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Abstract: This article discusses methods of estimating the variation in product

quality characteristics measured at several stages in a manufacturing process. By

determining which stages contribute most to variation one can focus variation re-

duction activities more effectively. A multivariate normal Markov process is used to

model the variation in characteristics. Methods that deal with measurement error

and missing data are introduced through a state space formulation.
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1. Introduction

In order to reduce variation in manufacturing processes consisting of several
discrete stages it is often worthwhile to study the variation that is added at differ-
ent stages, and whether that variation is transmitted downstream to subsequent
stages. In particular, there may be certain stages where considerable variation
originates, and other stages that filter out variation introduced upstream. By
understanding how variation is added and transmitted across the stages of a
process we can decide where to concentrate variation reduction efforts.

For illustration we consider a pair of examples taken from automobile man-
ufacturing.

Example 1. Hood Fits
Lawless, MacKay and Robinson (1996) discuss an assembly process that

is part of the installation of car hoods. There are four stages of the process,
corresponding to four operations: (1) install or “hang” the hood, (2) paint the
hood (and the rest of the car), (3) install hardware such as the hood latch, (4)
adjust or “finesse” the hood for better fit. The quality characteristics of interest
relate to the flushness of the hood to the surrounding fenders of the car. This is
quantified through four flushness deviation measurements, one near the front and
one near the rear on each side of the hood. A zero measurement at any location
means the hood is perfectly flush, and positive and negative measurements mean
it is too high and too low, respectively.
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The objective is to have hoods as close to perfectly flush as possible after
the final stage. By “tracking” vehicles and taking flushness measurements after
each stage, it is possible to learn about the origins and transmission of variation.

Example 2. Piston Machining
Agrawal, Lawless and MacKay (1996) examined a study on the machining

of pistons. These are essentially cylinders which are closed at the top and open
at the bottom, where they are connected to rods. The quality characteristics
of interest were four diameters, located at heights of 4 mm, 10 mm, 36.7 mm
and 58.7 mm from the bottom of the piston. The diameters were measured after
each of several operations in the machining process, the measurements being in
millimeters, to a precision of 1 micron (10−3 mm). The objective is to produce
pistons for which all four diameters are very close to specified values.

Lawless, MacKay and Robinson (1996) presented methods for analyzing the
transmission of variation in a univariate characteristic, based on a first order
autoregressive model. In order to carry out such analysis it is necessary to be
able to track units (in our examples these are vehicles) through the manufactur-
ing process so that measurements may be taken on the same unit at different
stages. Lawless et al. (1996) assumed that a univariate quality characteristic yt

is measured at each of T process stages t = 1, . . . , T , and considered the model

y1 = µ1 + e1 (1.1)

yt = αt + βtyt−1 + et t = 2, . . . , T, (1.2)

where et ∼ N(0, σ2
et

) and are independent. This first order Markov, or autore-
gressive AR(1) model can often be justified in manufacturing processes, and it
leads to the following variation transmission formula for σ2

t = Var(yt):

σ2
t = β2

t σ
2
t−1 + σ2

et
. (1.3)

The first term on the right side of (1.3) represents variation transmitted from
stage t− 1 to stage t, and the second term represents variation added at stage t.
Lawless et al. (1996) fitted models (1.1) and (1.2) to process data and discussed
how to use (1.3) recursively to assess variation transmission across stages t =
1, . . . , T of a process.

The present paper extends the techniques of Lawless et al. (1996) in several
directions. First, we consider multivariate measurements, and in particular, deal
with a multivariate version of (1.1) and (1.2). We refer to the model as an
AR(1) model, but it should be noted that T is generally small and the model
is non-stationary, unlike many applications involving AR(1) models. Second, we
deal with missing data; this is important since it is often difficult to measure
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all characteristics on every unit in a study that is undertaken on-line, i.e. while
the manufacturing process is operating. Finally, we incorporate measurement
error into the multivariate AR(1) model; this is important because, as discussed
by Agrawal et al. (1996) and Lawless et al. (1996), if substantial measurement
error is ignored the results of the AR(1)-based variance transmission analysis are
misleading.

Section 2 of the paper introduces the multivariate AR(1) model and incorpo-
rates measurement error. Section 3 is the core of the paper and presents method-
ology for fitting the model to process data; this is done by using a state space
formulation that leads to efficient computational procedures. Section 4 illustrates
the methodology on the piston machining process, and Section 5 concludes with
comments and points that deserve further study.

