
Statistica Sinica 8(1998), 165-184

A STATISTICAL ASSESSMENT OF SOME SOFTWARE

TESTING STRATEGIES AND APPLICATION

OF EXPERIMENTAL DESIGN TECHNIQUES

V. N. Nair, D. A. James, W. K. Ehrlich∗ and J. Zevallos∗

University of Michigan, Bell Labs and AT&T Laboratories∗

Abstract: An important problem in software testing is the efficient generation of

test cases. Two classes of strategies, random and partition testing, have been dis-

cussed extensively in the software testing literature. In this paper, we provide a

systematic statistical comparison of these two classes of strategies and demonstrate
the usefulness of partition testing. We also show that some of the previous con-

clusions in the software testing literature about the inefficiency of partition testing

are incorrect. The applicability of experimental design methods for partition test-

ing is also discussed. A real application is used to illustrate the various concepts

and to demonstrate the usefulness of experimental design methods for generating

partitions.

Key words and phrases: Design of experiments, partition testing, random testing,

stratified sampling, test case allocation.

1. Introduction
In software testing, the input domain (the set of all possible inputs) is typi-

cally very large, and exhaustive testing can be very expensive. Therefore, there
is a need for efficiently generating an appropriate set of test cases as a means to
verify the correct operation of the software. Two classes of strategies, partition
and random testing, have been discussed and compared in the testing literature
(e.g., Duran and Wiorkowski (1980); Duran and Ntafos (1983); Hamlet and Tay-
lor (1990); Weyuker and Jeng (1991); Miller et al. (1992); and Tsoukalas, Duran
and Ntafos (1993)). Briefly, random testing refers to the selection of input cases
according to a random sampling scheme, while partition testing refers to a family
of testing strategies in which the input space is sub-divided according to some
criteria. These include statement testing, data-flow testing, branch testing, path
testing, and mutation testing (see Weyuker and Jeng (1991) and the references
therein).

Random and partition testing have been compared in terms of probability of
failure detection, expected number of faults detected during testing, and “confi-
dence” associated with the software. Hamlet and Taylor (1990) and Duran and
Wiorkowski (1980) conclude that, for the situations they considered, partition
testing is only marginally more efficient in detecting faults and that the addi-
tional set-up costs involved in partition testing may not justify its use. Weyuker

166 V. N. NAIR, D. A. JAMES, W. K. EHRLICH AND J. ZEVALLOS

and Jeng (1991) show analytically that partition testing can be good or bad de-
pending on how the partition definition is related to the fault distribution. They
indicate the need for further studies to fully explore the effectiveness of particular
partition strategies being used in practice and the need for investigation of the
effect of domain sizes, failure rates and test case allocation on the probability
of failure detection. Hamlet and Taylor (1990) conclude that partition testing
strategies need several orders of magnitude more test cases than random testing
to achieve the same degree of confidence about the software.

In this paper, we provide a systematic statistical comparison of random and
partition testing and re-evaluate some of the conclusions in the literature. We
compare the two strategies on the basis of several criteria that have been used
in software testing. Partition testing with proportional allocation is shown to
perform at least as well as random testing in terms of all of these criteria. Fur-
ther, when knowledge of the software unit under test (SUT) is used to develop
effective partitions and allocation schemes, partition testing is seen to be consid-
erably more efficient. Guidelines on when partition testing is likely to be useful,
how the partitions should be chosen, and how the test cases should be allocated
are provided. These guidelines supplement those in Weyuker and Jeng (1991),
Miller et al. (1992), and Tsoukalas, Duran, and Ntafos (1993). We also show that
the conclusions in Hamlet and Taylor (1990) about the inefficiency of partition
testing are incorrect. It is shown in Section 4 that whenever partition testing
is better than random testing in terms of failure detection, it is also better in
inspiring confidence. Finally, the applicability of experimental design techniques
for generating partitions and the use of fractional designs are discussed in Sec-
tion 5. A real case study is used throughout the paper to illustrate the various
concepts and to demonstrate the usefulness of experimental design techniques in
software testing.

We should emphasize at the outset that our primary contributions are in
formulating the statistical issues and in providing a systematic comparison of
random and partition testing. As readers will see, the technical details are quite
straightforward once the problems have been formulated appropriately. While
some of these comparisons have been discussed in the software testing literature,
they have been based on numerical calculations and simulations dealing with
special cases. We provide a systematic statistical basis for the comparisons and
discussion.

2. Random and Partition Testing Strategies
2.1. Random testing

Let N be the total number of elements in the input domain, and suppose we
want to randomly select n inputs for testing. This can be done on the basis of any
probability distribution, i.e., the n inputs can be selected independently with the

STATISTICAL ASSESSMENT OF SOFTWARE TESTING STRATEGIES 167

probability of selecting the ith unit varying according to a specified distribution.
For example, the distribution can be chosen to reflect the operational profile
which describes system usage in the field environment (Musa (1993)). Let f(·) be
a given probability distribution that assigns probability f(j) to the jth element
in the input domain, j = 1, . . . , N. Further, let Ij = 1 if the jth input will
lead to failure and equal to zero otherwise. (We will not distinguish between
different possible causes of failure for the most part. See, however, the case
study in Section 2.3) The expected failure rate under random testing using this
distribution is θ =

∑N
j=1 f(j)Ij .

A special case of this is simple random testing where each element in the
input domain is selected with equal probability. In this cases, θ reduces to D/N

where D is the number of elements in the input domain that will lead to a failure.
Throughout the paper, we consider only sampling with replacement. Al-

though sampling without-replacement is obviously more efficient, the practical
implementation of a without-replacement sampling scheme is difficult and typi-
cally not cost-effective. Moreover, for the applications we are interested in, the
size of the input domain and the partitions are large enough relative to the sam-
ple size so that the two are essentially equivalent. Random testing has generally
been viewed as being easy to implement and therefore cost-effective. However,
to actually ensure that every test case is selected independently according to a
given probability distribution is not at all easy. This involves a careful defini-
tion of the input domain and the use of appropriate sampling schemes. If one
tries to accomplish this indirectly, one runs risks such as incompletely covering
the domain, selecting inputs from some parts of the domain more intensively, or
introducing other biases.

