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PARAMETER DESIGN WITH MONOTONE LOSS FUNCTIONS
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Abstract: A new technique for parameter design is proposed. It is based on the

observation that a loss function can be decomposed into two components each

of which is monotone. This allows a separate data modeling and analysis to be

applied to the two groups of data (above or below target). Then parameter design

optimization can be performed based on the two fitted models. The technique is

illustrated with the design of a heat exchanger.
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signal-to-noise ratio.

1. Introduction

Robust parameter design is an important methodology in quality engineering
and industrial statistics, which is championed by the eminent quality expert G.
Taguchi and eminent statisticians like G. Box, V. Nair and C. F. J. Wu. It
employs statistically designed experiments to reduce output variation by making
a product or process insensitive to variation in the noise (or hard-to-control)
factors. It has been widely practiced in many industries in Japan, US, Europe
and other countries. Many industrial case studies provide strong evidence of its
successes. A less well known source of case studies is a collection of computer
experiments in China in the book Three-Stage Design of Experiments with Known
Transfer Functions published by the Committee on Three-Stage Design, Chinese
Applied Statistics Society. Parameter design has also received a great deal of
attention in the industrial statistics research community. A good example is
the panel discussion edited by Nair (1992) on parameter design, which covers
many aspects of the problem. A central problem in parameter design is how
to handle interactions and its connection to the choice and use of loss functions
for data analysis. Moorhead and Wu (1998) proposed a strategy for parameter
design with a general loss function but did not relate it to the important issue
of interactions. In this paper a new approach is proposed which can study very
general loss functions by directly analyzing the original data. Because of the
direct modeling of data the problem of spurious interactions is minimized.
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First we give a brief review of parameter design. Suppose y represents the
quality characteristic of a product or process whose target value is T. Then the
quality loss is usually represented by

L = L(y − T ), (1.1)

where L is a non-decreasing function over [0,∞) and a non-increasing function
over (−∞, 0]. This monotonicity assumption is very reasonable because the qual-
ity loss should not decrease as y moves away from T. By dividing the factors x

that influence y into two types, xC for control factors and xN for noise factors,
we can write y = f(xC , xN ), where the stochastic variation in y is induced by
that in xN . The expected loss is the average of L over the variation in xN , i.e.,

R = R(xC) = ExN
L(f(xC , xN ) − T ). (1.2)

The purpose of robust parameter design can be formally defined as the task of
finding an optimal set of control factor combinations to minimize R in (1.2).

Taguchi (1986) advocates the use of the quadratic loss function

L = k(y − T )2 (1.3)

in measuring quality loss. Usually the quadratic loss provides a good approxima-
tion to the true quality loss (with k properly determined) and is easy to compute
theoretically. As will be demonstrated in Section 3, it is not a good performance
measure for parameter design experiments because the (· · ·)2 operation in (1.3)
can create spurious interactions among factors that influence y. So instead of us-
ing the mean squared error n−1 ∑n

i=1(yi−T )2 as a performance measure, Taguchi
advocates the use of the signal-to-noise (SN) ratio

η = log
{ 1

n
(Sm − Ve)/Ve

}
, (1.4)

where

Sm = ny2, Ve =
1

n − 1

n∑
i=1

(yi − y)2, y =
1
n

n∑
i=1

yi,

and y1, . . . , yn represent a sample of y with xC fixed and xN varying according
to its distribution (or an experimental plan in parameter design experiment).
Taguchi’s two-step procedure consists of maximizing the SN ratio in (1.4) and
then adjusting y toward the target T. Detailed discussions on this and other two
step procedures can be found in León, Shoemaker and Kacker (1987) and León
and Wu (1992). Taguchi’s use of the SN ratio η has stirred some controver-
sies. As shown by León et al. (1987), it can only be justified in very limited
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situations. An extensive simulation study and analytic work by Bérubé (1997)
further supported this claim. Even when η can be justified, it requires a further
assumption that an adjustment factor (among the xC ’s) exists, which influences
the y value but not the η value. When an adjustment factor does not exist, the
two-step approach would not work. Moorhead in his 1995 University of Waterloo
Ph.D. Thesis demonstrated this on a brake rotor experiment and proposed an
alternative strategy.

