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Abstract: A coordinate measuring machine (CMM) is a computer controlled device

that uses a programmable probe to obtain measurements on a part surface. Re-

cently CMMs have become very popular for dimensional measurement in industry

due to their flexibility, accuracy, and ease of automation. Despite the advantages

offered by CMM’s, problems have emerged with their use because tolerance stan-

dards require knowledge of the entire surface while a CMM provides only a sample

of points on the surface. These problems could be quite challenging, and both

practitioners and researchers have shown great interest.

Among these problems, estimating form tolerances for different part features

is very important to practitioners. The least squares and minimum zone methods

are the most commonly used methods for form tolerance estimation. Dowling

et al. (1995) show that these two methods give seriously biased estimates of the

part deviation range when the sample size is small. This paper establishes the

consistency of these two common estimates. We propose several jackknife estimates

that correct the bias of the least squares and minimum zone estimates. Based on

a simulation study, it is found that the jackknife estimates effectively reduce the

bias of the two common estimates in many situations, and thus reduce the chance

of accepting bad parts in tolerance verification. We also show that the jackknife

estimates are consistent.
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1. Introduction

For tolerance verification, manufactured parts must conform to certain geo-
metric constraints to satisfy design or functional requirements. These constraints
are expressed in terms of the standards described in the ANSI Y14.5M, Geomet-
ric Dimensioning and Tolerancing Standard (ASME, 1994). In these standards,
allowable variation of individual and related features is based on the envelope
principle, i.e., the entire surface of the part feature must lie within two envelopes
of ideal shape. The envelope principle has evolved from gauging technology. In
the past, hard gauges have been the common measurement tool for tolerance
verification. However, they tend to be expensive and inflexible. Recently, co-
ordinate measuring machines (CMMs) have become very popular for tolerance
verification due to their flexibility, accuracy and ease of automation.
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CMMs have many advantages over the traditional hard gauges. Caskey et al.
(1990) argued that CMMs should be the inspection instruments of choice since
they can be easily programmed to study multiple feature parts. Elmaraghy et al.
(1990) pointed out that the modern process control requires knowledge of how
parts are out-of-tolerance and not just whether they are accepted or rejected.
CMMs provide much more information about the process than hard gauges and
thus contribute greatly to the continuous improvement effort in manufacturing
process control. In many manufacturing companies, such as Boeing, Alcoa, and
the Big Three automotive companies, CMMs have been frequently used for re-
search and development as well as for problem diagnostics during inspection.
However, they have not been successfully utilized in routine inspection and pro-
cess control activities because the development of statistical methods for utilizing
CMMs is not yet mature. Many important research problems need to be solved
before CMMs can be effectively utilized for quality control activities.

A CMM is a computer controlled device that uses a programmable probe
to obtain measurements on a part surface, usually one point at a time. Despite
the advantages offered by CMMs, their use has introduced several problems that
arise because the standards require knowledge of the entire surface while a CMM
provides only a sample of measurements on the surface. These problems could
be quite challenging, and both practitioners and researchers have shown great
interest.

A part is verified by comparing the part deviation range to the tolerance.
The deviation range is the measure of the actual variation on the part surface.
The tolerance is the range specified by the designer. As CMM measurements
only represent a sample from a population (in this case the population of all
measurements on a particular part), an important task is to estimate the pop-
ulation deviation range of a particular part based on the sample measurements,
then compare the estimate with the specified tolerance for inspection. Clearly,
inspection accuracy depends on the choices of sampling methods, estimation
methods, and decision rules. Selection of an appropriate sampling method in-
volves a trade-off between the cost of taking additional measurements and the
risk of making incorrect decisions. Discussion of current sampling methods can
be found in Dowling et al. (1997) and Tsui (1995). This paper will focus on the
problems of tolerance estimation and related issues.

The two most popular methods for form tolerance estimation are the least
squares and minimum zone methods. The least squares is the method most
commonly used in practice because of its simplicity. On the other hand, the
minimum zone is the method being studied most frequently in research literature
since it is a sample version of the envelop principle used in the ANSI tolerance
standard definition. According to a simulation study in Dowling et al. (1995),
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both the least squares and minimum zone estimates have serious downward bias
when the sample size of measurements is small, which is often the case in practice.

