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Abstract: The marginal curvature by Clarke (1987) for individual parameters in

nonlinear models not only improves the inference on each parameter but also has

been found useful in experimental design for nonlinear models. In this article we

develop the marginal curvature for functions of parameters. We show that, for a

given reparametrization, the marginal curvatures for the transformed parameters

can be computed without determining the inverse transformation. Furthermore,

the marginal curvature for a function of parameters depends only on the marginal

curvatures of the original parameters and on the derivatives of the function with

respect to the parameters involved in that function.

We also present a more efficient computing algorithm of Clarke’s marginal cur-

vature measure. The resulting expression enables us to compare Clarke’s measure

with other available measures.
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1. Introduction

Consider the univariate nonlinear regression model

yu = η(xu,θ) + εu, u = 1, . . . , n,

where the model function ηu = η(xu,θ) depends on a vector xu of design variables
and on the unknown parameter vector θ. The errors εu are uncorrelated random
variables, normally distributed with mean zero and constant variance σ2.

The least squares estimate θ̂ of θ is obtained iteratively by using the locally
linear approximation to the model function about the current value of θ. Also
inferences on θ̂ are usually based on the linear approximation. Although the
error of this approximation becomes negligible in large samples, the accuracy of
the approximation is dependent upon the degree of nonlinearity of the model in
practical problems.

Beale (1960) and Bates and Watts (1980) defined two “global” measures of
nonlinearity, intrinsic curvature which is independent of the parametrization and
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parameter-effects curvature which is dependent on the parametrization. In prac-
tice intrinsic curvature is relatively small whereas parameter-effects curvature
is large (Bates and Watts (1980), and Ratkowsky (1983)) and large parameter-
effects curvature can be an indicator of poor linear approximation.

Cook and Witmer (1985), on the other hand, gave a couple of examples
where the exact and the linear approximation confidence regions have a rea-
sonable agreement even though the parameter-effects curvatures are large. Also
Clarke (1987) gave a few examples which show that large overall parameter-effects
curvature does not necessarily imply the poor performance of all the confidence
intervals based on the linear approximation. Apparently with these observations,
Clarke (1987) defined the marginal curvature for individual parameters in non-
linear models, and Cook and Goldberg (1986) generalized the Bates and Watts’
measure for arbitrary subsets of parameters.

While it is known that the experimental design also affects nonlinearity of
the model, previous work has focused on finding reparametrizations of the model
which would reduce the parameter-effects curvature and thereby improve the
linear approximation (Bates and Watts (1981), Hougaard (1982), Kass (1984))
rather than finding a design which reduces the parameter-effects curvature for
the original parametrization. However, reparametrization techniques are diffi-
cult to be pursued in practice and even, in multiparameter problems, “best”
parametrizations may not exist (Kass (1984)). Also the transformed parameter
set may no longer be interpretable within the context of the problem.

It was noted recently that curvature measures are related with an optimal
design criterion (Hamilton and Watts (1985)) and particularly Clarke’s marginal
curvature can be a useful measure in finding “optimal” designs for a nonlinear
model (Dassel and Rawlings (1990a, 1990b)). Since it is common to design
experiments for precise estimation of functions of the model parameters as well
as for precise estimation of the model parameters themselves, it is necessary
to develop the marginal curvature for functions of parameters. It is possible,
of course, to compute marginal curvatures for a reparametrization by rewriting
the model in terms of the new parameters and recalculating all the necessary
derivatives. Our results show that this tedious work can be avoided.

Section 2 contains the main results of this paper. First we present a differ-
ent expression, using a matrix, for Clarke’s measure, which provides an efficient
computing method. This expression also enables us to compare Clarke’s mea-
sure with other available measures (Section 2.2). In Section 2.3, we develop the
marginal curvature for functions of parameters. We give an example in Section
3 and concluding remarks in Section 4. The Appendix contains details of the
necessary algebra.
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2. Main Results

2.1. Marginal curvatures in matrix form

Clarke (1987) derived a measure of marginal curvature for each parameter
θi in nonlinear models by using a power series expansion of the profile curve of
θi about θi − θ̂i. (See Clarke (1987) for the necessary assumptions.) Let V̇ be
the n × p derivative matrix of the model function with respect to θ, so {V̇ }ui =
∂ηu/∂θi, and let σ̂2 be the variance estimate. Then the marginal curvature mi

for θi is defined as

mi = −1
2
(gii)−3/2γiσ̂, (2.1)

where

γi =
p∑

a=1

p∑

b=1

p∑

c=1

giagibgic

n∑

u=1

(
∂ηu

∂θa
)(

∂2ηu

∂θb∂θc
) (2.2)

and gik is the ikth element of the p × p matrix G = (V̇ TV̇ )−1. (Superscript T

denotes the transpose of a matrix.) Note that mi utilizes up to second derivatives
of the model function η with respect to the parameters. Clarke (1987) originally
derived a confidence limit to θi which includes both the second-order correction
term γi and a third-order correction term. Since the contribution of the third-
order term is generally small, he called mi the marginal curvature for θi.