By recognizing that the loss function L can be decomposed into two mono-
tone functions L+ and L− on each side of the origin (see Section 2), we propose
that the observed data y be decomposed into two groups: yi ≥ T and yi ≤ T.

Then a separate modeling and analysis is done for each group, resulting in the
two fitted models B̂R and B̂L given in Section 3. Because of the monotonicity
of L+ and L−, the results of analysis can be translated into the loss function L.
In Section 3 we also give a simple argument to show why the quadratic loss in
(1.3) and the absolute error loss (denoted by L1 in Section 3) can create spurious
interactions when the underlying model is strictly additive. (Wu (1992) made
a similar comment that the SN ratio (1.4) can create spurious interactions but
gave no details.) By contrast our proposed approach does not suffer from this
shortcoming since it models the data directly. We use a heat exchanger example
to demonstrate the modeling technique in Section 3 and show how it can be
used for parameter design optimization in Section 4. Concluding remarks and
extensions are given in Section 5.

2. Decomposition of Loss Function Into Two Monotone Functions

The main idea here is to decompose the L function into two functions, each
of which is monotone on y ≥ T and on y ≤ T. Formally we define

BR = y − T = f(xC , xN ) − T,

BL = T − y = T − f(xC , xN ).
(2.1)

Let D be the domain of f and

D+ = {(xC , xN )εD|f(xC , xN ) ≥ T},

D− = {(xC , xN )εD|f(xC , xN ) ≤ T}.
Then D = D+ ∪ D− and L can be rewritten as

L = L(y − T ) =

{
L+(BR), (xC , xN )εD+,

L−(BL), (xC , xN )εD−,
(2.2)
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where L+(z) = L(z) for z ≥ 0 and L−(z) = L(−z) for z ≥ 0. Because of
the monotonicity assumption on L in (1.1), both L+ and L− in (2.2) are non-
decreasing functions in BR and BL respectively. If L is a symmetric loss function,
then L+ = L−. The decomposition in (2.2) plays a key role in the proposed ap-
proach. It allows parameter design optimization to be performed on two mono-
tone loss functions, instead of on a generally non-monotone loss function. As
will be demonstrated in Section 3, non-monotonicity of loss function like the
quadratic loss can induce spurious interactions.

For asymmetric loss L, one can use

K =
∫ A

0
L+(x)dx/

∫ A

0
L−(x)dx, (2.3)

where A = min {max BR,max BL}, to compute the ratio of losses for deviations
above target and below target. If both L+ and L− are linear loss functions, i.e.,

L+(BR) = a1BR + b1

L−(BL) = a2BL + b2

(2.4)

the previous interpretation of K has a clearer and stronger justification. Without
loss of generality, we can assume L(0) = 0, which implies L+(0) = b1 = L−(0) =
b2 = 0. It is then easy to show that K = a1/a2. That is, K is the ratio of the
rates of losses above and below T .

In general, because L+ and L− are monotone functions in BR and BL, we
can reduce the study of L over D to the much easier problems of studying KBR

over D+ and BL over D−. Since both BR and BL are linear functions in y, it is
easier to model BR and BL as a function of xC and the parameter design opti-
mization results are more reliable. The problem of having spurious interactions
as mentioned before can also be avoided.

To complete the definitions of BR and BL, we further define BR(x) = 0 for
xεD− and BL(x) = 0 for xεD+, where x = (xC , xN ). Then we can write

|y − T | = BR + BL. (2.5)

3. Modeling of Monotone Loss Functions

In this section we shall study the statistical modeling of

BR = f(xC , xN ) − T, (xC , xN )εD+,

and
BL = T − f(xC , xN ), (xC , xN )εD−.
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Because the loss functions L+ and L− are monotone in BR and BL respectively,
the modeling of BR and BL allows the investigators to separately optimize L+

and L−, which make up the loss function L. Suppose the observed data are
(y1, x1), . . . , (yn, xn), where xi represent the ith setting of xC and xN in a pa-
rameter design experiment. Based on this data some regression models can be
built as follows:

ŷ = f̂(xC , xN ), (xC , xN )εD (3.1)

B̂R = f̂R(xC , xN ) − T, (xC , xN )εD+ (3.2)

B̂L = T − f̂L(xC , xN ), (xC , xN )εD− (3.3)

where f̂ , f̂R and f̂L are parametric or semi-parametric models depending on the
nature of data and problem. The fitted model f̂ is based on all the data, f̂R is
based on those with yi ≥ T and f̂L on those with yi ≤ T.