In this paper we establish the consistency of the least squares and minimum
zone estimates. We propose several jackknife estimates that correct the bias of
the two common estimates. Based on a simulation study, it is found that the
jackknife estimates effectively reduce the bias of the two common estimates in
many situations, and thus reduce the chance of accepting bad parts in tolerance
inspection. We also show that the jackknife estimates are consistent. In the next
section, we give an overview of form tolerance and common estimation methods.
Section 3 briefly reviews the jackknife method and defines the jackknife least
squares and minimum zone estimates. Section 4 shows the consistency of the
least squares, the minimum zone, and the jackknifes estimates under regularity
conditions. Section 5 compares the jackknife methods with the two common
methods in a simulation study. Section 6 concludes the paper.

2. Form Tolerances and Estimation Methods

The specifications for a general part feature can be classified as form, orienta-
tion, and location tolerances (Puncochar (1990)). In the case of a line segment,
the classifications are straightness, parellelism, and dimension tolerances (see
Dowling et al. (1997) for details). Form tolerances are used to control the shape
or form of a feature. The most common form tolerances are straightness, flat-
ness, circularity, cylindricity, and sphericity. This paper focuses on estimation
problems for straightness and flatness, which are used for axis control and surface
control.

The ANSI specification for form tolerance evaluation describes allowable de-
viations from the ideal form in terms of the normal distance between the max-
imum inscribing and minimum circumscribing features that bound the entire
feature of interest. The straightness tolerance requires that the entire line seg-
ment on a part be enclosed within two parallel line segments with a specified
distance (h0) apart. The minimum distance between two such enclosing features
is called the “deviation range” of the feature of interest. In other words, the
standard requires that the part will be accepted if the deviation range (h) of the
feature is less than the tolerance specification h0, and rejected otherwise.

In practice, if a CMM is used to verify the tolerance specification, the devi-
ation range of the feature needs to be estimated from the CMM measurements
and then to be compared with the specification. A practitioner needs to deter-
mine many things for a tolerance verification, such as the number and location
of measurements to take on a part feature, how to use these measurements to
estimate the deviation range, how to compare the estimates with tolerance speci-
fications to reach a final decision, and how to measure the risk of such a decision.
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These problems and some solutions are discussed in Dowling et al. (1997), Hult-
ing (1992, 1993, 1995), Kurfess and Banks (1990), Chapman, Chen, and Kim
(1995), and Tsui (1995).

The most commonly used methods for estimating the deviation range are the
least squares and minimum zone methods. We first describe the least squares
method for straightness tolerance.

Let (xi, yi), i = 1, . . . , n be a sample of measurements from a CMM, where
xi and yi are the coordinates of the ith measurement. The first step is to do an
orthogonal least squares fit of a straight line, y = α + βx, to the data. This is
equivalent to finding the values of θ = (α, β) to minimize the sum of squared
orthogonal deviations,

∑
i[ei(θ)]2, where ei(θ) = (yi − α − βxi)/

√
1 + β2. Then

the deviation range of the feature is estimated from the fitted line by:

ĥL = max
i

ei(θ̂) − min
i

ei(θ̂), (2.1)

where θ̂ is the orthogonal least squares estimate of θ. Note that in practice it is
easier to do an ordinary least squares fit than an orthogonal least squares fit. The
results are very much the same for fitting a line or a plane and the consistency
proof in Section 4 is still valid. However, for fitting more complex (nonlinear)
features, only orthogonal least squares fit will be appropriate.

For the case of flatness, the CMM measurements (xi, yi, zi) (the three co-
ordinates of the ith measurement), i = 1, . . . , n, are used to fit a plane, y =
α + βx + γz, θ = (α, β, γ). Similarly, the deviation range is estimated by (2.1)
with θ̂ the orthogonal least squares estimate of the fitted plane.