2.2. Partition testing

Many strategies have been discussed in the literature for partition testing
(Weyuker and Jeng (1991)). For instance, path testing divides the input space
into partitions whose inputs traverse the exact same software instruction path,
and data flow testing combines inputs according to the executed path segments as
determined by variable definitions and variable usage. Others include statement
testing, branch testing, and mutation testing. Recently, statistical experimental
design techniques have also been used as partition testing strategies (e.g. Brown-
lie, Prowse and Phadke (1992); Burroughs et al. (1994); Cohen et al. (1994),
Mandl (1980)).

From a statistical point of view, partition testing can be viewed as a stratified
random sampling scheme. Any partition testing strategy consists of:
• a stratification of the input domain into K strata (cells) of size Ni, i =

1, . . . ,K;

168 V. N. NAIR, D. A. JAMES, W. K. EHRLICH AND J. ZEVALLOS

• an allocation of n, the total number of units to be selected, into ni, i = 1, . . . ,K
with

∑K
i=1 ni = n.

In general, the cells may not be mutually exclusive although we will only con-
sider such partitions in this paper. (Given any partition, it is always possible to
obtain a finer partition where the cells are mutually exclusive.) We let αi = ni/n

denote the proportion of the total sample size allocated to the ith stratum, for
i = 1, . . . ,K. Within each cell, the ni units can be selected randomly accord-
ing to some specified distribution as described under the random testing set up.
We denote by θi the expected failure rate in the ith stratum under the specified
distribution, for i = 1, . . . ,K. We also refer to the θi’s as partition failure rates.

Again, we get simple random testing within each stratum as a special case of
this formulation. In this case, if Di denotes the number of failing inputs in the ith
stratum, θi = Di/Ni, the proportion of such inputs. Let λi = Ni/N , the relative
size of the ith stratum, for i = 1, . . . ,K. It is easily seen that

∑K
i=1 λiθi = θ

where θ is the expected failure rate under simple random testing.
It is well-known in the statistical literature that stratified sampling en-

joys many advantages over simple random sampling (see, for example, Cochran
(1977)). There are guidelines available that indicate when stratified sampling
is likely to be useful, how the strata should be chosen, and how the sample
should be allocated to the different strata. In this paper, we consider analo-
gous results for random and partition testing and compare them on the basis
of several commonly used criteria: failure detection probability, confidence as-
sessment, expected number of failures detected, and precision of the estimators.
These comparisons depend only on how the domain has been partitioned and
how the test cases are allocated to the different partitions and not on the par-
ticular method used to obtain the partitions. Also, for any given partitioning of
the input domain, gains in efficiency can be achieved by judiciously choosing the
test allocation scheme. The importance of doing this does not seem to be fully
appreciated in the software testing literature.

2.3. A case study

We introduce a real application at this point to illustrate the concepts. We
will revisit it in later sections as we consider the various statistical issues. The
software system that we were involved in was an operations support system
developed at AT&T. A particular feature of this system, the Administration
Feature, was the subject of our analysis. It dealt with the maintenance and
scheduling of maintenance tasks performed by on-site work personnel. These
maintenance tasks and their schedules were stored in a central database, and the
Administration Feature enabled the data base information to be updated during
the course of operations.

STATISTICAL ASSESSMENT OF SOFTWARE TESTING STRATEGIES 169

For transaction-based systems, the user interface is typically implemented
through screen menus with considerable local processing of user-entered input
occurring at the individual screen field level prior to the screen input being com-
mitted to the operations support system for database update. The user enters
data into fields sequentially and is unable to move to a subsequent field until
data entry in the current field had been validated. Consequently, for menu-driven
transactions, a logical functional unit for developer testing is a single screen field.
So we chose a single screen field in our Administration Feature as the SUT. An
early integration test (and hence “fault prone”) version of the system was frozen
and placed under a separate node on the system test machine. Our analysis
occurred in parallel with integration and system test. However, fault fixing and
bug correcting were not performed on our version of the software.

Table 1. Partitioning of the input domain obtained by grouping the factors

Factor A: Unique Tasks Factor B: Replicates Factor C: Replicate Type Factor D: User Entry

A1: Single task B1: Single C1: Defined in Data Base D1: Null

A2: 2-5 tasks B2: Two or more C2: Defined by User D2: Invalid

A3: 6-10 tasks D3: Partial

A4: ≥ 11 tasks D4: Complete

An input domain-driven approach is a natural way to generate test cases in
this application. In this approach, variables (or factors) that influence a software
unit’s processing are carefully identified and the settings of these variables are
manipulated to generate test cases. In our case-study, knowledge about the
requirements of the screen field and the software development process was used
to identify four factors. The first set consisted of data base factors: A – Number
of Unique Tasks; B – Replicates Per Task; and C – Replicate Type. The second
set consisted of a single factor, D – the mode of user-input entry. This factor
was expected to interact with the database factors with respect to the number of
work items matched (i.e., single, multiple, or no matching), the type of matching
(i.e., identical, partial, null) and ultimately the number of work items returned in
a selection list for user selection (i.e., no selection list returned or else a selection
list containing 2 or more work items being returned to the user). Consequently,
the mode of data entry was expected to influence a task’s database retrieval and
subsequent processing.

The input domain size in this study, which is the number of all possible
setting of these four factors, was 64,746. One can do random testing by selecting
a sample n of these test cases using some specified distribution. We will consider
only simple random testing in our comparisons. To implement partition testing,
we classified the settings of the factors into groups based on knowledge of the

170 V. N. NAIR, D. A. JAMES, W. K. EHRLICH AND J. ZEVALLOS

software process. The possible values of Factor A (unique tasks) for the different
work items in the data base ranged from 1 to 162. Instead of looking at all possible
values, we grouped this into four categories in terms of frequency as shown in
Table 1. The other factor levels were also grouped into categories as shown in
Table 1. With these groupings, there were a total of 4 × 2 × 2 × 4 = 64 possible
combinations with each combination corresponding to a partition of the input
domain. For our partition testing scheme, we selected one test case randomly
from each partition (each unit within the partition had an equal probability of
selection).