2. An AR(1) Variation Transmission Model

The methods in this paper are designed for use on a stable process. That is,
the model (2.1)-(2.2) applies to units manufactured over time, and the param-
eter values in the model do not change over time. We assume that sequential
measurements on a random sample of n units from the process are available. As
discussed by Lawless et al. (1996) for the univariate case, we consider a (non-
stationary) first order autoregressive, or AR(1), model for the C × 1 vector of
multivariate measurements zit on unit i at stage t (t = 1, . . . , T ; i = 1, . . . , n).
This can be expressed as

zi1 = µ1 + ei1 (2.1)

zit = At + Btzi,t−1 + eit t = 2, . . . , T, (2.2)

where eit ∼ Nc(0,
∑

et
), t = 1, . . . , T ; the notation y ∼ Np(µ,

∑
) means that y

has a p-variate normal distribution with mean vector µ and covariance matrix∑
. The dimensions of At and Bt are C×1 and C×C, respectively. It is assumed

that the measurements for different units are independent.
The marginal means and covariance matrices for the zit

′s are given by

E(zi1) = µ1, E(zit) = µt = At +Btµt−1, t = 2, . . . , T (2.3)

Var(zi1) =
∑

e1
, Var(zit) =

∑
t
= Bt

∑
t−1

B′
t +

∑
et
, t = 2, . . . , T. (2.4)

In addition
Cov(zis,zit) =

∑
st

=
∑

s
B′

s+1 . . . B
′
t (s < t). (2.5)

The vector et and its covariance matrix
∑

et
represent variation added at stage

t, whereas Bt
∑

t−1B
′
t represents variation transmitted from stage t− 1; in this

regard the right hand portion of (2.4) is the multivariate generalization of (1.3).
The intercept At allows the means µt = E(zit) to vary across t = 1, ..., T . In a
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case like that in Example 2, for instance, a stage may reduce the diameters from
the preceding stage substantially. An alternative but equivalent parameterization
is E(zit|zi,t−1) = µt +Bt(zi,t−1 − µt−1).

In practice there may be significant measurement error, that is, variation
in the process by which the zit = (zit1, . . . , zitc)′ are measured. As discussed in
Section 5, this can invalidate the methods described herein if it is ignored, so we
consider it explicitly. We let yit represent the measurement of zit and assume
that

yit = zit + δit, t = 1, . . . , T, (2.6)

where the δit’s are mutually independent Nc(0,
∑

δt
) random vectors and are

independent of the eit’s in (2.1) and (2.2). It should be noted that the yit’s do
not follow an AR(1) model.

The motivation for considering the model (2.2) is to examine the sources
of variation in the measurements ziT at the final stage. This may be done
by working backwards from the final stage: (2.2) for t = T indicates that the
covariance matrix

∑
T may be decomposed into variation transmitted from stage

T − 1 and variance added at stage T ,∑
T

= BT

∑
T−1

B′
T +

∑
eT
. (2.7)

Similarly,
∑

T−1 may be decomposed and, working backwards, we may ascertain
the contribution of the variation added at any stage t (i.e.

∑
et

) to
∑

T . Multivari-
ate covariance matrices may admittedly be hard to interpret, and it is important
to relate them to the physical properties of the units under consideration. The
example of Section 5 illustrates and discusses this further.

Care should be taken to assess the appropriateness of the model (2.1)-(2.2),
possibly with measurement error accounted for by (2.6). Section 4 discusses
model checking and Section 5 comments on the robustness of the methods to
departures from the model.

3. Parameter Estimation

It is important to have estimation procedures that deal with missing data,
since it is often impossible to measure all the characteristics on every unit at
every stage. We therefore suppose that some arbitrary subset of the CT univari-
ate measurements on unit i may be missing, and that observations are missing
completely at random in the terminology of Rubin (1976) and Little and Rubin
(1987). This means that the probability a particular set of measurements on a
unit is missing does not depend on the values of the measurements for that or
other units, and implies that the likelihood function may be based on the joint
distribution of the measurements available for each unit.
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We assume that the covariance matrices
∑

δt
(t = 1, . . . , T ) for the mea-

surement errors are known. In practice these should be estimated from mea-
surement studies. The set of unknown parameters then includes µ1, the