The minimum zone estimate of the deviation range for straightness, ĥM , is
defined to be the sample analog of the true deviation range of a feature. In other
words, it is defined by two parallel lines that enclose all the CMM measuring
points and are the minimum distance apart. The minimum zone estimate is the
orthogonal distance of these two parallel lines. The same definition can be easily
extended to the case of flatness and other nonlinear features.

For straightness and flatness, the minimum zone estimate ĥM is equal to
the estimate defined in (2.1) with θ̂ replaced by the minimax estimate, which is
defined to be the value of θ that minimizes the maximum absolute orthogonal
deviation, Sn(θ) = 2maxi |ei(θ)|. This can be easily seen since ĥM = minθ Sn(θ).

Therefore, both the least squares and minimum zone methods can be con-
sidered as a two-step estimation procedure: first the data is used to fit the
ideal form of the feature, then the difference between the maximum and mini-
mum orthogonal residuals is used as the deviation range estimate. In general,
other fitting methods such as robust methods can be used in the first step.
(See Dowling et al. (1997), for other choices of fitting methods.) As shown
in Section 4, the least squares and minimum zone estimates of the deviation
range can be shown to be consistent under some regularity conditions; that is,
ĥL → minθ limn[maxi ei(θ) − mini ei(θ)] a.s. and ĥM → minθ limn Sn(θ) a.s.
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3. Jackknife Estimates

Quenoulli (1949) invented a nonparametric method for estimating bias, called
the jackknife method. The straightforward application of the method to our
problem can be described as follows. For simplicity, we use xi to denote the ith
observation (xi, yi) or (xi, yi, zi) in this Section. Suppose we observe x1, . . . ,xn

and estimate the parameter of interest h by either the least squares or minimum
zone method as ĥ = h(x1, . . . ,xn).

To estimate the bias of h, we sequentially delete point xi, and recompute
ĥ. Removing point xi from the data set gives a different empirical probability
distribution to the new data set, i.e. assigning 1/(n − 1) probability to each of
the (n − 1) remaining observations. Apply the same method of computing the
estimate from the remaining observations, the parameter estimate corresponding
to point xi is ĥ(i) = h(x1, . . . ,xi−1,xi+1, . . . ,xn).

Let ĥ(·) =
∑n

i=1 ĥ(i)/n. Then the bias can be estimated by ˆBIAS = (n −
1)(ĥ(·) − ĥ), which leads to the bias-corrected “jackknife estimate” of h to be:

ĥJ = ĥ − ˆBIAS = nĥ − (n − 1)ĥ(·).

As described in Efron (1982), the deletion of points in jackknife estimate
can be done by groups. Suppose n = gm for integers g and m. We can remove
observations in groups of size m, e.g., first remove x1, . . . ,xm, second remove
xm+1, . . . ,x2m, etc. Now we define ĥ(i) as the estimate recomputed with the
ith group of observations removed, and ĥ(·) =

∑g
i=1 ĥ(i)/g. Then the grouped

jackknife estimate is defined to be:

ĥGJ = ĥ + (g − 1)(ĥ − ĥ(·)) = gĥ − (g − 1)ĥ(·). (3.1)

Note that there are other methods for correcting the bias, such as analytical
approximation methods. However, the jackknife methods require little knowledge
about the distribution of the data and estimators. They are particularly useful
here as the estimation procedure is very complex and analytical methods will be
too complicated.

For the minimum zone method, the second term in equation (3.1) represents
the estimate of “minus” bias. This term is always positive since ĥ is always bigger
than ĥ(·) as ĥ is an increasing function of n. Hence, equation (3.1) always corrects
bias by adding a positive bias corrected term to the original estimate ĥ. Similarly,
for the least squares method, the second term in (3.1) is often positive and thus
corrects the bias of the original estimate. As shown in the simulation study
described in Section 5, the jackknife methods are quite successful in correcting
the bias in many situations.
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In addition to good small sample properties, the grouped jackknife estimates
also have nice large sample properties. As shown in the next Section, under some
regularity conditions, the grouped jackknife estimates approach the true tolerance
deviation range as the sample size within each group approaches infinity.