For computational purposes, it is more convenient to identify γi as an element
of an array. Also this enables us to compare Clarke’s marginal curvature with
other measures (Section 2.2). We form a three-dimensional array V̈ with the
second derivatives of the model function with respect to θ. The n × p × p array
V̈ has n faces and its uth face is the p× p matrix whose ijth element is given as
∂2ηu/∂θi∂θj , i, j = 1, . . . , p.

Propositions 1. Define the p × p × p array Γ as

Γ = [GV̇ T][GV̈ G]. (2.3)

Then γi defined in (2.2) is the iith element of the ith face of Γ.

This proposition can be easily verified. (Since Γ and V̈ are three-dimensional
arrays, two types of matrix multiplications are involved in (2.3), one in GV̈ G

and the other denoted by the square brackets. See the Appendix for definitions.)
Computation of Γ can be further simplified by using the QR decomposition of
V̇ , V̇ = Q1R1, where Q1 is an n × p matrix whose columns are orthogonal to
each other and R1 is the p× p upper triangular matrix (Dongarra et al. (1979)).
Since V̇ TV̇ = RT

1 R1, G = R−1
1 R−T

1 and by using the properties of the bracket
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multiplication described in the Appendix, we can show that Γ can be expressed
as

Γ = R−1
1 [R−1

1 QT
1 ][R−T

1 V̈ R−1
1 ]R−T

1

= R−1
1 [R−1

1 ][A]R−T
1 , (2.4)

where A = [QT
1 ][R−T

1 V̈ R−1
1 ], which is the parameter-effects curvature array de-

fined in Bates and Watts (1980).

2.2. Relation with other measures

The relationship (2.4) between the arrays Γ and A enables us to compare
Clarke’s marginal curvature with the Cook and Goldberg’s measure. Cook and
Goldberg (1986) generalized the Bates and Watts’ global measure to one for arbi-
trary subsets of parameters. Especially, for individual parameters, they showed
that the maximum parameter-effects curvature for θp is simply {A}pppσ̂. (In
Cook and Goldberg’s derivation, the parameters are divided into two subsets
and curvature is computed for the trailing subset of parameters. Hence to com-
pute the marginal curvature of a parameter, the parameter should be the last
element of θ. Also they define a “total” curvature by combining the intrinsic and
the parameter-effects curvatures. Since we assume that the intrinsic curvature
is negligible, Cook and Goldberg’s measure in this paper refers to only the first
part of their total curvature, i.e., the parameter-effects curvature.)

We now show that Clarke’s measure mi is in fact the same as the Cook and
Goldberg’s measure up to a constant. First note that the matrix R−1

1 is also an
upper triangular matrix. If we denote by rpp the pth diagonal element of R−1

1 ,
then it is easy to show that

{Γ}ppp = (rpp)3{A}ppp

and
{G}pp = (rpp)2

Hence, for the last parameter θp, Clarke’s marginal curvature mp is

mp = −1
2
{A}pppσ̂.

Since Clarke’s measure is not dependent on the order of the parameters, this
shows that Clarke’s measure is −1

2 times that of Cook and Goldberg. While
both methods provide essentially the same curvature measure as far as individual
parameters are concerned, using equations (2.1) and (2.4) is more efficient in
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computing marginal curvatures than using Cook and Goldberg’s method which
evaluates the measures one at a time for each parameter. Once the array A is
formed, Γ is obtained by applying a sequence of back-substitution operations
since R1 is an upper triangular matrix. Also we note that gii in (2.1) is simply
the squared length of the ith row of R−1

1 .
For assessing the significance of mi, Clarke (1987) suggested that curvature

effects may be ignored and the linear approximation will suffice if |mic| < 0.1,
or |{A}pppσ̂c| < 0.2 for θp, where c is an appropriate critical value. For a single
parameter, Bates and Watts’ rule of assessing the significance of the curvature
becomes a percentage deviation of the expectation surface from the tangent plane
at a distance c from the tangent point (Bates and Watts (1980, 1988)). If we
let c = t(n − p; 0.05), the upper 0.05 quantile of the t distribution with n − p

degrees of freedom, then Clarke’s rule is equivalent to accepting a deviation of no
more than 10%. To accept a deviation of up to 15%, the rule may be loosened
to |mic| < 0.15.