Based on (3.1), for any values of xC and xN , even those not in the experiment,
we can predict

ŷ = f̂(xC , xN ).

With this prediction model, we can now give a classification of D into D+ and D−

based on the observed data: D+ consists of those (xC , xN ) with f̂(xC , xN ) ≥ T

and D− consists of those (xC , xN ) with f̂(xC , xN ) < T. Therefore, we can use
the more reliable model (3.2) to do model fitting and prediction for any values
of (xC , xN ) in D+. Similarly, we can use model (3.3) to do model fitting and
prediction for D−. Therefore we can use B̂R and B̂L to identify factor settings
that minimize the loss L+ and L− respectively.

Note that the accuracy in B̂R and B̂L depends on the accuracy in the fitted
model for ŷ. Errors in ŷ may lead to using B̂R to predict BL or vice versa. This
point will be addressed in the numerical study in Section 4.

Because BR = y − T for xεD+ and BL = T − y for xεD−, apart from
translation and restriction to subset (e.g., D+ or D−), BR and BL keep the same
relationships as y. The same is not true for the quadratic loss

L2 = (y − T )2,

or the absolute error loss
L1 = |y − T |.

First we take the simplest case of a linear relation between y and x : y = 2 + x,

and T = 1. The functional relationships between L2 and x, and between L1 and
x are depicted in Figures 1 and 2. Obviously L2 is a quadratic function in x. So a
spurious curvature effect is created. Even by taking the square root of L2, L1 still
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has a quadratic curvature effect in x, which can be verified by fitting a quadratic
curve (dashed curve in Figure 2) to the L1 function.
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Figure 1. L2 as a quadractic function in x
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Figure 2. L1 as a function of x (solid line). The best quadractic approxima-
tion, ( 5

16 )(x + 1)2 + ( 9
16 ) (dotted curve) over [−4, 2].

To extend this conclusion to the multi-variable case, consider next the two-
factor model:

y = 2 + x1 + x2 and T = 1.

Obviously L2 = (y − T )2 = (1 + x1 + x2)2 = 1 + 2x1 + 2x2 + 2x1x2 + x2
1 + x2

2 has
both the curvature effects (i.e., x2

1 and x2
2) and the interaction effect (i.e. x1x2).

Even by taking its square root,

L1 =

{
1 + x1 + x2, for x1 + x2 ≥ −1,
−1 − x1 − x2, for x1 + x2 ≤ −1,

still has both the curvature and interaction effects. To see this, first rewrite
w = x1 + x2, then L1 = 1 + w for w ≥ −1, L1 = −1 − w for w ≤ −1, which has
exactly the same relationship as in the one factor case described above. As shown
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there, L1 has a curvature effect in w and can be approximated by a quadratic
model c0+c1(w+1)2. Since w = x1+x2, (w+1)2 = 1+2x1+2x2+2x1x2+x2

1+x2
2,

therefore, a curvature effect in w amounts to both the curvature effects (i.e., x2
1

and x2
2) and the interaction effect x1x2. These two simple examples demonstrate

how the non-monotonicity in the loss function L1 and L2 can create spurious
curvature and interaction effects in the models that fit L1 or L2 directly.

Because spurious curvature and interaction effects will make it more difficult
to perform successful parameter design experiments, it is advised that direct
statistical modeling of non-monotone loss functions like L1, L2 or η should be
avoided. Another important observation is that the modeling of fR and fL

in (3.2) and (3.3) is usually easier than the modeling of f because a simple
parsimonious model can better fit the data in a smaller region like D+ or D−

than over the larger region D. Both points will be confirmed in the following
empirical study.