∑
et

’s
(t = 1, . . . , T ) and the At’s and Bt’s (t = 2, . . . , T ). Since the observed mea-
surements yitc(t = 1, . . . , T ; c = 1, . . . , C) for unit i jointly follow a multivariate
normal distribution of dimension CT or less, it would be possible in principle
to write the mean and covariance matrix for each i in terms of the unknown
parameters and to maximize the likelihood by a search algorithm. In particular,
we note that, under (2.1), (2.2) and (2.6), the complete data yit’s have means µt

given by (2.3) and covariance matrices

Var(yit) =
∑

t
+
∑

δt
, Cov(yis,yit) =

∑
st

(s < t), (3.1)

where
∑

t and
∑

st are given in (2.4) and (2.5), respectively. This brute force
approach encounters matrices of large dimension if CT is large, and is compu-
tationally slow; the latter is a drawback for the use of bootstrap methods for
obtaining variance estimates or confidence intervals, as described in Section 4.
Consequently we express the model in state space form (e.g. Harvey (1989), Har-
vey and McKenzie (1984), Shumway (1988)), and utilize the E −M algorithm
(Dempster, Laird and Rubin (1977)) to obtain maximum likelihood estimates.

The model given by (2.1), (2.2) and (2.6) with arbitrary measurements miss-
ing at random can be expressed in the following form, where yit now stands for
the vector of observed measurements on unit i at stage t:

zit = At +Btzi,t−1 + eit (3.2)

yit = Hitzit +Hitδit, (3.3)

where i = 1, . . . , n; t = 1, . . . , T , we define A1 = µ1, B1 = 0, zi1 = 0, and where
Hit is a matrix obtained by taking the C × C identity matrix and deleting rows
which correspond to missing observations on unit i at stage t.

The log likelihood function based on the observed data may be written in
the form of an arbitrary constant plus

� = −1
2

∑
i,t

log |
∑

iy
(t|t− 1)| − 1

2

∑
i,t

(yit − yi,t|t−1)
′∑−1

iy
(t|t− 1)(yit − yi,t|t−1),

(3.4)
where we introduce the notation

yip|q = E[yip|yi1, . . . , yiq],
∑

iy
(p|q) = Var[yip|yi1 . . . , yiq] (3.5)

and where the range for i and t in the sum
∑

i,t is over i = 1, . . . , n and t =
1, . . . , T . Expression (3.4) assumes there is at least one measurement at each
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stage for each unit. If all measurements at a stage t happen to be missing for
unit i, then (3.4) is modified to omit terms involving

∑
iy(t|t − 1),

∑
iy(t+ 1|t)

and to add a term involving
∑

iy(t+ 1|t− 1).
The terms yi,t|t−1 and

∑
iy(t|t−1) needed to calculate (3.5) may be computed

recursively using the following state space, or Kalman filtering formulas: define,
following (3.5),

zip|q = E[zip|yi1, . . . , yiq],
∑

iz
(p|q) = Var[zip|yi1, . . . , yiq],

and set zi0|0 = 0,
∑

iz(0|0) = 0. Then for t = 1, . . . , T

zit|t−1 = At +Btzi,t−1|t−1 (3.6)∑
iz

(t|t− 1) = Bt

∑
iz

(t− 1|t− 1)B′
t +

∑
et

(3.7)

yit|t−1 = Hitzit|t−1 (3.8)∑
iy

(t|t− 1) = Hit

∑
iz

(t|t− 1)H ′
it +Hit

∑
δt
H ′

it, (3.9)

where zit|t and
∑

iz(t|t) are computed via

Pit =
∑

iz
(t|t− 1)H ′

it

∑
iy

(t|t− 1)−1

zit|t = zit|t−1 + Pit(yit − yit|t−1)∑
iz

(t|t) =
∑

iz
(t|t− 1) − Pit

∑
iy

(t|t− 1)P ′
it.

Derivation of these formulas is outlined in the Appendix. These calculations
involve only square matrices of dimension C or smaller.

Now that we can compute (3.4), we could maximize it by using a derivative-
free procedure such as the simplex search algorithm (Nelder and Mead (1965),
Press et al. (1986), Section 10.4). An attractive alternative, which also allows
easier access to model-checking and to handling cases where entire stages are
missing on some units, is an E −M algorithm. This has been well discussed for
use with missing data in normal models (e.g. Little and Rubin (1987), Chapter
8) and is adapted here to deal with both missing data and measurement error.