2.3. Marginal curvatures for parameter functions

Suppose we have a reparametrization of θ, φ = h(θ). Then we can show
that, using the superscript to denote each parametrization,

V̇ φ =
∂η

∂φT
= V̇ θḊ (2.5)

V̈ φ =
∂2η

∂φ∂φT
= ḊTV̈ Ḋ + [V̇ ][D̈] (2.6)

(Bates and Watts (1981)), where Ḋ = ∂θ/∂φT and D̈ = ∂2θ/∂φ∂φT. Hence one
may compute the marginal curvature for each element of φ by replacing V̇ and
V̈ in equation (2.3) by V̇ φ and V̈ φ, respectively. However, since each element of
h(θ) is usually a nonlinear function of θ, the second derivatives array D̈ of the
inverse transformation is not available in practice. Also in most cases, what we
are interested in is only a function of θ (for example, the model function itself),
in which case we would not want to specify a complete form of φ = h(θ). In
this section we show that first, marginal curvatures for a full reparametrization
φ can be computed easily without determining the inverse transformation, and
secondly, the marginal curvature for a function of parameters is dependent only
on the partial derivatives of the function with respect to the parameters involved
in that function.
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Let Ḣ = ∂φ/∂θT, then Ḣ−1 = Ḋ and

Gφ = ((V̇ φ)TV̇ φ)−1

= ḢGθḢT (2.7)

Proposition 2. The array Γ for the parametrization φ is

Γφ = Γ1 − Γ2

= Ḣ[Ḣ][Γθ]ḢT − ḢGθḦGθḢT, (2.8)

where Γ1 = Ḣ[Ḣ][Γθ]ḢT and Γ2 = ḢGθḦGθḢT.

(The proof is given in the Appendix.) Hence the marginal curvature mφ
i for

φi is given by

mφ
i = −1

2
(gφ

ii)
−3/2γφ

i σ̂, (2.9)

where γφ
i = {Γφ}iii. Equations (2.7) and (2.8) show that marginal curvatures

for φ are expressed in terms of the original parameters θ, so we do not have to
determine the inverse transformation. Each marginal curvature mφ

i is computed
from the array Γθ of the original parameters θ, the matrix R1 from previous com-
putations [since Gθ = (RT

1 R1)−1], and the derivatives of the reparametrization
functions with respect to θ.

As elementwise expressions, it can be shown that

{Γ1}iii =
p∑

a=1

p∑

b=1

p∑

c=1

φa
i φ

b
iφ

c
i{Γθ}abc

and

{Γ2}iii =
p∑

d=1

p∑

e=1

p∑

f=1

p∑

g=1

φd
i φ

e
igdf gegφ

fg
i ,

where φa
i = ∂φi/∂θa, φab

i = ∂2φi/∂θa∂θb. Also gφ
ii =

∑p
a=1

∑p
b=1 φa

i φ
b
igab. Hence

we can see from equation (2.9) that, to obtain the marginal curvature of, say, φi =
hi(θ), it is enough to specify the first and second derivatives of φi with respect
to the original parameters involved in hi. For other derivatives, arbitrary values
can be assigned. For example, a program we have written for this computation
(Kang and Rawlings (1989)) can handle q (1 ≤ q ≤ p) transformations and use
identity functions for the other p − q transformations so that the derivatives of
those functions are assigned to zero automatically within the program.
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For the simple case of φi = h(θi), only a 1–1 transformation, φa
i = 0 for

a �= i. Hence, using equation (2.8), we can easily verify the relationship

mφ
i = mθ

i +
1
2
(
∂2φi

∂θ2
i

)(
∂φi

∂θi
)−1(gθ

ii)
1/2σ̂

which is shown in Clarke (1987).

3. An Example

Consider an example from Bliss and James (1966) with the Michaelis–Menten
model

η(x,θ) =
θ1x

θ2 + x
(3.1)

which relates reaction velocity (η) to substrate concentration (x) in enzyme chem-
istry. A data set with 6 observations was used in this example. (See Clarke (1987)
for a preliminary analysis of this example.) Another popular form of model (3.1)
is

η(x, β) =
x

β1 + β2x
. (3.2)

That is, we have a reparametrization with β1 = θ2/θ1, β2 = 1/θ1.