Example. Design of Heat Exchanger

The inlet temperature T1 of a heat exchanger fluctuates in the range 670◦

C ± 30◦ C, and the flow rate V fluctuates in the range (42000 ± 2000) × 1/
21 × [1 + (T1/273)]. The three control factors are d (outside diameter of pipe),
D (diameter of heat exchanger), and L/D, where L is the length of pipe. The
objective of the design is to select the control factor levels so that the outlet
temperature T2 does not deviate from the target temperature 360◦ C by more
than 15◦ C for values of T1 and V in their respective ranges.

According to the derivations in Cui et al. (1983), T2 is related to the other
factors by the following equations:

T2 = (T1 − Tg)e−A + Tg, Tg = 222.7◦C

and

A =
57.1(L/D)D3λt

V d2ρtCpm
[1.53 × 10−3 diρt

µt

V

D2
(
d

di
)2]0.8[

Cpmµt

λt
]0.4, (3.5)

where di = inside diameter of pipe (m), ρt = gaseous density (Kg/m3), µt =
gaseous viscosity, λt = thermal conductivity (KCal/s · m ·◦ D) = 3.335 ×
10−5, Cpm = specific heat (KCal/Kg ·◦ C).

Since T1 and V cannot be fixed at the design stage and can vary during
operation of the exchanger, they are treated as noise factors. The layouts of
control factors and noise factors are given in Tables 1 and 2. The parameter di

in (3.5) is a deterministic function of d (Table 3); ρt, Cpm, and µt in (3.5) are
deterministic functions of T1 (Table 4). The same example was used by Wu, Ma
and Mao (1990) to illustrate a different technique they proposed.
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Table 1. Levels of control factors Table 2. Levels of noise factors

Level d D L/D Level T1 V

1 .025 .8 3 1 640 40000
21 × (1 + T1

273 )

2 .032 1.0 4 2 670 42000
21 × (1 + T1

273 )

3 .038 1.2 5 3 700 44000
21 × (1 + T1

273 )

Table 3. di as function of d Table 4. ρt, Cpm, and µt as functions of T1

d di T1 ρt Cpm µt

.025 .019 640 5.286 1.024 2.83 ×10−5

.032 .025 670 5.185 1.029 2.89 ×10−5

.038 .031 700 5.089 1.031 2.93 ×10−5

We use the following quadratic regression model to approximate the rela-
tionship between T2 and the five factors

y = a0 +
5∑
1

aixi +
5∑
1

bix
2
i +

5∑
i>j

cijxixj + ε, (3.6)

where (x1, x2, x3) = (d,D, L
D ) are the control factors, (x4, x5) = (T1, V ) are the

noise factors, and ε represents the modeling error. There is no experimental error
because it is a mathematical model. From the model (3.5), we generated a set
of data (xi1, . . . , xi5, yi), i = 1, 2, . . . , 243, for all the 35 = 243 combinations of
factor levels, where x = (x1, . . . , x5) are the values of the five input variables in
(3.5) and y is the output T2. By fitting the model (3.6) to these data, we obtain
the fitted model for T̂2

T̂2 = 313.6 + 31.14x1 − 31.98x2 − 28.72x3 + 6.77x4 + 1.05x5

+0.34x2
1 − 4.05x1x2 − 3.62x1x3 + 1.87x1x4 + 4.61x2

2 + 3.46x2x3

+1.91x2x4 + 4.54x2
3 − 1.72x3x4, for xεD. (M.1)

Similarly by applying (3.6) to the data in D+ (i.e. y ≥ 360) and D− (i.e.,
y ≤ 360), we have the fitted models for BR and BL,

B̂R = 34.15 + 25.70x1 − 30.74x2 − 32.23x3 + 10.19x4 + 1.31x5 − 1.28x2
1

+0.46x1x2+0.56x1x3+1.30x1x4−0.02x1x5+1.43x2
2−0.54x2x3−1.45x2x4

+2.13x2
3 − 1.50x3x4 − 0.16x2

4 + 0.06x4x5 − 0.02x2
5, for xεD+. (M.2)