4. Consistency of Estimators

Assume the following model:

yi = α0 + β0xi + εi, i = 1, . . . , n,

where α0 and β0 are two unknown parameters, (α0, β0) ∈ Θ (parameter space),
εi’s are independent and identically distributed on the interval [−τ, τ ] with some
unknown τ > 0, and xi’s are values of a covariate.

Let θ = (α, β) ∈ Θ̄, where Θ̄ is the closure of Θ. The minimum zone estima-
tor is the same as ĥM = Sn(θ̃n) = minθ∈Θ̄ Sn(θ), where Sn(θ) = 2maxi≤n |ei(θ)|
and ei(θ) = (yi − α − βxi)/

√
1 + β2. The least squares estimate is ĥL = Tn(β̂),

where β̂ is the orthogonal least squares estimate of β0 and

Tn(β) =
maxi≤n(yi − βxi)√

1 + β2
− mini≤n(yi − βxi)√

1 + β2
.

Lemma 1. Assume that supi |xi| < ∞, and

R = sup
i

xi − inf
i

xi > 2τ. (4.1)

Then the sequence {θ̃n, n = 1, 2, . . .} is bounded.

Proof. Suppose that {θ̃n, n = 1, 2, . . .} is not bounded. Then, without loss of
generality (by taking sub-sequences), we can assume that |α̃n| + |β̃n| → ∞ and

|yi − α̃n − β̃nxi|√
1 + β̃2

n

→ |a − xi|,

where a ∈ [0,∞]. Then

lim inf
n

Sn(θ̃n) ≥ 2 sup
i

|a − xi| ≥ sup
i

(a − xi) + sup
i

(xi − a) = sup
i

xi − inf
i

xi = R

if a < ∞ and
lim inf

n
Sn(θ̃n) = ∞

if a = ∞. On the other hand,

Sn(θ̃n) ≤ Sn(θ0) =
2maxi≤n |εi|√

1 + β2
0

≤ 2max
i≤n

|εi| ≤ 2τ,
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which is smaller than R under assumption (4.1). This proves the result.
It follows from Lemma 1 that α̃n and β̃n are always finite if (4.1) holds. If

(4.1) does not hold, i.e., R ≤ 2τ , then the minimum zone estimate should be R

which corresponds to the situation β̃ = ∞ (a vertical line).

Lemma 2. Let θn ∈ Θ, n = 1, 2, . . . If θn → θ, then Sn(θn)−Sn(θ) = O(‖θn−θ‖).
Similarly, if βn → β, then Tn(βn) − Tn(β) = O(|βn − β|).
Proof. Let S̃n(θ) =

√
1 + β2Sn(θ). For the result for Sn, it suffices to show that

S̃n(θn) − S̃n(θ) = O(‖θn − θ‖). Write θn = (αn, βn)′, θ = (α, β)′. Then

S̃n(θn) − S̃n(θ) = S̃n(αn, βn) − S̃n(α, β)

= S̃n(αn, βn) − S̃n(αn, β) + S̃n(αn, β) − S̃n(α, β).

Since θn → θ, ‖θn−θ‖ ≤ 1 for all sufficiently large n. It can be shown that S̃n(θ)
is a convex function. Hence

−[S̃n(αn, β − 1) − S̃n(αn, β)] ≤ S̃n(αn, βn) − S̃n(αn, β)
βn − β

≤ S̃n(αn, β + 1) − S̃n(αn, β).

Since supi |xi| < ∞ and maxi≤n |εi| ≤ τ , S̃n(αn, β ± 1) − S̃n(αn, β) = O(1).
Hence S̃n(αn, βn) − S̃n(αn, β) = O(|βn − β|). The result for Sn follows since we
can similarly show that S̃n(αn, β) − S̃n(α, β) = O(|αn − α|). The proof for Tn is
the same.

We are ready to establish the consistency of the minimum zone estimator.

Theorem 1. Assume the conditions in Lemma 1. Then the minimum zone
estimator is consistent in the sense that ĥM = Sn(θ̃n) → minθ∈Θ̄ S(θ) a.s.,

where S(θ) = limn Sn(θ).

