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Abstract: Robust parameter design methods have been used successfully in industry

for some time. Despite this, there has been some skepticism in the statistical

literature about the feasibility of conducting industrial experiments to estimate

both location and dispersion effects. It has been claimed that a large experimental

run size is needed to estimate dispersion effects and that such experiments are not

practical in industry where the emphasis is on studying many factors simultaneously

using highly fractionated designs. We show in this paper that this misconception

arises from the fact that the commonly used methods of analysis ignore the basic

structure in parameter design studies and hence are unnecessarily inefficient. We

consider different models and methods of analysis and quantify the gains to be

made from exploiting the inherent structure in parameter design studies. The

consequences of these conclusions for the planning of such studies are also discussed.
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1. Introduction and Overview

Robust parameter design, proposed by Taguchi (1991), is intended to be a
cost-effective approach for improving quality during the design and development
of products and processes. The goal of parameter design studies is to choose the
settings of the control factors (parameters) so that the performance of a system
(product or process) is insensitive to variation in uncontrollable “noise” variables.
More specifically, consider the so-called “static” problem, and let Y = f(x;u),
where Y denotes the system response, x denotes the setting of system parameters
(control factors) and u denotes the uncontrollable or difficult-to-control sources
of noise variation. The goal of parameter design is to select the settings of system
parameters or control factors x appropriately so that the system response is close
to the intended target value and is insensitive to variation in the noise variables.

If the transfer function f(·) is known and easy to evaluate, this can be treated
as a numerical optimization problem. In most practical situations, however, f(·)
is unknown or hard to evaluate. In this case, statistically designed experiments
and data analysis methods have been used to implement parameter design. The
commonly used setup is the product array where the control factors are varied
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according to a suitably chosen experimental design (control array) and at each
setting of the control array, the pre-identified noise variables are systematically
varied according to a noise array. The particular data analysis method used will
depend on the transfer function f(·). The most commonly considered situation is
where the data, possibly after a suitable transformation, follow the location-scale
model

Yij = µ(xi) + φ(xi)εij , (1)

where Yij and εij denote, respectively, the system response and the effect of the
noise variables corresponding to the ith row of the control array and jth row of
the noise array, and xi denotes the settings of the control factors at the ith row
of the control array, for i = 1, . . . , n and j = 1, . . . , J . Here µ(xi) is the location
parameter and φ(xi) is the scale parameter, both of which depend on the control
factor settings. For this model, the goal of parameter design experiments can
be restated as follows: choose the control factor settings to make the variability
(scale parameter) small and the mean response (location parameter) close to
target. The popular approach for analyzing data under this model is to first
estimate µ(xi) by Ȳi =

∑J
j=1 Yij/J, the mean response at the ith control-run and

estimate φ2(xi) by

S2
i =

1
J − 1

J∑
j=1

(Yij − Ȳi)2, (2)

the corresponding sample variance. The important location and dispersion effects
are then identified by fitting a linear model to the Ȳi’s and a log-linear model to
the S2

i ’s as a function of the control factors and identifying the appropriate con-
trol factor settings. Taguchi (1991) actually recommends another performance
measure for assessing dispersion that he generically refers to as a signal-to-noise
ratio. However, this is essentially equivalent to taking a log-transformation of
the original data and analyzing the variance of the transformed data (see, for ex-
ample, Box (1988); León, Shoemaker and Kacker (1987); and Nair and Pregibon
(1986)). As such, this can be viewed as a special case of the above formulation.
There are other approaches for data analysis, including the so-called response-
model approach, which we will discuss later.