B̂L = 69.42 − 28.59x1 + 26.46x2 + 24.39x3 − 5.41x4 − 0.97x5 − 1.29x2
1

+5.25x1x2 + 4.88x1x3 − 1.78x1x4 − 0.19x1x5 − 4.77x2
2 − 4.53x2x3

+1.69x2x4 + 0.17x2x5 − 4.79x2
3 + 1.51x3x4 + 0.16x3x5 + 0.15x2

4

−0.07x4x5, for xεD−. (M.3)
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For the purpose of comparison, we also used the same data and model to fit L1

and L2 over D, resulting in the fitted models,

L̂1 = 43.11 − 14.34x1 + 13.91x2 + 12.26x3 − 1.23x4

+5.58x2
1 − 10.91x1x2 − 9.67x1x3 + 2.15x1x4 + 4.06x2

2 + 11.32x2x3

−2.76x2x4 + 2.64x2
3 − 2.04x3x4, for xεD. (M.4)

L̂2 = 2347.79 − 1834.58x1 + 1757.18x2 + 1540.18x3 − 159.98x4

+849.15x2
1 − 1572.79x1x2 − 1404.85x1x3 + 314.45x1x4 + 640.46x2

2

+1515.53x2x3 − 349.29x2x4 + 464.34x2
3 − 317.53x3x4, for xεD. (M.5)

It is interesting to note the similarity between the models in (M.4) and (M.5).
Both the terms in the models and their signs are identically the same. The
models in (M.1) - (M.5) were selected by using stepwise regression with 0.01 as
the critical level for entering and deleting variables.

To compare the prediction errors of the five models (M.1) - (M.5), we use
the mean absolute error (MAE) criterion

e =
1
n

n∑
i=1

|yi − ŷi|

and the maximum error (MXE) criterion

q = max
1≤i≤n

|yi − ŷi|.

Because L2 does not have the same dimension as y, we need to modify the
previous criteria for L2 as follows,

eL2 =
( 1
n

n∑
i=1

|L2i − L̂2i|
) 1

2

and
qL2 = max

1≤i≤n
|L2i − L̂2i|

1
2 ,

so that the e and q values for the five approaches are on the same scale. Here
n = 243.

Table 5. Comparison of prediction errors of the five approaches

MAE (e value) MXE (q value) F value
BR 0.065 0.207 243305.5
BL 0.623 2.084 16604.6
T2 1.641 6.933 10190.5
L1 13.727 47.348 58.2
L2 29.977∗ 69.026∗ 209.9
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From Table 5 it is clear that BR and BL have much smaller prediction errors
than those based on either the loss function L2 or L1. This confirms our previous
theoretical argument that use of L1 and L2 can create higher order effects like
curvatures and interactions which are not captured by the quadratic model (3.6).
Unless the fitted model has higher order terms, the prediction error cannot be
further reduced. On the other hand use of BR and BL does not create these
higher order effects. Therefore a lower order model like (3.6) can be effectively
used for prediction.

Another impressive finding from Table 5 is that B̂R and B̂L outperform T̂2.

Again this supports our previous argument (before the Example) in favor of B̂R

and B̂L that, by working over a smaller region of x,BR and BL can be better
approximated by a lower order model. To further explain this finding, we examine
the signs of terms in the models (M.1) - (M.3). Because BR = T2 − T for xεD+,

a term with positive (and respectively negative) coefficient in B̂R is said to have
a positive (and respectively negative) correlation with T̂2. On the other hand,
because BL = T − T2 for xεD−, a term with positive (and respectively negative)
coefficient in B̂L is said to have a negative (and respectively positive) correlation
with T̂2. These terms are tabulated in Table 6. From the table it becomes clear
that each of the terms x2

1, x1x2, x1x3, x1x5 and x2x3 has the opposite effects on T̂2

depending on xεD+ or xεD−. (These are the terms that appear in the diagonal
blocks or off-diagonal blocks of Table 6.) On the other hand this opposite effect
on T2 cannot be seen from a single model like T̂2. For example, the term x2

1 has
the coefficient −1.28 in B̂R and −1.29 in B̂L. Although these two coefficients are
for data over the two disjoint regions D+ and D−, they almost get “canceled”
in the model T̂2 which has 0.34 as the coefficient of x2

1. By using two separate
models over D+ and D− we can detect a nonlinear effect of x2

1 on T2, which is
lost in the model T̂2.

The last column in Table 5 gives the value of the F statistics for the fitted
model for each of the five methods. Not surprisingly both BR and BL give
a much better fit than the T2 model. The F values for L1 and L2 are much
smaller, indicating a very poor model fit of the L1 and L2 loss functions.