Table 1. Summary of several curvatures

θ β

γN 0.031 0.031
γT 0.125 0.064
m1 0.048 0.025
m2 0.063 0.005

Table 1 gives a summary of several curvatures for these two parametriza-
tions. The root mean square (rms) intrinsic curvature, γN , is the same for both
parametrizations as it should be by the definition. Since γN

√
F = 0.081(� 0.2),

where F is the upper 0.05 quantile of the F distribution with degrees of free-
dom 2 and 4, this curvature is considered small by the Bates and Watts’ rule of
assessing significance. Hence, this example satisfies the assumptions of Clarke
(1987). The second term, γT , denotes the rms parameter-effects curvature. Since
γθ

T

√
F = 0.331(> 0.2), γθ

T is considered a little large, which implies that linear
approximation may not be adequate. This is so for θ2 which has a marginal
curvature m2 = 0.063 and is significant by Clarke’s rule of assessing significance.
(m2 t = 0.134(> 0.1), where t is the upper 0.05 quantile of the t distribution with
4 degrees of freedom.) However, since θ1 has a marginal curvature of m1 = 0.048
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and m1 t = 0.103, inference about θ̂1 based on the linear approximation theory
will be still valid.

The β parametrization reduces γT by half, implying that linear approxima-
tion will work well for both β1 and β2. The marginal curvatures mi for βi, i = 1, 2
were computed from equation (2.9). We could check these values by directly using
model (3.2). The size of mi agrees with that of γT in this parametrization.

Next suppose we want to estimate an expected value of the response at a
large value of the concentration, say, at x = 5, which is φ = η(5,θ) = 5θ1

θ2+5 . The
parameter estimates are (θ̂1, θ̂2) = (0.6904, 0.5965), so the estimated response at
this point is ŷx=5 = 0.6181. Since φ is a function of θ, we can obtain its marginal
curvature from equation (2.9), which is mφ = 0.0324. This value is considered
negligible since 0.0324t = 0.069, less than 0.1. Hence the usual confidence inter-
val based on linear approximation can be used to make interval estimation for
η at that point, although θ2 has a somewhat large marginal curvature. More
complicated forms of parameter transformations such as the point of inflection
can be studied by considering other nonlinear regression models.

4. Conclusion

In this article we have developed the marginal curvature for functions of
parameters in a nonlinear model. Two important facts are noted. First, for a
given reparametrization, marginal curvatures for the transformed parameters are
expressed in terms of the original parameters, so it is not necessary to determine
the inverse transformation. The computation involves only marginal curvatures
of the original parameters θ, the matrix R1 from previous computations, and
the derivatives of the reparametrization functions with respect to θ. Second,
the marginal curvature for a function of the parameters depends only on the
marginal curvatures of the original parameters and on the derivatives of the
function with respect to the parameters involved in that function. Hence in
order to use the efficient equation (2.8) for computing the marginal curvature for
a function of parameters, we can use an arbitrary set of functions for the other
p − 1 transformations.

It should be noted that Clarke’s measure is meaningful only when the in-
trinsic curvature is small enough to ignore. The choice of design points affects
not only the parameter-effects curvature but also the intrinsic curvature. Hence
one should continually check intrinsic curvature when Clarke’s measure is used
for the experimental design.

Even though we have developed the marginal curvature for functions of pa-
rameters to be used for experimental design in nonlinear regression analysis,
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results of this paper can be useful also for inference about the estimates of func-
tions of parameters as demonstrated in Section 3.

Appendix: Proof of Proposition 2

When three-dimensional arrays are involved in matrix multiplication, gener-
ally two types of multiplications are used. Let A be an n1×n2×n3 array, M1 an
n4×n2 matrix, and M2 an n3×n5 matrix, then Z1 = M1AM2 is an n1 ×n4×n5

array. That is, each n2 × n3 face of A is pre- and postmultiplied by M1 and M2.
For an n0 × n1 matrix B, the bracket multiplication is defined as Z2 = [B][A],
where Z2 is an n0 × n2 × n3 array with {Z2}ijk =

∑n1
a=1{B}ia{A}ajk. That is,

the summation is over the first index of the array (Bates and Watts (1980)). We
now list a few properties of the bracket multiplication.
P1: [B][A + A1] = [B][A] + [B][A1] where A1 is the same type of array as A.
P2: [CB][A] = [C][ [B][A] ] where C is an m × n0 matrix.
P3: [B][M1AM2] = M1[B][A]M2.