The basic engineering principles and the statistical issues involved in imple-
menting parameter design have generated considerable attention among statis-
ticians and quality professionals in industry over the last decade or so. See,
for example, the panel discussion and extensive references in Nair (1992) and
subsequent discussions and references in Lunani, Nair and Wasserman (1997)
and Miller and Wu (1996). There have been many successful applications of
parameter design studies in industry, some of which have been documented in
the annual case-studies symposia organized by the American Suppliers Institute.
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Despite these, there has been some skepticism in the statistical literature as to
the feasibility of conducting experiments for estimating both location and dis-
persion effects. Multifactor experimental studies have become popular in recent
years in industry mainly because practitioners have finally realized that they can
study many factors with small run sizes using highly fractioned experiments. It
has been argued that parameter design experiments which require noise “repli-
cations” to study both location and dispersion effects would require unduly large
runs and hence are not practical. For example, Gunter, in his discussion of Box
(1988), remarks, “The statistical consequences of Taguchi’s engineering insight
is that . . . modeling the response variance – not just the mean – may be vital
to achieve high quality and reduced cost.” He goes on to say “Appearances can
be deceiving, however. Although such an approach may appear to have promise,
there are fundamental practical constraints that make the Taguchi strategy diffi-
cult or impossible to apply . . . one needs a lot more information to see a change
in spread than to see a change in location. The crucial question is, Can we
generally afford experimentation that gives us this kind of information. My an-
swer is that I doubt it . . . .” He presents some numerical evidence to support
his argument that one needs an excessive number of experimental runs to study
dispersion effects. Similar comments have also been made by others (see Carroll
and Ruppert’s discussion of Box (1988)).

Is such pessimism justified? Are parameter design experiments infeasible in
practice? We show in this paper that this misconception arises from the fact that
the commonly used methods of analysis do not exploit the inherent structure
in parameter design experiments and hence are unnecessarily inefficient. An
important element of parameter design experiments is that the major sources
of variation (noise variables) are identified up front and they are systematically
varied through a noise array. In the product-array setup, the same noise array is
repeated across all the control runs. However, many of the commonly discussed
methods of analysis in Box (1988), Nair and Pregibon (1986), Taguchi (1991),
and others do not take this structure into account.

To be specific, consider the simple case where a single noise has been iden-
tified as being important and it is varied at J levels in the parameter design
experiment. Then, instead of equation (1), we in fact have the situation

Yij = µ(xi) + φ(xi)[zj + δij ], (3)

where zj is the jth level of the noise variable that has been identified up front
and varied systematically and δij represents the remaining sources of variation.
This is analogous to the usual blocking setup where the zj ’s are the J settings
of a blocking factor. The critical difference in parameter design is that one is
interested in the interactions between the blocking factors (which are the noise
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variables in this set-up) and design factors, and in fact it is these interactions
that provide us with the opportunity to make the system robust. This is reflected
in the above model by the fact that we let φ(·) depend on the control factors,
while traditionally φ(·) was assumed to be constant.

As the analogy with blocking suggests, the efficiency under this design can
be considerably higher than one under complete randomization. In other words,
the analysis based on (1) assumes the εij’s are independent and vary freely from
run to run. However, as we can see from (3), only the δij ’s vary freely while the
same zj ’s are repeated across the control runs. Thus, the relevant variation for
inference purposes is σ2

δ , the variance of the δij ’s, and not σ2
ε , the variance of all

the noise variables. In particular, if we have captured most of the large sources
of variation up front through the zj ’s, then the experiment is likely to be quite
a bit more efficient than perceived. In subsequent sections, we will quantify this
by considering appropriate methods of analysis for different models and designs.
However, the result for the simple case with a single noise variable captures the
essence of the conclusion very nicely, so we state it here.

Let σ2
P be the (perceived) variance of the estimated dispersion effects cal-

culated under the model in (1) which assumes (incorrectly) that the εij’s vary
freely across control runs. Similarly, let σ2

A be the (actual) variance of the es-
timated dispersion effects under the model in (3) which exploits the structure
in parameter design experiments where the same noise array is repeated across
control runs. Note that the values of the noise variables zj ’s can be fixed or they
can be chosen randomly from the noise distribution. In either case, under the
assumption of normally distributed noise variables, we show in Section 2 that

σ2
A/σ2

P ≈ (1 − ρ2), (4)

where

ρ =
σ2

z

σ2
z + σ2

δ

, (5)

the proportion of the total noise variance that can be attributed to the pre-
identified source zj.

We can see from (4) that σ2
A, the actual variance of the dispersion effects, can

be considerably smaller than σ2
P , the perceived variance based on an analysis that

assumes that the errors vary independently. Of course, it should be noted that
there are some parameter design studies where none of the noise variables are
varied systematically. For such situations, the assumptions of independent noise
variables is indeed appropriate. However, in most parameter design studies, the
same noise array is repeated across the control runs. In such cases, the analyses
discussed in Taguchi (1991), Nair and Pregibon (1986), Box (1988) and others
that do not take this structure into account will lead to an over-inflation of the
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variance of the dispersion effects. Similar conclusions also hold for the location
effects as discussed in Section 4.