Proof. Since Sn(θ) is increasing in n, S(θ) exists for all θ. It follows from Lemma
2 that S(θ) is continuous in θ. Also, lim‖θ‖→∞ S(θ)≥ limn lim‖θ‖→∞ Sn(θ)≥R

and S(θ0)≤2τ <R. Hence the minimum of S(θ) must be achieved at some fixed
θ∗.

By Lemma 1, {θ̃n, n = 1, 2, . . .} is bounded. Then there exists a subsequence
{n(j), j =1, 2,. . .} such that limj→∞Sn(j)(θ̃n(j))=lim infn Sn(θ̃n) and limj→∞ θ̃n(j)

= θ̃ for some fixed θ̃. By Lemma 2, limj→∞ Sn(j)(θ̃n(j)) = limj→∞ Sn(j)(θ̃) =
S(θ̃) ≥ S(θ∗). On the other hand, Sn(θ̃n) ≤ Sn(θ∗) for any n and, therefore,
lim supn Sn(θ̃n) ≤ S(θ∗). Hence limn→∞ Sn(θ̃n) = S(θ∗) and the result follows.

We now consider the consistency of the least squares estimator. It is clear
that

Tn(β0) =
maxi≤n εi − mini≤n εi√

1 + β2
0

→ 2τ√
1 + β2

0

a.s.,
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under the weak condition that

P{ε1 < −τ + η} > 0 and P{ε1 > τ − η} > 0 (4.2)

for any η > 0 (this condition means that ε1 and −ε1 have the same range).
From Lemma 2 and the consistency of the orthogonal least squares estimator β̂,
Tn(β̂) − Tn(β0) → 0 a.s. Hence the least squares estimator is consistent if and
only if

2τ√
1 + β2

0

= min
β

T (β), (4.3)

where T (β) = limn Tn(β). Note that condition (4.3) means that the minimum of
T (β) is achieved at β0, the true slope of the regression line. In general, (4.3) is
true under the following very week condition (in addition to Condition (4.2) and
the conditions in Lemma 1): For any fixed β and η > 0,

lim
n

m−
n,η(β)
log n

= ∞ and lim
n

m+
n,η(β)
log n

= ∞, (4.4)

where m−
n,η(β) and m+

n,η(β) are the numbers of elements in

C−
n,η(β) = {i : 1 ≤ i ≤ n, max

i≤n
[xi(β − β0)] − xi(β − β0) ≤ η}

and
C+

n,η(β) = {i : 1 ≤ i ≤ n, −min
i≤n

[xi(β − β0)] + xi(β − β0) ≤ η},
respectively.

Condition (4.4) holds if the xi’s are random and iid. For deterministic xi’s,
Condition (4.4) holds for many commonly used designs. For example, when
xi = i

n , condition (4.4) holds since m−
n,η(β) = O(n) and m+

n,η(β) = O(n).

Theorem 2. Assume conditions (4.2) and (4.4), and the conditions of Lemma 1.
Then the least squares estimator is consistent, i.e., ĥL = Tn(β̂) → minβ T (β) a.s.

Proof. We only need to show that (4.3) holds. Let θ and η > 0 be fixed. Note
that

P
{
τ − min

i≤n
[xi(β − β0)] − max

i≤n
(yi − xiβ) ≥ 2η

}

= P
{
εi ≤ τ − min

i≤n
[xi(β − β0)] − 2η + xi(β − β0), 1 ≤ i ≤ n

}

≤ P
{
εi ≤ (τ − η) − min

i≤n
[xi(β − β0)] + xi(β − β0) − η, i ∈ C+

n,η(β)
}

≤ P{εi ≤ (τ − η), i ∈ C+
n,η(β)}

=
[
P{ε1 ≤ τ − η}

]m+
n,η(β)
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and, therefore,

∑
n

P
{
τ−min

i≤n
[xi(β−β0)]−max

i≤n
(yi−xiβ) ≥ 2η

}
≤

∑
n

[
P{ε1 ≤ τ−η}

]m+
n,η(β)

< ∞

under Conditions (4.2) and (4.4). This implies that

τ − min
i≤n

[xi(β − β0)] − max
i≤n

(yi − xiβ) → 0 a.s.