Referring to (3.2), we consider the “complete data” log likelihood as that
based on the zit’s, which may be written as an arbitrary constant plus

�c = −nC
2

T∑
t=1

log |
∑

et
| − 1

2

n∑
i=1

T∑
t=1

e′
it

∑−1

et
eit . (3.10)

The model (3.2) is AR(1), and maximum likelihood estimates are easily found
to be (e.g. Mardia, Kent and Bibby (1979), Chapter 6)

Â1 = z̄1,
∑̂

e1
= S1,1
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B̂t = St,t−1(St−1,t−1)−1, Ât = z̄t − B̂t−1z̄t−1 (3.11)∑̂
et

= St,t − B̂tSt−1,t

for t = 2, . . . , T , where

z̄t =
1
n

n∑
i=1

zit, Su,t =
1
n

n∑
i=1

ziuz′
it − z̄uz̄′

t. (3.12)

The M -step in the E −M algorithm is given by (3.11). The E-step consists
of computing the expectations of the complete data, conditional on the observed
data, that are needed to compute the conditional expectation of (3.10). This
may be done using the state-space smoothing formulas for t = 1, . . . , T − 1:

Rit =
∑

iz
(t|t)B′

t+1

∑
iz

(t+ 1|t)−1

zit|T = zit|t +Rit(zi,t+1|T − zi,t+1|t) (3.13)∑
iz

(t|T ) =
∑

iz
(t|t) −Rit[

∑
iz

(t+ 1|t) −
∑

iz
(t+ 1|T )]R′

it. (3.14)

Derivations are outlined in the Appendix. The E-step is now carried out by
replacing z̄t and zi,t−1z

′
it in the expressions (3.12) with (compare Little and

Rubin (1987), page 143)
1
n

n∑
i=1

zit|T (3.15)

zi,t−1|T z′it|T + Cov(zi,t−1, zit|yi1, . . . , yiT ) (3.16)

respectively, evaluated at the most recent parameter estimates from the M -step
(3.11).

In the case where there is no measurement error, Cov(zi,t−1, zit|yi1, . . . , yiT )=∑
iz(t−1|T )B′

t. More generally, however, it must be obtained from the smoothing
formula (3.14) for the augmented model

z∗it =

(
zit
zi,t−1

)
=

(
At

0

)
+

(
Bt 0
I 0

)
z∗i,t−1 +

(
eit
0

)
,

where I represents an identity matrix.
The E −M algorithm proceeds by alternating E and M steps until conver-

gence is achieved. Initial estimates that can be used to start the process can
be obtained by the following simple procedure: compute empirical means ȳt and
cross-product matrices St,t and St−1,t using units with no missing measurements
at stage t (for ȳt and St,t) and at stages t − 1 and t (for St−1,t), respectively.
Then, compute the estimates

µ̃1 = ȳ1

∑̃
e1

= S1,1 −
∑

δ1
(3.17)
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B̃t = St,t−1(St−1,t−1 −
∑

δt−1
)−1 t= 2, . . . , T

Ãt = ȳt − B̃tȳt−1 t= 2, . . . , T∑̃
et

= (St,t −∑δt
) − B̃tSt−1,t t= 2 . . . , T.

When there is no missing data, these are the estimates that would be obtained
by maximum likelihood if the process had only T = 2 stages. Agrawal et al.
(1996) study these estimates in the univariate case.

There are many (CT +C2(T − 1) +C(C + 1)T/2) parameters in the model,
and we are primarily interested in components of variance as epitomized in (1.3)
and (2.4). In these circumstances it does not make sense to develop estimates
of the asymptotic variances and covariances of all parameter estimates. In order
to assess variation in estimates and to obtain confidence intervals for quantities
of interest, we use a parametric bootstrap (Efron and Tibshirani (1993)). The
procedure is as follows: treating the maximum likelihood estimates as if they were
the true parameter values and the Hit’s as given by the pattern of missingness
in the original data, we generate B sets of data from the model (3.2)-(3.3). For
each of the B sets of data we obtain maximum likelihood estimates θ̂∗b (where θ
stands for the vector of all parameters). Estimates of fuctions ψ = g(θ) that are
of interest are then calculated for each sample. Variance estimates for ψ̂ = g(θ̂)
(where θ̂ is the maximum likelihood estimate from the original data) or confidence
intervals for ψ may then be calculated in various standard ways (see Efron and
Tihshirani (1993)).

An example of the bootstrap methods is given in Section 4.

4. An Example

We consider data on 96(= n) randomly selected pistons from the process
mentioned in Example 2 of Section 1. Four (= C) diameter measurements were
taken at each of 4(= T ) process stages.