We discovered two faults; one of these (Fault 2) was also detected by the
system test organization while the other (Fault 1) had gone undetected by both
the development and system test organizations. A root cause analysis of the two
faults enabled us to understand the relationship between faults and inputs and
to determine the proportion of failing inputs, θi’s, attributable to a given fault in
each of the 64 cells of the partition. Figure 1 summarizes the λi’s (partition sizes)
and the two sets of failure rates for both faults. We will revisit this case study in
subsequent sections and illustrate the various statistical issues and comparisons.

˚̊̊ ˚

˚̊̊̊

˚ ˚̊ ˚

˚̊̊̊

˚̊̊ ˚˚̊̊̊ ˚ ˚̊ ˚˚̊̊̊˚̊̊̊

˚̊̊̊

˚ ˚ ˚ ˚

˚̊̊˚

˚̊̊ ˚

˚̊̊̊

˚ ˚̊ ˚

˚̊̊̊

Fault 1

0.0 0.05 0.10 0.15

0.0

0.2

0.4

0.6

0.8

1.0

Pa
rt

iti
on

 F
ai

lu
re

 R
at

es

Relative Partition Size

˚̊̊ ˚˚̊̊̊ ˚ ˚̊ ˚˚̊̊̊̊̊̊ ˚˚̊̊̊ ˚ ˚̊ ˚˚̊̊̊˚
˚̊
˚˚̊̊̊ ˚ ˚ ˚ ˚˚̊̊̊̊

˚
˚ ˚

˚̊̊̊ ˚

˚
˚ ˚

˚̊̊̊

Fault 2

0.0 0.05 0.10 0.15

Figure 1. Detection probability θi versus partition size λi; the horizontal
dotted lines depict the overall failure rate, θ, for each fault. (The points have
been jittered along the horizontal direction to help distinguish overlapping
symbols.)

3. Failure Detection Probability

3.1. Comparisons

An important criterion of interest in software testing is the failure detection
probability associated with a strategy, i.e., the probability of observing at least

STATISTICAL ASSESSMENT OF SOFTWARE TESTING STRATEGIES 171

one failure. This criterion is especially of interest when θ, the overall failure rate,
is small. One then wants to maximize the probability that at least one failure is
detected. In our discussion, we consider failures due to any fault. However, as
noted before, if the failures can be separated according to distinct faults (causes
of failure), then we might be interested in the failure detection probabilities for
each fault. For simple random sampling, the probability of detecting at least one
failure based on a sample of size n is simply

βR,n(θ) = 1 − (1 − θ)n. (1)

For a given partition testing scheme, the corresponding failure detection proba-
bility is

βP,n(θ1, . . . , θK) = 1 −
K∏

i=1

(1 − θi)ni . (2)

Note that βR,n depends only on n and θ while βP,n depends on the sample size
n, the sample allocation strategy, ni = nαi’s, and the θi’s, which are determined
by the partitioning strategy. We will compare partition and random testing in
terms of this criterion under different scenarios.

Let

ηP = 1 −
K∏

i=1

(1 − θi)αi . (3)

Then, we can re-express equation (2) as

βP,n(θ1, . . . , θK) = 1 − (1 − ηP)n ≡ βR,n(ηP). (4)

This equation provides an interesting interpretation of βP,n that is extremely
useful in our comparisons. Expression (4) says that this partition testing strat-
egy is equivalent (in the sense of having the same failure detection probability)to
randomly testing a SUT that has failure rate ηP . Thus, if ηP > θ, this partition
testing scheme will do better than random testing and if ηP < θ, it will do worse.
Thus, we can base our comparisons on just θ and ηP . This comparison has the
additional advantage of being independent of the sample size n.

The following remarks are immediate from a comparison of θ and ηP .

Remark 1. If all the θi’s are identical and hence equal θ, we have ηP = θ and
βR,n = βP,n for all n. Thus, if a partitioning strategy results in the θi’s being
approximately equal, then the scheme performs about the same as the random
testing scheme in terms of failure detection probability. As a special case of this,
if two or more cells have the same value of θi, then sampling separately from
those cells is equivalent, in terms of this criterion, to sampling randomly from
the cells combined.

172 V. N. NAIR, D. A. JAMES, W. K. EHRLICH AND J. ZEVALLOS

Remark 2. Given a partition and hence the θi’s, the value of ηP is maximized
by the input selection scheme that allocates all the test runs to the cell with the
largest value of θi. Similarly, it is minimized by allocating all the test runs to
the cell with the smallest value of θi. Of course, these allocation schemes are not
implementable as they depend on the unknown values of the θi’s.

It is clear from the above that, in general, ηP can be bigger or smaller than
θ and hence partition testing can be better or worse than random testing. This
has led some authors to question the usefulness of partition testing. It should
be intuitively clear, however, that if the way the input space is partitioned is
completely unrelated to the way the failures are distributed within the input
domain, then one cannot expect much advantage from partition testing. All that
partitioning is doing in this case is to carve up the space randomly. In any given
case, it can be better or worse, although on the average it should perform about
as well as random testing. We can formalize this as follows.

Proposition 1. If the partitioning is done randomly so that the θi’s are random
variables with expected value equal to θ, then E(ηP) ≥ θ.

Proof. E(ηP) = E[1 − ∏K
i=1(1 − θi)αi] which by Jensen’s inequality is greater

than or equal to E[1 − ∑K
i=1 αi(1 − θi)] = θ since E(θi) = θ.

While the above result assures us that, on the average, random partitioning
performs as well as random testing, the more interesting question is whether
it can actually do a lot better in situations where there is some natural basis
for doing partitioning. In situations where the partitioning strategy is chosen
carefully, one should expect gains over random testing. We will discuss efficient
choices of partitions and allocation schemes in a later section. The next section
shows that there exists an implementable allocation strategy that will ensure
that partition testing is always at least as good as random testing.