Similarly,
τ + max

i≤n
[xi(β − β0)] + min

i≤n
(yi − xiβ) → 0 a.s.

Then

2τ + maxi≤n[xi(β − β0)] − mini≤n[xi(β − β0)]√
1 + β2

− Tn(β) → 0 a.s.

Hence

T (β) = lim
n

Tn(β) = lim
n

2τ + maxi≤n[xi(β − β0)] − mini≤n[xi(β − β0)]√
1 + β2

=
2τ + R|β − β0|√

1 + β2
,

which is minimized at β = β0 under condition (4.1). Thus, (4.3) holds.
As pointed out earlier, the minimum zone and least squares estimators can

be seriously downward biased, especially when the sample size is small. To rectify
this, the grouped jackknife estimators are proposed in Section 3 to reduce the
biases and improve the accuracy. Below we show that these jackknife estimators
are consistent.

Following the notation defined in Section 3, let ĥ(j) be the minimum zone
estimator based on the data with the jth group removed, j = 1, . . . , g. Then the
jackknifed minimum zone estimator is

ĥJM = ĥM − g − 1
g

g∑
j=1

(ĥ(j) − ĥM ).

A jackknifed least squares estimator ĥJL can be similarly defined. When the xi’s
are deterministic, the groups are constructed according to the values of the xi’s.
When the xi’s are random, the groups may be constructed randomly.

Theorem 3. Under the conditions of Theorem 1, the jackknifed minimum zone
estimator is consistent, i.e., ĥJM → minθ∈Θ S(θ) a.s.
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Proof. By Theorem 1, we only need to show that

g − 1
g

g∑
j=1

(ĥ(j) − ĥM ) → 0 a.s.,

which follows from maxj≤g |ĥ(j) −minθ S(θ)| → 0 a.s. But this is a consequence
of |ĥ(j) −minθ S(θ)| → 0 a.s. for any j (Theorem 1) and the fact that g is fixed.

Using a similar proof to that of Theorem 3, we can establish the following
result.

Theorem 4. Under the conditions of Theorem 2, the jackknifed least squares
estimator is consistent.

5. Simulation Study

In this section we present the results from a simulation study on straightness
tolerance based on a simple regression model and a real data set from National
Institute of Standards and Technology (NIST). We compare the performance of
the minimum zone (MZ) and the orthogonal least squares (LS) estimates with
the jackknife estimates. The jackknife estimates include the jackknife minimum
zone (JMZ), the jackknife least squares (JLS), and the partial jackknife least
squares (PJLS) estimates. The first two jackknife estimates are the standard
application of the bias-corrected jackknife method to the minimum zone and
least squares estimates. The PJLS estimate is obtained by first fitting a least
squares line to the complete data set, then use the fitted line as the true line
in the jackknife procedure. In other words, we calculate the residuals as the
deviation of the data from the fitted line based on the complete sample instead
of based on the subsample. This way the jackknife estimate is less sensitive to
the variation caused by the grouping method. For jackknife grouping methods,
we consider the simple random sampling (SRS) and stratified sampling methods
(see Cochran (1977) for details).

In the first part of the simulation study, the sample data are generated from
the regression model yi = βxi + σε, where xi = i/n, i = 1, . . . , n, and ε follows
(i) a uniform distribution over [−0.5, 0.5] and (ii) a standard normal distribution
truncated at [−t, t]. It follows that the true deviation range (h) of this model
under the two error distributions are (i) σ/

√
1 + β2 and (ii) 2tσ/

√
1 + β2.

The number of simulations for each case is 1000. Figures 1 and 2 display
the plots of the relative bias, relative standard deviation, and relative root mean
squared error (RMSE) versus sample size n for the two common estimates and
three jackknife estimates under normal error for selected choices of parameters
(β = 1.0, σ = 0.01 , t = 1 or 3) and sampling methods (SRS and stratified).
Clearly, the jackknife estimates significantly reduce the bias of the two common
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estimates in most cases and thus result in a smaller RMSE. The bias reduction
is more significant for small sample size, which is often the case in practice. The
three jackknife estimates seem to be very competitive and it does not matter
which one to choose in most cases. The results from uniform error are very
similar and in some cases the bias can be reduced from 40% to 5%. Other values
of the parameters (β = 0., σ = 0.05 , t = 2) have been tried and the results are
similar.

