popular test for testing H0 is the likelihood ratio test using the F statistic.
Here we shall compare the empirical powers of the test Z2, Su and Wei’s test
Gn(Su and Wei (1991)), and the F test. In computing Z2, we again define β̂c

to be the least squares estimate (i.e. Ċ{g(t)} = 1) but select Ċ∗{g(t)} = 1 + t,

since with this choice of weight functions, σ2
c = σ2∗ = 1. Also note that in this

case, g(t) = t and thus the quantities Ċ∗{g(β̂cxi)}ġ(β̂cxi)(β̂cxi) used in defining
Sn(β̂c) (and Z2) are (1 + β̂cxi)(β̂cxi), i = 1, . . . , n, respectively. The test Z2

is optimal, in the sense described in section 3, for testing H0 (against the local
alternatives (3) with h(t) = dt2, where d �= 0 is any constant. That is to say,
Z2 is optimal, in the sense described in Section 3, for testing H0) against H1 for
small values of β2. All the empirical powers reported in this section were based
on 1000 random samples of {(xi, yi), i = 1, . . . , 50}. Further, for each observed
sample 500 random samples of {zi, i = 1, 2, . . . , 50} from the N(0, 1) distribution
were also generated to calculate the approximated p value of the test Gn (see Su
and Wei (1991)). The estimated power curves for the tests Z2, Gn and F at level
α = .05 are presented in Figure 1. The new test Z2 is uniformly more powerful
than the test Gn. The difference between the two power curves is significant.
The likelihood-based F test is better than the Z2 test. However, the difference
between the two power curves seems less significant. Note that the Z2 test is
optimal with respect to a rather specific alternative, and could possibly limit
the practical usefulness of the approach. The same can be said for the F test.
To study the robustness of the discussed tests, we consider the true model as
Yi = Xi + γX4

i + εi. Under the same simulation set-up as before, the estimated
power curves for the tests Z2, Gn and F at level α = .05 are given in Figure 2.
The figure shows that Z2 has reasonable performance and is still uniformly more
powerful than Gn. Thus, at least in this case, Z2 is seen to be robust.
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Figure 1. Power comparisons among the new test Z2 the test Gn and the
F test. The solid line represents the power curve of the test Z2. The long
dashed line represents the power curve of the F test, and the short dashed
line represents the power curve of the test Gn.
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Figure 2. Power comparisions among the new test Z2, the test Gn and the
F test. The solid line represents the power curve of the test Z2. The long
dashed line represents the power curve of the F test, and the short dashed
line represents the power curve of the test Gn

4.3. Testing for parameter variation in regression models

Testing for random coefficient variation in regression models has become an
established part of modern applied statistical analysis (see McCabe and Ley-
bourne (1933) and papers cited therein). This is because relationships between
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variables may change across units or through time. In this subsection we consider
a regression model of the general form

Yi = g(γiXi) + εi

and it is assumed the parameter vector γi varies according to

γi = β + ηi, i = 1, . . . , n,

where β is fixed, εi and ηi are independent random error terms with zero mean,
E(ε2) = σ2, E(ηT η) = Ω(ω), and g(·) is a known function. We also suppose that
Ω is positive semidefinite for all ω �= 0, with Ω(0) = 0, and that β, ω, and σ2 are
all unknown. Our aim is to test H0 : ω = 0.

For simplicity of presentation, we assume the dimensionality p of β is 1
and Ω(ω) = ω2 and follow McCable and Leybourne (1993) to assume that g(·)
has continuous derivatives up to the second order and that, for local alternative
values of ω, higher order terms can be ignored. Then a second-order Taylor series
expansion about β gives

E(Y | X = x) = g(βx) + g̈(βx)ω2x2/2,

and
Var (Y | X = x) = {ġ(βx)ωx}2 + σ2.

As a consequence, from our previous disscussions it is seen that if g̈(t) �= 0,
then testing ω = 0 against local alternative values of ω is equivalent to testing
H0 : µ(x) = g(βx) against local alternatives with h(t) = t2g̈(t) as mentioned in
Section 3. Also, for local alternative values of ω, we may assume the variance
function V (·) is approximately constant. Under this situation, we see, that if one
uses the weight function C(·) to define the estimate β̂c, then an optimal weight
function C∗(·) to define the test statistic Z2 should satisfy

Ċ∗(g(t))ġ(t)t = Ċ(g(t))ġ(t)t + dt2g̈(t), (5)

were d is any constant.
In this subsection, we compare the score-based test LMg for the general

case by McCable and Leybourne (1993) and the test based on the statistic Z2

satisfying (5) with Ċ(t) = 1 under the following non-linear regression model :

Yi = exp(γiXi) + εi.

Note that in this case, g(t) = exp(t), and according to (5) the quantities
Ċ∗{g(β̂cxi)}ġ(β̂cxi)(β̂cxi) used in defining Sn(β̂c) (and Z2) are {exp(β̂cxi)(β̂cxi)+
d(β̂cxi)2 exp(β̂cxi)}, i = 1, . . . , n, respectively. Here, β̂c is the least squares es-
timate. The null hypothesis is H0 : ω = 0, and the model was simulated with
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sample size n = 50 and over 1000 replications. The variable Xi was generated
as U(0, 3), and εi was generated as N(0, 1). Random parameter variation was
generated as γi = 0.2 + ηi, where ηi ∼ N(0, ω2). The estimated power curves for
the tests Z2 and LMg at level α = .05 are presented in Figure 3. It is clearly evi-
dent that for small or moderately large values of ω, the new test Z2 is uniformly
more powerful than the test LMg. For large values of ω, the difference between
the two power curves is not significant.

All the caculations in this section were programmed in FORTRAN 77 on a
VAX 8650 machine. Random variables Xi, ηi and εi were generated using IMSL
subroutines RNNOR and RNUN.

p
o
w

e
r

ω

Figure 3. Power comparisons between the new test Z2 and the test LMg.
The solid line represents the power curve of the test Z2. The dashed line
represents the power curve of the test LMg.

5. Conclusions

In this article, we propose some conceptually simple methods to test the
appropriateness of the mean function models. The approach discussed here is not
a likelihood-based method, since no additional assumptions about the conditional
distribution of the response variable given covariate values are assumed. The new
test depends on the selection of weight functions. We have derived the efficacies
of the test under sequences of alternatives. One can apply this result to guide
the optimal choice of the weight functions in order to maximize the efficacy.
Note that there are more than one pair of C(·) and C∗(·) satisfying (4), though
their asymptotic relative efficiencies are the same. In practice, for the sake of
simplicity in computation, we suggest that one takes Ċ(t) = 1 to derive the least
squares extimate β̂c and then applies (4) to select an optimal C∗(t).

Asymptotically, the test procedure is distribution free, because the asymp-
totic null distribution of the new test statistic is independent of the distribution
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of Y given X = x. Further, it is also easy to see that the test is consistent for
testing H0 against the alternative hypothesis with βcH(βc) �= 0. The new test is
quite attractive because it is simple in computation and seems to have reason-
able performance when the sample size is finite. One can also easily extend the
method to test the null hypothesis using highly stratified data.
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