3.2. Partition testing with proportional allocation

If the goal is to just do better than random testing, then there is always
an allocation scheme that, for any given partition, will perform at least as well
as random testing. This is the proportional allocation scheme (denoted by PA)
defined as follows.

Recall that f(j) is the probability assigned to the jth unit under random
testing. Let Pi denote the set of units in the ith partition, for i = 1, . . . ,K. Let
Fi =

∑
j∈Pi

f(j), the total probability assigned to the ith cell under this distribu-
tion, and suppose that the ni units within the ith stratum are selected randomly
according to the distribution f(j)/Fi, for i = 1, . . . ,K. Then, a proportional
allocation scheme corresponds to the case where the allocations αi = Fi, for
i = 1, . . . ,K.

STATISTICAL ASSESSMENT OF SOFTWARE TESTING STRATEGIES 173

Proposition 2. Consider the proportional allocation scheme with the above set
of αi’s, and let ηPA denote the value of ηP for this scheme. Then, ηPA ≥ θ for
any choice of the θi’s. Hence βPA,n ≥ βR,n for all n.

The proof follows easily from a simple application of Jensen’s inequality and
from the fact that

∑K
i=1 Fiθi = θ. This scheme is implementable because it

requires knowledge of only the cell probabilities Fi and not the θi’s. Note that
for the special case of simple random testing where f(j) = 1/N , we get Fi = λi so
that this reduces to the usual proportional to size allocation in survey sampling.

We see from the above that even in situations where partitioning is done very
inefficiently, the proportional allocation scheme will ensure that partition testing
is at least as good as random testing. In practice, ni = nαi have to be adjusted
in order to be integers, so the inequality might be violated in some cases, but in
such situations the differences between the two schemes should be small.

Remark 3. When the θi’s are not too different (as might be the case when
the partitioning strategy is not effective), the proportional allocation scheme will
not be much better than random testing. This will also be true if all the θi’s
(and hence θ) are all relatively small. This follows from the fact that, for small
values of θi’s, (1− ηPA) =

∏K
i=1(1− θi)Fi ≈ exp(−∑

i Fiθi) = exp(−θ) ≈ (1− θ).
However, when the partitioning is informative and one or more of the θi’s are
large and quite different from the others, partition testing with proportional
allocation can be quite a bit better than random testing. This will be especially
true if, in addition, the overall failure rate θ is small.

3.3. Efficient choices of partitions and allocation schemes

For partition testing to be effective, knowledge of the SUT should be used
in generating partitions and in allocating test cases to the different cells. The
efficiency of a partition testing strategy depends more critically on the way the
input domain is partitioned (i.e., the values of θi’s) than on the allocation scheme
(the αi’s). Of course, to maximize the failure detection probability, it is sufficient
to have at least one value of θi = 1. Then, ηP = βP,n =1 for all n. (Note that
this can never be achieved by a random testing strategy unless θ = 1.) Weyuker
and Jeng (1991) call such a partition revealing. In practice, there is likely to be
more than one cause of failure, and we would like to detect as many of these as
possible. Thus, a more useful goal should be to make all the cells as homogeneous
as possible in the sense that the θi’s should be as close as possible to zero or one.
How effectively this is accomplished can be measured through the ratio of between
cells sum of squares to overall sum of squares; i.e.,

∑K
i=1 Fi(θi − θ)2/[θ(1 − θ)]

(see Cochran (1977) and also Section 4.3). Another measure that provides a
lower bound on the efficiency of a partition with respect to a given allocation

174 V. N. NAIR, D. A. JAMES, W. K. EHRLICH AND J. ZEVALLOS

scheme (i.e., αi’s) is δP =
∑K

i=1 αiθi. This will be discussed in more detail in
Section 4 which considers comparisons in terms of the expected number of failures
discovered.

We next consider comparisons of allocation schemes, i.e., the αi’s.

Proposition 3. Suppose the θi’s are ordered so that 1 ≥ θ1 ≥ · · · ≥ θK ≥ 0.
Consider two allocation schemes corresponding to the vectors αA and αB. If∑i

j=1 αB
j ≥ ∑i

j=1 αA
j for i = 1, . . . ,K, then the allocation scheme αB has a

higher failure detection probability than the scheme αA.

This is intuitively obvious since αB allocates more weight to the larger θi’s.
The result can be proved easily. We have included a formal proof in the Appendix
for the sake of completeness.

The best allocation, as noted in Remark 2, is to assign all the test cases to
stratum 1 with the largest failure rate. This is not a feasible scheme as it requires
complete knowledge of the θi’s. It is possible, however, that knowledge about the
software development process will suggest that some partitions are likely to have
higher failure rate than others. Such information should be used in allocating
the test cases. Also, as noted before, if the SUT is a new release of an existing
software with enhancements, then the cells corresponding to the newer features
should be tested much more intensively.

Perhaps the most commonly used allocation scheme is the constant allocation
scheme where the same number of test cases are selected from each cell. (Of
course, if the partitioning is completely homogeneous in the sense that the failure
rate in each cell is either zero or one, then we need to select only one test unit
from each cell.) In general, constant allocation will do better than proportional
allocation if those cells with high failure rates are also relatively small in size.
In such cases, constant allocation assigns a disproportionately large number of
test cases to these cells. On the other hand, when cells with high failure rates
are also relatively large, proportional allocation or random testing will do better
than constant allocation.

3.4. Case study revisited

Let us now compare the effectiveness of random and partition testing by
examining the results of the study introduced in Section 2.3.

We will analyze the two faults that were discovered separately. We will com-
pare the partition testing strategy described in Section 2.3 with simple random
testing for n = 64. The overall failure rate for Fault 1 was relatively small with
θ = .02. For this value of θ, the failure detection probability for simple random
testing is βR,64(.02) = .74. The corresponding failure detection probability under
our partition testing scheme is one. In fact, note from Figure 1 that several of the

STATISTICAL ASSESSMENT OF SOFTWARE TESTING STRATEGIES 175

64 partitions had failure rate θi equal to one! This can be seen more clearly from
Figure 2 which shows how the failure rates were distributed across the factor
settings. As shown here, 12 out of the 64 partitions had failure rate equal to one,
and 12 of the remaining had failure rates bigger than 0.5. Figure 1 shows that
the partitions with large values of θi were relatively small in size (small λi’s) thus
explaining why the fault was not discovered by the development and system test
groups.