It should also be clear from this that we do not need as many experimen-
tal runs to detect the dispersion effects as noted in Gunter (1988) who did his
efficiency calculations under the assumption that the “replications” in the noise
array are independent across the control array runs. This result has important
implications for the planning of parameter design experiments as well. We can
see that the efficiency of parameter design experiments will be increased by mak-
ing ρ close to one. To do this, we must identify the nature of the noise variation
and incorporate as many of the important noise variables as possible into the pa-
rameter design experiment. It is very important to note that, from this point of
view, we should include all the important sources of variation in the experiment,
and not just those that are expected to “interact” with the control factors.

There are various ways one might select and vary the levels of the noise vari-
ables. If there are several important noise variables, we could consider them sep-
arately or as a compound noise variable. If the distribution of the noise variables
are known, the levels of the noise variables can be fixed at certain desired settings
or they can be picked at random from the corresponding noise distribution(s). As
an example of the latter case, suppose one wants to study manufacturing variation
attributable to machine-to-machine variability and operator-to-operator variabil-
ity. One can then select a random sample of machine/operator combinations and
repeat the runs in the control array for each of the machine/operator combina-
tions. There are also many different models one can entertain for estimating the
dispersion effects. In subsequent sections, we will consider different models and
designs and study the corresponding estimation methods. In each case, we will
quantify the gains to be made by appropriately identifying the important noise
variables up front during the planning stage and varying them systematically in
the parameter design experiment.

We note that related results have also been obtained in Box and Jones (1992)
and Steinberg and Bursztyn (1998). Box and Jones (1992) consider different types
of split-plot experiments for robust product design and discuss the efficiency of
such experiments compared to a completely randomized experiment. Steinberg
and Bursztyn (1998) study the power in detecting important effects when the
settings of the noise variables are fixed. These technical results differ from ours,
but the overall conclusions are qualitatively similar.

2. Single Noise Variable

We first consider the case where there is a single noise variable with J levels.
This could arise even in situations with several sources of variation but a single,
compound noise variable is used to capture their overall effect.
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Suppose the true dispersion effects in model (1) follow, at least approxi-
mately, the log-linear model log φ(xi) = xiΦ, where xi is the row vector corre-
sponding to the ith row of the control array, Φ = (Φ1, . . . ,ΦL)′ and so for l ≥ 2,
the Φl’s correspond to the dispersion effects of the various control factors. We
can then fit to the sample variances S2

i the log-linear model

log S2
i = xiΦ + νi (6)

and obtain least-squares estimates of the dispersion effects in order to identify the
important dispersion effects. To obtain the variance of the estimated dispersion
effects, we consider separately the cases where zj’s, the levels of the noise variable,
are chosen randomly or fixed at pre-selected levels.

2.1. Noise settings chosen randomly

Consider first the case where the J settings of the single noise factor are
randomly sampled from the noise distribution. The machine/operator set-up
discussed earlier is an example of this. The sample variance in (2) can be re-
expressed in terms of the zj ’s and δij ’s as

S2
i =

φ2(xi)
J − 1

J∑
j=1

(z̃j + δ̃ij)2,

where z̃j and δ̃ij represent the appropriately centered quantities. We will assume
throughout that the δij ’s are independent and distributed as N(0, σ2

δ ). Further,
suppose the zj ’s are also independent N(0, σ2

z ) random variables and independent
of the δij ’s. Then, the S2

i ’s have a φ2(xi)
J−1 (σ2

z + σ2
δ )χ2

(J−1) distribution with mean
and variance given respectively by E(S2

i ) = φ2(xi)(σ2
z + σ2

δ ) and Var (S2
i ) =

2φ4(xi)
J−1 (σ2

z + σ2
δ )