Table 6. Terms in B̂R and B̂L that have positive or negative correlations
with T̂2.

Positive Negative
Correlation Terms

B̂R x1, x4, x5, x1x2, x1x3 x2, x3, x
2
1, x1x5, x2x3

x1x4, x
2
2, x

2
3, x4x5 x2x4, x3x4, x

2
4, x

2
3

B̂L x1, x4, x5, x
2
1, x1x4 x2, x3, x1x2, x1x3, x2x4

x1x5, x
2
2, x2x3, x

2
3, x4x5 x2x5, x3x4, x3x5, x

2
4
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Finally we note that, for this example, when use of T̂2 results in the misclassi-
fication of D+ as D− (or D− as D+), the maximum prediction error over the
misclassified x

max{|B̂R(x) − BL(x)|, |B̂L(x) − BR(x)|} = 0.640,

is smaller than the maximum 3.68 of |T̂2 − T2| over the same set of misclassified
x. Similarly the mean absolute error over the misclassified x,

1
#

∑
|B̂R(x) − BL(x)| + 1

#

∑
|B̂L(x) − BR(x)| = 0.415,

is still smaller than the corresponding value 3.3 for |T̂2−T2|. This provides further
evidence that B̂R and B̂L outperform T̂2.

4. Parameter Design Based on B̂R and B̂L

In this section we use the heat exchanger example to illustrate an efficient
parameter design procedure based on the fitted models B̂R and B̂L.

We arranged the three control factors in a control (or inner) array as part
of the orthogonal array L9(34) (see Table 7) and the two noise factors in a noise
(i.e. outer) array according to L9(32).

Table 7.

i x1(D) x2(d) x3(L/D)
1 1 1 3
2 1 2 1
3 1 3 2
4 2 1 2
5 2 2 3
6 2 3 1
7 3 1 1
8 3 2 2
9 3 3 3

For each of the nine settings in the control array, say setting i, we can compute
ŷi1, · · · , ŷi9 for the nine settings in the noise array according to the fitted model
(M.1), where ŷ = T̂2. According to whether ŷij ≥ T or ≤ T, we classify the factor
settings as in D+ or D− and then compute the corresponding B̂R and B̂L values
(using (M.2) and (M.3) respectively). Then we use

B∗
Ri = max

xij∈D+
{B̂R(xij)}, (4.1)
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and
B∗

Li = max
xij∈D−

{B̂L(xij)}, (4.2)

as performance measures for the ith control factor setting, where xij denotes the
x value for the ith control setting and jth noise setting, i = 1, . . . , 9; j = 1, . . . , 9.

The objective of design in the example is to identify appropriate control
factor setting to minimize B∗

Ri and B∗
Li and ensure that they are smaller than

15◦C. The detailed steps are as follows:
1. Compute the B∗

Ri and B∗
Li values for each of the control factor settings. The

results are given in Table 8.

Table 8. Values of B∗
R and B∗

L for each control factor setting i

i 1 2 3 4 5 6 7 8 9
B∗

Ri 0.000 0.000 0.000 16.798 0.000 0.000 107.733 4.319 0.000
B∗

Li 81.469 58.561 113.975 8.213 81.856 50.289 0.000 18.554 83.766

2. For each level of a control factor, compute the mean of the B∗
Ri and B∗

Li values
over the other factors, which are denoted by B

∗
R and B

∗
L in Table 9. Note

that this computation is the same as the one for computing factor main effects.
Then we compute the sum of squares of these mean values for each control
factor and its percent contribution (denoted by ρ+ for B

∗
R and ρ− for B

∗
L)

toward the total sum of squares. Again these computations are analogous to
those in ANOVA.

Table 9. Values of B
∗
R and B

∗
L for each control factor level and the percent

contribution ρ+ and ρ− for each control factor

B
∗
R ρ+(%) B

∗
L ρ−(%)

1 2 3 1 2 3
x1 0.000 16.798 112.052 24.194 254.005 140.358 102.320 33.747
x2 124.531 4.319 0.000 33.102 89.682 158.971 248.030 34.141
x3 107.733 21.117 0.000 21.592 108.850 140.743 247.090 28.389

3. From Table 8, identify the setting(s) with small values of both B∗
R and B∗

L.