0.0 0.2 0.4 0.6 0.8 1.0

••
••
••
••

••
••
••
••

••
••
••
••

••
••
••
••

D1:C1
 C2

D2:C1
 C2

D3:C1
 C2

D4:C1
 C2

D1:C1
 C2

D2:C1
 C2

D3:C1
 C2

D4:C1
 C2

D1:C1
 C2

D2:C1
 C2

D3:C1
 C2

D4:C1
 C2

D1:C1
 C2

D2:C1
 C2

D3:C1
 C2

D4:C1
 C2

A1

A2

A3

A4

Fault 1: B1

0.0 0.2 0.4 0.6 0.8 1.0

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

D1:C1
 C2

D2:C1
 C2

D3:C1
 C2

D4:C1
 C2

D1:C1
 C2

D2:C1
 C2

D3:C1
 C2

D4:C1
 C2

D1:C1
 C2

D2:C1
 C2

D3:C1
 C2

D4:C1
 C2

D1:C1
 C2

D2:C1
 C2

D3:C1
 C2

D4:C1
 C2

A1

A2

A3

A4

Fault 1: B2

Probability of Detection

Figure 2. Distribution of detection probability across factor settings

Figure 2 also provides much other interesting information. An examination
of the different settings of Factor A shows that there is no difference in the
failure rates across the different settings of Factor A. On the other hand, Factor
B provides a very informative partitioning of the input domain with all of the
non-zero failure rates occurring at level B2. A root-cause analysis conducted
after we discovered this fault showed that this fault was due to a coding error

176 V. N. NAIR, D. A. JAMES, W. K. EHRLICH AND J. ZEVALLOS

embedded within a selection list processing statement. This error occurred only
when there were multiple replicates (B2) and when the mode of user input-entry
was valid (D1, D3 or D4). Among these combinations, all of the inputs with
level C1 (replicate type defined in the data base) resulted in error. Because of
the nature of the coding error and the data base operation, only about 50% of
the inputs with level C2 (replicate type defined by user) resulted in an error.
Thus, although the nature of the fault was complex, we were able to come up
with a very informative partitioning of the input domain.

In fact, one could even argue that a partition test of 64 runs was inefficient
in this case. As noted before, twelve out of the 64 partitions had failure rate of
one, so instead of sampling from every cell, we need to select only one of these
cells. In Section 5, we discuss the use of fractional factorial experimental designs
for this purpose.

The situation for Fault 2 was quite different. The overall failure rate was
considerably larger with θ = 0.16, and simple random testing with n = 64 yields a
failure detection probability very close to one. An examination of Figure 1 shows
that our partitioning strategy did lead to some partitions with failure rates close
to 1. However, their relative sizes, λi’s, were not as small as those for Fault 1.
Thus, random testing performs about as well as partition testing for this fault.
Thus, not surprisingly, this fault was discovered by the development and system
test groups.

4. Comparisons in Terms of Other Criteria

4.1. Confidence assessment

Another criterion related to failure detection probability is confidence as-
sessment, i.e., the “confidence” that can be attached to a SUT given that no
failures were discovered during testing. This is again a criterion that is particu-
larly useful in situations where θ, the proportion of failures in a SUT, is small.
A natural measure of confidence is the upper confidence bound for the unknown
value of θ based on a particular testing strategy (see, for example, Hamlet and
Taylor (1990)). We will compare UR(θ), the upper confidence bound for θ based
on random testing of n elements, and UP (θ), the corresponding bound under
partition testing.

Hamlet and Taylor (1990) conclude that partition testing strategies are not
useful for determining confidence associated with a software system. They claim
that a partition testing strategy would require a substantially larger number of
runs than random testing to achieve the same level of confidence. (See their
table on page 1409. On the same page, they state “Our main point has been to
call into question the common wisdom that confidence in software is obtained by
vigorously seeking failures and when a variety of (partition-testing) methods finds

STATISTICAL ASSESSMENT OF SOFTWARE TESTING STRATEGIES 177

no more failures, concluding that the software will prove reliable in use. Unless
the methods used employ orders of magnitude more test points, this conclusion
is false. . . . Clever choice of a partition in no way compensates for the disparity
in these numbers”.) Duran and Ntafos (1983) also considered this problem and
concluded that “The comparison . . . shows the perhaps surprising result that
random testing within program paths (i.e., partition testing) can give coarser
bounds on the proportion of program failures (compared to random testing)”.

Our analysis below contradicts these conclusions. We show that whenever
a partition testing strategy is better than random testing for failure detection,
then it is also better in inspiring confidence. Actually, this should be intuitively
clear. If we use a testing strategy that is designed to have a higher probability
of detecting failures and still do not detect any faults, then we should have more
confidence in the software and not less.

To see this, suppose we do not detect any faults from n randomly selected
tests from a SUT with failure rate µ and we want to construct an exact (1− α)-
level upper confidence bound for µ. In this situation, UR(µ) = 1−α1/n provides
an exact (1 − α)-level upper confidence bound for the unknown failure rate µ

(see, for example, Hahn and Meeker (1991)). Now, let us see how this can be
used to compare the confidence associated with random and partition testing
strategies. Consider, first, randomly testing n cases from a SUT with overall
failure rate θ. Then, if we find no failures, we see from the above argument
that 1−α1/n is a (1−α)-level upper confidence bound for the unknown value θ.
Let us now consider a partition testing scheme with a given value of ηP (recall
the definition of ηP from Section 2.1). As discussed in that section, there is an
equivalence between this partition testing scheme and a random testing scheme
that selects n cases randomly from a SUT with failure rate ηP . Based on this
fact, if we observe no failures from partition testing, we see that 1 − α1/n is a
(1 − α)-level upper bound for the unknown value ηP . Thus, whenever partition
testing is better than random testing (i.e., θ ≤ ηP), we get a sharper upper
bound because 1 − α1/n provides an upper bound for ηP ≥ θ. Thus, we have
at least as much confidence in the SUT based on partition testing as we will
have using random testing. Alternatively, we require no more runs under this
partition testing strategy than we require under random testing. Finally, note
that there always exist a partition testing strategy that has ηP ≥ θ, namely the
one with proportional allocation.