2. Since the same J settings of the noise factors are repeated
across the control runs, the sample variances are not independent from run to
run but are correlated with Covar(S2

i , S2
i′) = 2

J−1σ4
zφ

2(xi)φ2(xi′).
So, if we fit the log-linear model log S2

i = xiΦ + νi in (6), the νi’s are still
marginally distributed as logχ2

(J−1) but are now correlated from run to run .
We can approximate the variance-covariance structure of the νi’s through a first-
order approximation and obtain

Var (log S2
i ) ≈ Var (S2

i )

E(S2
i )2

=
2φ4(xi)(J − 1)−1(σ2

z + σ2
δ )

2

φ4(xi)(σ2
z + σ2

δ )2
=

2
J − 1

and
Covar(log S2

i , log S2
i′) ≈

Covar(S2
i ,S2

i′)
E(S2

i )E(S2
i′ )

= 2(J−1)−1σ4
zφ2(xi)φ

2(xi′)
φ2(xi)φ2(xi′)(σ2

z+σ2
δ
)2

= 2
(J−1)

(
σ2

z

σ2
z+σ2

δ

)2

= 2
(J−1)ρ

2,
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where the covariance is a function of ρ in (5). The approximate variance-
covariance matrix of the νi’s can now be written as V = 2

(J−1) [(1 − ρ2)I + ρ2J]
where I is the identity matrix and J is the matrix with all elements equal to 1.
Note that the variance-covariance matrix does not depend on the control factor
settings.

Consider now the variance of the dispersion effects obtained from least-
squares estimation of Φ from the model log S2 = XΦ + ν, where X is the control
array, which will be assumed to be orthogonal throughout. (Since the νi’s are corre-
lated, one should actually use generalized least-squares to estimate the dispersion
effects. We will come back to this point later in this section.) The approximate
variance of the least-squares estimator of the dispersion effects Φ̂ is given by

Var (Φ̂) ≈ (X′X)−1(X′VX)(X′X)−1

= 2
n2(J−1)X

′[(1 − ρ2)I + ρ2J]X

= 2(1−ρ2)
n(J−1) I + 2ρ2

(J−1)




1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 .

So, for l ≥ 2,

Var (Φ̂l) ≈ 2
n(J − 1)

(1 − ρ2). (7)

Thus, compared with the usual variance of 2
n(J−1) computed assuming the νi’s

are independent (i.e., the error terms εij in (1) are assumed to be independent),
the estimators are more efficient by a factor of 1/(1−ρ2), thus proving the result
noted in Section 1 for the random zj ’s case.

The above calculations were done under the assumption that the various
noise factors all followed a normal distribution. Further, the first-order Taylor
series approximation is only valid when J is large. We conducted a limited
simulation study to assess the sensitivity to these assumptions. Figure 1 shows
the result of this study. The solid line in Figure 1 corresponds to the limiting
case where J is large and the distributions are all normal so that the ratio of the
variances is (1−ρ2). The four other cases correspond to: (i) all error distributions
normal, J = 10, (ii) all error distributions normal, J = 4, (iii) distribution of zj ’s
is t3 and of δij ’s is normal and (iv) distribution of zj ’s is t5 and of δij ’s is normal.
As one can see from Figure 1, the conclusions are still qualitatively the same.
In all of these cases, the variances of the estimated dispersion effects taking into
account the structure of the parameter design was smaller by a factor close to (if
not smaller than) (1 − ρ2).
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Figure 1. Ratio of the actual variance versus the perceived variance as a
function of ρ for several different situations.

As noted earlier, the error terms νi’s are correlated, so the use of ordinary
least-squares can be questioned. However, when the variance-covariance matrix
is of the form V = aI+bJ (where a and b are such that V is non-negative definite)
and the design matrix is orthogonal with the first column being a column of one’s,
it can be readily verified that the generalized least-squares estimators of the Φl’s
coincide with the ordinary least squares estimators for l ≥ 2. Thus, in this case,
ordinary least squares estimators of the dispersion effects are efficient.