Proof of Proposition 2. By Proposition 1, Γφ = [Gφ(V̇ φ)T][GφV̈ φGφ]. Since
Gφ = [(V̇ φ)TV̇ φ]−1 and V̇ φ = V̇ Ḣ−1 (omitting the superscript θ for simplicity),
Gφ = ḢGḢT and Gφ(V̇ φ)T = ḢGV̇ T. Using the expression of V̈ φ in (2.6),

Γφ = [ḢGV̇ T][Gφ(ḊTV̈ Ḋ + [V̇ ][D̈])Gφ]

= Gφ[ḢGV̇ T][ḊTV̈ Ḋ]Gφ − Gφ[ḢGV̇ T][ −[V̇ ][D̈] ]Gφ

by P1 and P3. Let Γ1 =Gφ[ḢGV̇ T][ḊTV̈ Ḋ]Gφ and Γ2 =Gφ[ḢGV̇ T][−[V̇ ][D̈]]Gφ.
Then

Γ1 = [ḢGV̇ T][GφḊTV̈ ḊGφ]

= [ḢGV̇ T][ḢGV̈ GḢT]

= Ḣ[Ḣ ][ [GV̇ T][GV̈ G] ]ḢT

= Ḣ[Ḣ ][Γ]ḢT

and

Γ2 = −ḢGḢT[ḢGV̇ TV̇ ][D̈]ḢGḢT

= −ḢGḢT[Ḣ][D̈]ḢGḢT

= −ḢG[Ḣ ][ḢTD̈Ḣ]GḢT.

Noting that ḢTD̈Ḣ = −[Ḣ−1][Ḧ ] (Bates and Watts (1981)), we have

Γ2 = ḢG[Ḣ ][ [Ḣ−1][Ḧ] ]GḢT

= ḢGḦGḢT



476 GUNSEOG KANG AND JOHN O. RAWLINGS

References

Bates, D. M. and Watts, D. G. (1980). Relative curvature measures of nonlinearity (with

discussion). J. Roy. Statist. Soc. Ser. B 42, 1-25.

Bates, D. M. and Watts, D. G. (1981). Parameter transformations for improved approximate

confidence regions in nonlinear least squares. Ann. Statist. 9, 1152-1167.

Bates, D. M. and Watts, D. G. (1988). Nonlinear Regression Analysis and Its Applications.

John Wiley, New York.

Beale, E. M. L. (1960). Confidence regions in non-linear estimation (with discussion). J. Roy.

Statist. Soc. Ser. B 22, 41-88.

Bliss, C. I. and James, A. T. (1966). Fitting the rectangular hyperbola. Biometrics 22, 573-602.

Clarke, G. P. Y. (1987). Marginal curvatures and their usefulness in the analysis of nonlinear

regression models. J. Amer. Statist. Assoc. 82, 844-850.

Cook, R. D. and Goldberg, M. L. (1986). Curvatures for parameter subsets in nonlinear regres-

sion. Ann. Statist. 14, 1399-1418.

Cook, R. D. and Witmer, J. A. (1985). A note on parameter-effects curvature. J. Amer. Statist.

Assoc. 80, 872-878.

Dassel, K. A. and Rawlings, J. O. (1990a). Experimenal design for the weibull function as a

dose response model assuming an unconstrained does scale (submitted).

Dassel, K. A. and Rawlings, J. O. (1990b). Effect of experimenal design on model nonlinearity

and estimation of variances (submitted).

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1979). Linpack Users’ Guide.

SIAM, Philadelphia.

Hamilton, D. C. and Watts, D. G. (1985). A quadratic design criterion for precise estimation

in nonlinear regression models. Technometrics 27, 241-250.

Hougaard, P. (1982). Parameterizations on non-linear models. J. Roy. Statist. Soc. Ser. B

44, 244-252.

Kang, G. and Rawlings, J. (1989). Documentation for program NLIN–CUR.ED (a nonlinear

regression program with emphasis on the curvature and experimental design). Institute of

Statistics Mimeo Series #1942, North Carolina State University, Raleigh, N.C.

Kass, R. E. (1984). Canonical parameterizations and zero parameter-effects curvature. J. Roy.

Statist. Soc. Ser. B 46, 86-92.

Ratkowsky, D. A. (1983). Nonlinear Regression Modeling: A Unified Practical Approach. Marcel

Dekker, New York.

Department of Statistics, Soongsil University, 1-1 Sangdo 5 Dong, Dongjak-ku, Seoul, 156-743,

Korea.

E-mail: gskang@stat.soongsil.ac.kr

Department of Statistics, North Carolina State University, Box 8203, Raleigh, NC 27695-8203,

U.S.A.

(Received April 1996; accepted March 1997)