We have thus shown that a partition testing strategy that has higher prob-
ability of failure detection will also inspire higher confidence. In addition, there
always exists a partition testing scheme with ηP ≥ θ, so this higher level of
confidence can in fact be achieved in practice. The question remains as to why
the previously cited authors arrived at the incorrect conclusions. The reason lies

178 V. N. NAIR, D. A. JAMES, W. K. EHRLICH AND J. ZEVALLOS

in the technique used to compute the necessary sample sizes (or bounds) under
partition testing. It turns out that exact calculation of the required sample sizes
for partition testing is rather complicated. What the previous authors did was
to use a conservative technique which allocates the overall confidence level of α

to the K partitions (α1/K , say), then computes the required test cases for each
partition, and finally obtains the total number of test cases. This leads to rather
conservative calculations and unduly inflates the required sample sizes under par-
tition testing. What we have done in our analysis above is to establish an indirect
comparison based on the equivalence result from the last section between par-
tition testing and random testing. This indirect analysis is enough to establish
that whenever partition testing is better than random testing in terms of failure
detection probability (i.e., ηP ≥ θ), then it also provides a better confidence
bound.

4.2. Expected number of failures per test run

In situations where θ is not very small, as might be the case in early stages
of software developer testing, a reasonable goal for the testing strategy is to
maximize the (expected) number of failures found. Under random testing of n

units, the expected number of failures is simply nθ. Under partition testing, the
expected number is nδP where δP =

∑K
i=1 αiθi. Thus, it is sufficient to compare

the quantities θ and δP , the expected number of failures per test run which are
independent of the sample size n. Recall that θ is the overall failure rate under
random testing. Analogously, we can interpret δP as the overall failure rate under
partition testing. Note that δP depends on both the αi’s and θi’s.

We see that for the proportional allocation scheme where αi = Fi, i =
1, . . . ,K, δP =

∑K
i=1 Fiθi = θ. Hence, for any partitioning of the input do-

main, however inefficient, proportional allocation again does as well as random
testing. However, as discussed in Section 3, if we can exploit our knowledge
about the SUT to generate efficient partitions and allocation schemes, then δP

will be considerably larger than θ.

Proposition 4 below shows that this is true in general, i.e., δP provides a
lower bound for ηP . So if partition testing is better than random testing in
terms of the expected number of failures, then it is also better in terms of the
failure detection probability. Further, we can use δP to obtain a lower bound on
the efficiency in terms of failure detection. The proof of this proposition follows
easily from an application of Jensen’s inequality.

Proposition 4. ηP ≥ δP with equality if and only if all the θi’s are equal.

All of the observations made in Section 2 about efficient choices of partition-
ing and allocation apply to this criterion as well. We also obtain the following

STATISTICAL ASSESSMENT OF SOFTWARE TESTING STRATEGIES 179

result that, analogous to Proposition 2, provides a comparison of two allocation
schemes.

Proposition 5. Suppose the θi’s are ordered so that 1 ≥ θ1 ≥ · · · ≥ θK ≥ 0.
Consider two allocation schemes corresponding to the vectors αA and αB. If∑i

j=1 αB
j ≥ ∑i

j=1 αA
j for i = 1, . . . ,K, then the expected number of failures under

allocation scheme αB is larger than that under the scheme αA.

This result is also intuitively obvious. A formal proof is included in the
Appendix.

Remark 4. If all the θi’s are small, then the value of δP will be close to ηP .
Again, this can be seen by the approximations for small values of θi’s, exp(−ηP) ≈
(1 − ηP) =

∏
i(1 − θi)αi ≈ exp(−∑

i αiθi) = exp(−δP). Thus, in this case, the
comparison in terms of failure detection probability is essentially the same as
the comparison of expected number of failures. However, ηP can be considerably
larger than δP if one or several of the θi’s are larger than the others.

4.3. Precision of estimators

Another criterion that is commonly used in the statistical literature is the
precision associated with the estimator of θ under a given scheme. Let d denote
the number of observed failures under random sampling. Then, θ̂R = d/n is
the unbiased estimator of θ based on random testing. Similarly, under partition
testing, let di denote the number of observed failures in the ith stratum. Then,
θ̂i = di/ni is an unbiased estimator of θi and θ̂P =

∑K
i=1 Fiθ̂i is an unbiased

estimator of θ based on the partition testing scheme. Hence we can compare
the two schemes by the precision (variance) of the two unbiased estimators. If
we constructed confidence intervals for θ using a normal approximation, the
estimator with the smaller variance will yield narrower confidence intervals. Note
that this comparison is meaningful only in situations where θ is not too small
so that we actually observe failures during testing. If θ is small, the confidence
assessment measure discussed earlier will be more meaningful.

We have Var (θ̂R) = θ(1−θ)/n, and Var (θ̂P) =
∑K

i=1 F 2
i θi(1−θi)/nαi, which

again depends on both the θi’s and αi’s.

Proposition 6. For the proportional allocation scheme where Fi = αi, for
i = 1, . . . ,K, Var (θ̂P) ≤ Var (θ̂R) with equality if and only if all the θi’s are
equal.

Proof. Under proportional allocation, Var (θ̂P) =
∑K

i=1 Fiθi(1 − θi)/n =
[θ − ∑K

i=1 Fiθ
2
i]/n which by Jensen’s inequality is less than or equal to

[θ − (
∑K

i=1 Fiθi)2]/n = θ(1 − θ)/n = Var (θ̂R).

180 V. N. NAIR, D. A. JAMES, W. K. EHRLICH AND J. ZEVALLOS

So, proportional allocation again performs at least as well as random testing.
If partitioning and allocation are done efficiently, then partition testing can be
considerably better. The efficiency of stratification (or partitioning) is usually
measured in the statistical literature by the ratio of between strata sum of squares
to within strata sum of squares. As noted before, the goal should be to make the
between strata sum of squares as large as possible.