2.2. Noise settings fixed

We now consider the case where the levels of the noise factor are fixed at some
prespecified levels. Suppose the noise array consists only of the fixed settings of
zj, j = 1, . . . , J , and the values are chosen such that

∑J
j=1 (zj − z̄)2/(J − 1) ≡

h2σ2
z for some fixed h.
Again, the sample variances can be written as

S2
i =

φ2(xi)
J − 1

J∑
j=1

(z̃j + δ̃ij)2,

but since the zj’s are fixed, the S2
i ’s now have a non-central χ2 distribution

S2
i ∼ φ2(xi)σ2

δ

J − 1
χ2

(J−1)(λ)
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with non centrality parameter

λ =
∑J

j=1 z̃2
j

σ2
δ

=
(J − 1)h2σ2

z

σ2
δ

.

Their mean and variance are given respectively by

E(S2
i ) = φ2(xi)σ2

δ

[
1 +

h2σ2
z

σ2
δ

]

and

Var (S2
i ) =

2
(J − 1)

φ4(xi)σ4
δ

[
1 +

2h2σ2
z

σ2
δ

]
.

Since the noise levels are fixed, the sample variances from run to run are inde-
pendent.

When we fit the log-linear model log S2
i = xiΦ + νi in (6), the νi’s are now

independent across i and are distributed as the log of a non-central χ2. Using a
first-order approximation as before, the variance of the νi’s is approximated as

Var (νi) ≈ Var (S2
i )

E(S2
i )

2

= 2
J−1

(
1 + 2h2σ2

z

σ2
δ

) / (
1 + h2σ2

z

σ2
δ

)2

.

By defining

ρ(h) =
h2σ2

z(
σ2

δ + h2σ2
z

) ,

the above variance can be written as

Var (νi) ≈ 2
J − 1

(1 − ρ2(h)).

This variance does not depend on the setting of the control factors, and we have
Var (ν) ≈ 2

J−1(1 − ρ2(h))I. The variance of the least-squares estimates of the
dispersion effects Φ̂l, for l ≥ 2, is now approximately

Var (Φ̂l) ≈ 2
n(J − 1)

(1 − ρ2(h)). (8)

If we choose the levels of the noise factors with a value of h = 1, then
ρ(h) = σ2

z/(σ2
δ + σ2

z) = ρ in (5), and (8) reduces to (7) in Section 2.1. In this
case, the variance of the dispersion effects for the fixed noise levels set-up is the
same as the one in the random noise levels case, thus proving the result noted in
Section 1.
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Note in the above that as we increase h, i.e., as we choose the levels of the
noise factors further apart, ρ2(h) increases and so the variance of the estimated
dispersion effects decreases. There is of course a physical limit to how extreme
the levels of the noise factors can be selected. Also, the model in (6) might no
longer be accurate when h is too large. (See Steinberg and Bursztyn (1998) for
a similar point.)

2.3. Least-squares analysis

We have restricted attention thus far to an analysis of dispersion effects based
on fitting a log-linear model to the sample variances S2

i ’s. When the zj ’s are fixed,
an alternative approach is to use least-squares directly and fit the model in (3).
This has been referred to as the response-model approach in Shoemaker, Tsui
and Wu (1991), although they consider a different model from (3). There are
in fact a number of variations to the model in (3) that one could consider, and
we will return to this issue more fully in a later section. For now, in order to
keep the comparison with the previous analysis meaningful, we restrict attention
to the model in (3) with a log-linear structure for φ(·). Further, instead of
simultaneous estimation of location and dispersion effects (as done in Shoemaker
et al. (1991) and elsewhere) we will decouple the problem of estimating location
and dispersion effects. Specifically, the dispersion effects are estimated in two
stages, first estimating φ(xi)’s in (3) using least-squares and then fitting a log-
linear model to the φ̂(xi)’s. (Note that there is a technical issue here if φ̂(xi)
is negative and an appropriate modification such as log(φ̂+(xi) + δ) should be
used to handle such cases). We assume as in Section 2.2 that the zj ’s have been
chosen such that

∑J
j=1 (zj − z̄)2/(J − 1) ≡ h2σ2

z .
The ordinary least-squares estimator of φ(xi), i, . . . , n, is given by

φ̂(xi) =
∑J

j=1 z̃j ỹij∑J
j=1 z̃2

j

.