The model represented by (2.1), (2.2) and (2.6) was fitted. There are no
missing observations here and the measurement error covariance matrix is as-
sumed to be σ2

δ I4, where I4 is the 4× 4 identity matrix. The measurements are
discrete, diameters being measured to the nearest micron (10−3mm), and at each
of the 4 locations on the piston fewer than 15 distinct values occur. Nevertheless
we work with the assumed normal model, which seems to provide a reasonable
picture of variation.

Models were fitted with σ2
δ = .04167 microns2 and also with σ2

δ = .1 microns2.
The former corresponds to the variance of a triangular distribution on (−.5, .5)
and the latter is slightly larger than the variance of a uniform distribution on
(−.5, .5). The latter seems a more realistic value but we wanted to assess the
effect of measurement error on estimated variance components.
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The E-M algorithm based on the filtering and smoothing procedures was it-
erated until the increase in the log likelihood (3.4) was less than .1; the maximum
value at convergence was 8017.0. Maximum likelihood estimates of

∑
t and

∑
et

,
as in (2.4), are shown in Table 1 for the case where σ2

δ = .10. Estimates of µt

are also shown. The units for all variances and covariances are microns2. Para-
metric bootstrap methods (Efron and Tibshirani (1993)) were used to generate
standard errors and confidence limits for variance components. Standard errors
for estimates of variance tended to be about 10-20% of the size of the estimate.
The entire procedure, including 1000 bootstrap replications, used under 7 min-
utes of CPU time on a DEC OSF/1 V3.2 system when programmed in C + +.
The estimates obtained when σ2

δ = .04167 was used were a little different, but
the qualitative picture was similar to that in Table 1. The main feature was that∑̂

et
tended to be about 10% larger than in Table 1, whereas

∑̂
t was more or less

the same.

Table 1. Estimated covariance matrices for piston diameters

Stage (t)
∑̂1

t

∑̂1

et
µ̂t (mm)

1 4.67 .64 .21 .05 4.67 .64 .21 .05 88.9568
1.94 .54 .38 1.94 .54 .38 88.9731

2.29 .51 2.29 .51 88.9350
3.56 3.56 88.1633

2 5.10 .56 .27 -.10 1.71 .74 .33 .08 88.9574
3.09 .55 .16 1.36 .35 .18 88.9735

5.94 .37 3.20 .41 88.9348
3.24 1.07 88.1616

3 4.69 .42 .08 -.07 2.28 .44 .28 .13 88.9561
1.43 .44 .01 .81 .44 .37 88.9724

3.42 .17 2.20 .31 88.9339
4.64 1.65 88.1601

4 5.91 .64 .18 -.23 2.20 .67 .51 .30 88.9564
2.13 .46 -.09 1.25 .60 .49 88.9727

4.79 .22 2.25 .55 88.9346
4.20 1.92 88.1608

1The off-diagonal elements are the correlations; the diagonal elements
are the variances.

Table 1 suggests that roughly 30-60% of the variation in diameters at each
stage is added at that stage and the rest is transmitted from the preceding stage.
By using (2.7) recursively we can express

∑̂
4 as a sum of four components,

one representing the variation at each stage. This indicates that attempts to
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reduce variation at the final stage should be directed at stages 3 or 4; little
variation is transmitted from stages 1 and 2. We remark that it is also of interest
with multivariate measurements to examine their correlation structure. Table 1
indicates a moderate degree of correlation for adjacent diameters in both the total
variance and in the variance added at each stage. The examination of principal
components or other linear functions of measurement variables is also of general
interest but we will not pursue this here.
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Figure 1. Plots of residuals against the predictors ŷit|t−1.

The model (2.1), (2.2) and (2.6) can be checked informally by examining
residuals

rit = yit − ŷit|t−1

or standardized versions of the same. Standardized residuals should look roughly
like N(0, 1) variables. Figure 1 shows plots of standardized residuals versus
predictors ŷit|t−1 across all stage measurements (i = 1, . . . , 96; t = 1, . . . , 4) for
c = 1, 2, 3, 4 (corresponding to 4, 10, 36.7 and 58.7 mm). The banded appearance
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in each plot is due to the fact that for each diameter there are only 10-15 distinct
values of yit, and that the estimated variance for rit does not depend on i and
varies slightly with t. Figure 2 shows a normal probability plot of standardized
residuals. These are reasonably linear, though a single extreme observation is
noted at each of 4 mm and 36.7 mm. More exhaustive checks not shown here
likewise do not indicate substantial departures from the working model.
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Figure 2. Normal probability plot of standardized residuals.