In terms of the allocation strategy, if the θi’s are known, then the αi’s can
be chosen to minimize Var (θ̂P). This problem has in fact been formulated even
more generally in the statistical literature. Suppose there are different costs
ci’s associated with the different partitions, and we want to choose the αi’s to
minimize the variance subject to an overall fixed cost. (See Tsoukalas, Duran,
and Ntafos (1993) for an interpretation of the ci’s in the software testing context.)
Then, it can be shown (see Cochran (1977)) that the optimal choice of the αi’s
is given by αi ∝ Fi{θi(1 − θi)/ci}1/2. If the θi’s are about constant, then the
αi’s should be proportional to Fi/

√
ci. If in addition the ci’s are constant, this

reduces to proportional allocation. (See also the conclusion in Tsoukalas, Duran,
and Ntafos (1993) that uses a related criterion but does worst-case comparisons.)
The optimal choice depends on θi’s which are unknown. However, as discussed
before, knowledge about the software might suggest that certain cells are likely
to have higher failure probabilities than the overall θ, and this information can
be used to improve upon the proportional allocation scheme.

5. Application of Experimental Design Techniques

The strategy we used to partition the input domain in our case study in Sec-
tion 3.2 can be viewed as an application of the experimental design methodology.
We used subject matter knowledge to identify four factors whose settings were
likely to be related to the failure rates. The partitioning we obtained was a full
factorial design that corresponded to the 4×2×2×4 = 64 combinations of these
factors.

As noted in Section 3.2, 12 out of the 64 partitions had a failure rate of one
for Fault 1, so a full factorial design even with just 64 test cases seems wasteful.
A natural question is if we could have done just as well with a fractional de-
sign. We can investigate this issue retroactively by studying the failure detection
probabilities of various fractional designs. Consider, first, orthogonal arrays of
strength 2 where all pairwise combinations of the factors appear at least once.
We need an array with run size 16 to accommodate all the factors in our study.
Several possible orthogonal arrays of size 16 can be selected from the full factorial
design. It turns out that all of them contain at least one of the 12 partitions with
failure rate one, so all of them have a failure detection probability of one. Thus,
Fault 1 could have been detected with probability one based on just 16 test cases.
The corresponding probability for simple random testing with 16 runs is 0.26.

STATISTICAL ASSESSMENT OF SOFTWARE TESTING STRATEGIES 181

Can we do just as well with even fewer runs? Let us consider Latin hypercube
designs which ensure that each level of every factor appears at least once. In
our case, we need a Latin hypercube design with run size 4. There are several
such designs that can be selected from the full factorial design. Not all of these
designs include the partitions with failure rate one. However, the failure detection
probability averaged over all such designs is 0.825. It is quite remarkable that
we can achieve such a high failure detection probability by selecting only 4 test
cases from a domain of size around 65, 000 with an overall failure rate of only
0.02. Note that the corresponding failure detection probability for simple random
testing with run size 4 is 0.07.

The use of experimental design techniques for software testing has received
attention in the software testing literature recently. In particular, applications
of Latin hypercube designs and orthogonal arrays have been discussed by Mandl
(1980), Sherwood (1991), Brownlie et al. (1992), and Cohen et al. (1994). As
demonstrated in our application, this approach will be useful in situations where
knowledge about the software development process is used to judiciously select
factors whose settings are related to the failure occurrences. In practice, there
may be a large number of factors, each at several levels, so the use of full factorial
designs may not be practical. Fractional designs can be viewed as a sampling
scheme on the space of all possible factor combinations. Sherwood (1991) and
Cohen et al. (1994) discuss the use of constrained arrays that can further reduce
the number of test cases. This approach generates designs which ensure that
all pairwise combinations (or triplets, quadruplets, etc.) are selected at least
once but they do not have the usual balance properties. There is a considerable
reduction in run size in using these designs over the regular fractional factorial
designs.

The ultimate goal in these approaches is to identify at least one partition
with a failure rate of one. Latin hypercube designs will achieve this when all the
inputs corresponding to a level of some factor will lead to failure. Similarly, the
orthogonal arrays or their constrained versions will achieve it when all the inputs
corresponding to a combination of some pair of factors will lead to failure. In
these cases, all of the Latin hypercube designs or all of the (constrained) orthog-
onal arrays have the same failure detection probability of one. What happens
in cases where such a perfectly revealing partition does not exist? It turns out
that there is another situation where the various fractional designs of a given
strength have the same failure detection probability. This situation is somewhat
analogous to classical experimental design where we have additive factor effects.
To be specific, suppose we have three factors A, B and C, each at s−levels, and
let θijk denote the failure rate at the ith level of A, jth level of B and kth level
of C. Suppose we can write

(1 − θijk) = (αA
i αB

j αC
k), i, j, k = 1, . . . , s, (5)

182 V. N. NAIR, D. A. JAMES, W. K. EHRLICH AND J. ZEVALLOS

for some values αA
i , αB

j , and αC
k which depend only on the marginal settings of

the individual factors A, B, and C. Under this model, any s−run Latin hypercube
design will have the same failure detection probability given by

βLH = 1 −
[s∏

i=1

αA
i

s∏
j=1

αB
j

s∏
k=1

αC
k

]
. (6)

In particular, this probability equals one if any of the α’s are zero which cor-
responds to a perfectly revealing partition. On the other hand, instead of (5),
suppose we have

(1 − θijk) = αAB
ij αBC

jk αAC
ik (7)

for some values αAB
ij , αBC

jk and αAC
ik which depend only on the pairwise settings

of the factors. Under the model in (7), any regular orthogonal array of strength
two with run size s2 will have the same failure detection probability given by

βOA = 1 −
[∏

i,j

αAB
ij

∏
j,k

αBC
jk

∏
k,l

αAC
i,k

]
. (8)

Suppose now we use an orthogonal array with run size s2 when the model in
equation (5) holds. Then, (1 − βOA) = (1 − βLH)s. We can achieve this same
failure detection probability by using a Latin hypercube design of size s and
selecting s inputs randomly at each of the s−combinations.