For the example, i = 4, B∗
R4 = 16.798, B∗

L4 = 8.213 and the levels are x1,2 x2,1

and x3,2. Obviously we need to further reduce the B∗
R value (to be smaller

than 15) by selecting a different factor combination. From Table 9, factor
x2 (i.e. D) has the largest ρ+ value, that is, the best potential to affect or
reduce the B∗

R value. From the B
∗
R and B

∗
L values in Table 9 for x2, it is

clear that level 2 is the compromise choice, because level 1 has the largest B
∗
R

value while level 3 has the largest B
∗
L value. In order to avoid the problem
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of increasing the B∗
L value when B∗

R is being reduced, we can choose another
factor x1 or x3 to control or reduce the B∗

L value. From Table 9 level 1 of x3

or level 3 of x1 appears to be the best choice. So this adjustment of levels in
the original setting for i = 4 leads to

x1,2 x2,2 x3,1, B
∗
R = 12.43, B∗

L = 12.33,

x13, x22, x32, B
∗
R = 4.335, B∗

L = 19.318.

Obviously, x12, x22, x31 satisfy the design requirement that B∗
R ≤ 15 and B∗

L ≤
15.

5. Concluding Remarks

Using BR and BL as twin performance measures for the control factor set-
tings has a strong statistical justification. Their linearity (or more generally
monotonicity) renders a simpler and more parsimonious model and better predic-
tion results. They are particularly suited for paramter designs with mathematical
models. If empirical models need to be established for the relationship between
y and x, the proposed approach needs to be further developed. The procedure
for choosing factor levels as in Step 3 of Section 4 needs a more careful study.
One other advantage of the proposed approach is that it does not require the
existence of an adjustment factor. It should therefore be applicable to parameter
designs for general loss functions (see Moorhead and Wu (1996)) even when an
adjustment factor cannot be identified empirically or on physical ground.

In the heat exchanger example, because of the engineering design require-
ment, we used the maximum deviations B∗

R and B∗
L as performance measures.

In other situations, use of average deviations may be more appropriate, i.e.,

EBRi =
1

mi

∑
xijεD+

BR(xij),

and
EBLi =

1
ni

∑
xijεD−

BL(xij),

mi + ni = n, j = 1, . . . , n. These alternative measures should be kept in mind
when dealing with actual design problems.
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Bérubé, J. (1997). Models, analysis and estimation efficiency for robust parameter designs.

Ph.D. Thesis, University of Michigan, Ann Arbor.

Cui, S. Z., Fan, Y. M. and Zhang, J. (1983). Outlet temperature of a heat exchanger. In Three-

Stage Design of Experiments with Known Transfer Functions (Edited by the Committee

on Three-Stage Design, Chinese Applied Statistics Society), 81-85 (in Chinese).

León, R. Shoemaker, A. C. and Kacker, R. N. (1987). Performance measures independent of ad-

justment: an explanation and extension of Taguchi’s signal-to-noise ratios. Technometrics

29, 253-285.

León, R. and Wu, C. F. J. (1992). A theory of performance measures in parameter design.

Statist. Sinica 2, 335-358.

Moorhead, P. and Wu, C. F. J. (1998). Cost-driven parameter design. Technometrics, to

appear.

Nair, V. N. Editor (1992). Taguchi’s parameter design: a panel discussion. Technometrics 34,

127-161.

Taguchi, G. (1986). Introduction to Quality Engineering. Asian Productivity Organization,

Tokyo.

Wu, C. F. J. (1992). Discussions of “Taguchi’s parameter design: a panel discussion”. Techno-

metrics 34, 127-161.

Wu, C. F. J., Mao., S. S. and Ma., F. S. (1990). SEL: A search method based on orthogonal

arrays. In Statistical Design and Analysis of Industrial Experiments (Edited by Subir

Ghosh), 279-310, Chapter 11. Marcel Dekker, Inc. New York and Basel.

Department of Statistics, University of Michigan, Ann Arbor, MI 48109-1027, U.S.A.

E-mail: xlhou@stat.lsa.umich.edu

(Received May 1996; accepted December 1996)