Figure 1a. Bias Figure 1b. Standard Figure 1c. RMSE
(normal error, t=1) Deviation (normal error, t=1)

(normal error, t=1)

Figure 2a. Bias Figure 2b. Standard Figure 2c. RMSE
(normal error, t=3) Deviation (normal error, t=3)

(normal error, t=3)

In the second part of the simulation study, the sample data are generated
from the real data sets collected in NIST. As described in Hsu, Hsu, Filliben,
and Hopp (1992), a dense sample of 200 data points over a two-inch long line
were collected for each of eleven artifacts to study the surface roughness of some
typical surfaces. Figure 5 shows the plots of two representative data sets. In our
simulation, we assume the data sets are large enough to represent the population
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and the true deviation range of each line was calculated by a minimum zone
algorithm described in Traband, Joshi, Wysk, and Cavalier (1989). Similar to
the regression model, a sample of n data point is generated from the 200 data
points based on a stratified sampling method and the five estimates of deviation
range are calculated. Figures 4 and 5 show the plots of the relative bias, standard
deviation and RMSE of the five estimates based on the data generated from the
four data sets. Again, the jackknife estimates significantly reduce the bias of the
two common estimates in most cases and result in a smaller RMSE. In comparing
the three jackknife estimates, the JMZ and JLS estimates seem to do better than
the PJLS estimate in some cases, especially when the sample size is large.

Figure 4a. Bias Figure 4b. Standard Figure 4c. RMSE
(NIST sample A) Deviation (NIST sample A)

(NIST sample A)

Figure 5a. Bias Figure 5b. Standard Figure 5c. RMSE
(NIST sample B) Deviation (NIST sample B)

(NIST sample B)

6. Discussion

CMM’s have gained tremendous popularity and we can expect their use
to grow in the future. Manufacturers have expended much effort to produce
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hardware that obtains high precision measurements, but the quality of inspec-
tion decisions depends just as crucially on the correctness of the data analysis.
Thus it is worthwhile to focus more attention on software and estimation issues.
Problems arise because current tolerance standards and functional performance
require knowledge about the entire surface while a CMM collects only a sample
of measurements on the feature. The choices of sample design, method of data
analysis, and decision rule are very interesting statistical problems.

y y

x x

Figure 3a. NIST sample A Figure 3b. NIST sample B

Current tolerance verification procedures are not well developed and there is
much room for extension and improvement. The most common methods for esti-
mating a feature’s deviation range, the least squares and minimum zone methods,
can give seriously biased estimates in small samples. The jackknife bias-corrected
methods, on the other hand, are very convenient methods for correcting some of
the bias. Based on our simulation results, all three jackknife methods are quite
effective in correcting the bias and reducing the RMSE for both the simulated
data and real data. Note that the consistency results in Section 4 depend on
the i.i.d. assumption on the errors. In practice the CMM measurements may be
spatially correlated as shown for the NIST data in Figures 3a and 3b. As shown
in Section 5, the jackknife estimates still effectively correct the bias and reduce
the RMSE. This illustrates that the jackknife methods can be useful even for
correlated measurements. Further analytical study will be needed to understand
the small sample properties of the jackknife estimates and compare the different
jackknife methods. If it is known that the measurements are spatially correlated,
nonlinear analysis methods may be more appropriate (see Dowling et al. (1997)
for further discussion). Also, it will be interesting to study the bias problem of
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the least squares and minimum zone estimates for parts with complex feature
and to develop the corresponding jackknife estimates to correct bias.

Although estimating the deviation range is important to engineers, another
important problem is to develop a decision rule for tolerance verification. Current
research is undergoing to develop such a decision rule by formulating a hypothesis
testing problem. With this formulation, the risks of accepting bad parts or
rejecting good parts can be estimated through the determination of type I and II
errors. The sample size can be determined based on information on these risks
and the underlying model.
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