These models and comparisons can be extended in an obvious manner to
more general situations.

6. Conclusions

We have compared partition and random testing in terms of different cri-
teria. Our comparisons do not take into account the costs associated with the
two testing strategies. However, it should be reiterated that the simplicity and
cost-effectiveness of doing random testing has been considerably overstated in
practice.

We have also shown that partition testing can be quite effective in situ-
ations where knowledge about the software development process can be used
to efficiently generate partitions and allocate test inputs. Experimental design
techniques have great potential as a strategy for generating partitions. Further,
fractional designs can be used to further subsample from the space of all possible
partitions.

Appendix

Propositions 2 and 5 can be obtained as special cases of the following lemma.

STATISTICAL ASSESSMENT OF SOFTWARE TESTING STRATEGIES 183

Lemma. Let X1 ≥ X2 ≥ · · · ≥ XK and consider a = (a1, . . . , aK) and b =
(b1, . . . , bK) such that

∑i
j=1 bj ≥ ∑i

j=1 aj for i = 1, . . . ,K − 1 and
∑K

j=1 bj =∑K
j=1 aj . Then

∑K
j=1 bjXj ≥ ∑K

j=1 ajXj .

Proof.
K∑

j=1

bjXj −
K∑

j=1

ajXj = (b1 − a1)X1 + (b2 − a2)X2 + · · · + (bK − aK)XK

≥ [(b1 + b2) − (a1 + a2)]X2 + (b3 − a3)X3 + · · · + (bk − ak)XK

≥ [(b1 + b2 + b3)−(a1 + a2 + a3)]X3+(b4 − a4)X4 + · · · + (bk − ak)XK

≥ ...

≥ (
K∑

j=1

bj −
K∑

j=1

aj)XK ≡ 0.

To prove Proposition 5, apply the lemma with Xj = θj , aj = αA
j , and bj =

αB
j , j = 1, . . . ,K. Then, it follows immediately that

δB ≡
K∑

j=1

αB
j θj ≥

K∑
j=1

αA
j θj ≡ δA.

To prove proposition 2, we need to show that

ηB
P = 1 −

K∏
j=1

(1 − θj)
αB

j ≥ 1 −
K∏

j=1

(1 − θj)
αA

j

when θ1 ≥ θ2 ≥ · · · ≥ θK . Let Xj = − log(1 − θj), j = 1, . . . ,K. Then, we have
X1 ≥ X2, · · · ,≥ XK . If we now apply the lemma with aj = αA

j and bj = αB
j for

j = 1, . . . ,K, we get

−
K∑

j=1

αB
j log(1 − θj) ≥ −

K∑
j=1

αA
j log(1 − θj)

or
K∏

j=1

(1 − θj)
αB

j ≤
K∏

j=1

(1 − θj)
αA

j ,

from which the result follows.

Acknowledgements

We thank J. D. Musa, E. J. Weyuker, and R. Viveros-Aguilera for their
comments and suggestions on an earlier version of this paper. V. N. Nair’s
research was supported by NSF grants DMS-9404300 and DMI-9501217.

184 V. N. NAIR, D. A. JAMES, W. K. EHRLICH AND J. ZEVALLOS

References

Brownlie, R., Prowse, J. and Phadke, M. S. (1992). Robust testing of AT&T PMS/StartMail

using OATS. AT&T Technical Journal 71, 41-47.

Burroughs, K., Jain, A. and Erickson, T. L. (1994). Improved quality of protocol testing through

techniques of experimental design, Supercomm./ICC 1994, IEEE International Conference

on Communications 745-752.

Cohen, D. M., Dalal, S. R., Kajla, A. and Patton, C. (1994). The automatic efficient test

generator (AETG) system. IEEE Transactions on Software Engineering 303-309.

Cochran, W. G. (1977). Sampling Techniques. Wiley, New York.

Duran, J. W. and Ntafos, S. C. (1983). An evaluation of random testing. IEEE Transactions

on Software Engineering SE-10, 438-444.

Duran, J. W. and Wiorkowski, J. J. (1980). Quantifying software validity by sampling. IEEE

Transactions on Reliability R-29, 141-144.

Hahn, G. J. and Meeker, W. Q. (1991). Statistical Intervals. Wiley, New York.

Hamlet, D. and Taylor, R. (1990). Partition testing does not inspire confidence. IEEE Trans-

actions on Software engineering 16, 1402-1411.

Mandl, R. (1980). Orthogonal latin squares: An application of experimental design to compiler

testing. Communications of the ACM 28, 1054-1058.

Miller, K. W., Morrel, L. J., Noonan, R. E., Park, S. K., Nicol, D. M., Murril, B. W. and Voas,

J. M. (1992). Estimating the probability of failure when testing reveals no failures. IEEE

Transactions on Software Engineering 18, 33-43.

Musa, J. D. (1993). Operational profiles in software reliability testing. IEEE Transactions on

Software Engineering 10, 14-32.

Sherwood, G. (1991). Constrained Array Test System (CATS). AT&T Bell Laboratories, Murray

Hill, NJ, User’s Manual.

Tsoukalas, M. Z., Duran, J. W. and Ntafos, S. C. (1993). On some reliability estimation

problems in random and partition testing. IEEE Transactions on Software Engineering

19, 687-697.

Weyuker, E. J. and Jeng, B. (1991). Analyzing partition testing strategies. IEEE Transactions

on software Engineering 17, 703-711.

Department of Statistics, 1429 Mason Hall, 419 South State Street, Ann Arbor, MI 48109-1027,

U.S.A.

E-mial: vnn@umich.edu

Bell Laboratories, Murray Hill, NJ 07974, U.S.A.

E-mial: dj@research.bell-labs.com

AT&T Laboratories, Middletown, NJ 07748, U.S.A.

E-mial: wke@hrmaple.hr.att.com

E-mial: jzevallos@ems.att.com

(Received May 1996; accepted April 1997)