5. Concluding Remarks

The methods in this paper depend on the approximate validity of a normal
AR(1) model for the true measurements. This assumption should be realistic
in many contexts, but it would be of interest to consider the implications of
model departures. One topic which is readily assessed is the effect of ignoring
measurement error. If the model (2.1), (2.2) is assumed correct but there is in fact
measurement error as expressed by (2.6), then the maximum likelihood estimates
B̂t derived under (2.1), (2.2) alone converge in probability in large samples not
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to Bt but to
B∗

t = Bt

∑
t−1

(
∑

t−1
+
∑

δt−1
)−1.

This underestimation of regression parameters is well known when measurement
error in covariates is ignored (e.g. Fuller (1987)). A consequence of this in the
present circumstances is that the variation transmitted to each stage is underes-
timated and the variation added is overestimated. This has serious consequences
when there are several stages in the process. Agrawal et al. (1996) give a de-
tailed discussion of measurement error for the univariate (C = 1) case. They
have shown for the case with measurement error but no missing data that the
use of simple estimates (3.17) combined with bootstrap confidence intervals pro-
vide good procedures. Extension of these methods to the multivariate case is
worth considering.

In practical situations one must decide which measurements to consider. This
choice can affect whether or not an AR(1) model is satisfactory. For example, if
we include a pair of measurements but omit a third which is highly correlated
with the other two, we may find an AR(1) model for the two measurements is
inadequate.

Further work on ways to interpret multivariate analyses of variation in spe-
cial contexts is desirable. In particular, one would hope to expose significant
relationships among variables and to relate them to the geometry of the units
being manufactured. With the piston data there do not appear to be important
systematic effects but one could imagine situations in which, for example, the
deviations in diameters at opposite ends of a cylinder were negatively correlated
after certain stages. The present paper has developed efficient procedures for
model fitting and assessment which should make it feasible to undertake further
studies with relative ease.

Finally, the methods here deal with processes in which the same variables
are measured on parts at each stage. However, as mentioned by Lawless et al.
(1996), the general ideas of variation transmission also apply to studies of the
effect of upstream process variables on downstream measurements. This area
requires further development in practical situations.
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Appendix

Derivation of Filtering and Smoothing Formulas

The filtering formulas (3.6)-(3.9) follow from straightforward conditional
mean and variance calculations.

For example,

zit|t−1 = E {E[zit|yis, zis, s = 1, . . . , t− 1]}
= E {At +Btzi,t−1|yis, s = 1, . . . , t− 1}
= At +Btzi,t−1|t−1

∑
iz

(t|t− 1) = E
{∑

et
|yis, s = 1, . . . , t− 1

}
+Var {At +Btzi,t−1|yis, s = 1, . . . , t− 1}

=
∑

et
+Bt

∑
iz

(t− 1|t− 1)B′
t.

Formulas for zit|t,
∑

iz(t|t) and the smoothing formulas (3.13), (3.14) are
a little more complicated, but may be obtained from standard results about
multivariate normal variables. In particular, if x, y and z are random vectors
with


xy
z


 ∼ Normal




µx

µy

µz


 ,



∑

xx

∑
xy

∑
xz∑

yx

∑
yy

∑
yz∑

zx

∑
zy

∑
zz




 ,

then

E(x|z) = µx +
∑

xz

∑−1
z (z − µz) = µx|z

Var(x|z) =
∑

x −
∑

xz

∑−1
z

∑
zx =

∑
x|z

Cov(x, y|z) =
∑

xy −
∑

xz

∑−1
z

∑
zy =

∑
xy|z

and so also, for example,

E(x|y, z) = µx|z +
∑

xy|z
∑−1

y|z(y − µy|z).

Then, for example, letting y∗i,t−1 = (yi1, . . . , yi,t−1)′, we have

zit|t = E(zit|yit, y
∗
i,t−1)

= E(zit|y∗i,t−1) + Cov(zit, yit|y∗i,t−1)Var(yit|y∗i,t−1)
−1(yit − yit|t−1)

= zit|t−1 +
∑

iz
(t|t− 1)H ′

it

∑
iy

(t|t− 1)−1(yit − yit|t−1).

These formulas are standard in state space models; see for example Harvey
and McKenzie (1984) or Koopman and Shepherd (1992).
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