The variance of this estimator is then Var (φ̂(xi)) = φ2(xi)σ
2
δ

(J−1)h2σ2
z
. Now, we fit the

log-linear model log φ̂(xi) = xiΦ + νi in order to estimate the dispersion effects
associated with the control factors. Using a first-order approximation as we did
before, we can get an approximate expression for the variance of the error term
in the log-linear model,

Var (log φ̂(xi)) ≈ φ2(xi)σ2
δ/(J − 1)h2σ2

z

φ2(xi)
=

σ2
δ

(J − 1)h2σ2
z

.

Note that with this formulation, the variance expression is again independent of
the settings of the control factors.
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The approximate variance of the least-squares estimates of the dispersion
effects Φ̂l is then given by

Var (Φ̂l) ≈ σ2
δ

n(J − 1)h2σ2
z

,

which can be rewritten in terms of ρ in (5) as

Var (Φ̂l) ≈ 1
n(J − 1)h2

(1 − ρ)
ρ

.

Although the relationship is different, the overall conclusion is the same
in this case as well. The larger ρ is, the higher the efficiency in estimating the
dispersion effects and in detecting factors with important effects. It is interesting
to see from Figure 2 that this least-squares approach (with h = 1) does not
dominate the analysis based on S2

i in terms of efficiency.
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Figure 2. Relative efficiency of regression approach with h = 1 with respect
to modeling log S2

i .

3. Multiple Noise Variables

In practice, there are several noise variables that are varied systematically
in the noise array. There are many possible models that one can entertain in the
situation with multiple noise variables. The model below is reasonably general
in that it includes several commonly considered ones as special cases.
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Suppose that the data, possibly after a suitable transformation, follow the
model

Yij = µ(xi) + φ1(xi)z1j + · · · + φK(xi)zKj + θ(xi)δij . (9)

Here zkj denotes the setting of the kth noise factor for the jth row of the noise
array, j = 1, . . . , J and k = 1, . . . ,K. Further, φk(xi) measures the dispersion
effects that corresponds to the kth noise factor and the θ(xi) measures the dis-
persion effects that correspond to unidentified/uncontrolled noise variables δij ’s.

3.1. A special case

First, we discuss a special case of this model where the dispersion effects as-
sociated with the various noise factors are the same, i.e., φ1(xi) = · · · = φk(xi) =
θ(xi) and equal to φ(xi). In this case, (9) reduces to

Yij = µ(xi) + φ(xi)
[ K∑

k=1

zkj + δij

]
, (10)

which is essentially (3). It is important to note that Taguchi’s SN-ratio analysis in
the presence of multiple noise variables can be justified only under this restricted
model. We elaborate on this in the next subsection.

Under this special model, the efficiency results for estimating dispersion ef-
fects with fixed settings of noise factors can be shown to be the same as those in
Section 2.2. The situation with randomly chosen noise levels is more complex as
it depends on the actual sampling mechanism for the noise variables. We consider
a specific set-up here. Suppose we select two levels randomly for each of the K

noise factors. Recall the discussion with machines and operators as a concrete
example of this set-up. We use an orthogonal (fractional) factorial design for the
noise array with run size J . This will lead to each level of a noise factor being
repeated R = J/2 times. For example, if we have 3 factors each at two levels
and we use a 23−1 design, then we have a total of J = 4 runs, and the two levels
of a factor each appear twice.

The sample variances can now be expressed as

S2
i =

φ2(xi)
J − 1

J∑
j=1

[ K∑
k=1

z̃kj + δ̃ij

]2

=
φ2(xi)
J − 1

[
R

2∑
j=1

K∑
k=1

z̃2
kj + 2

J∑
j=1

K∑
k=1

z̃kj δ̃ij +
J∑

j=1

δ̃2
ij

]
,

where the z̃kj’s and the δ̃ij ’s are the centered quantities. The second equality
above follows from the fact that, since each factor has only two levels, the centered
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zkj’s take on values ±ak for some constant ak, k = 1, . . . ,K. This together
with the orthogonality of the design matrix ensures that the cross-product terms
involving the z̃kj’s are zero.

The S2
i ’s can be seen to be a quadratic form in normal variables, hence

its distribution can be obtained as a linear combination of chi-squared random
variables. For our purposes, we are only interested in the first two moments. To
get this, note that the first term in the square brackets is distributed as a sum of
K independent chi-squares, Rσ2

kχ2
1, and the last term is distributed as σ2

δχ2
(J−1).

The middle term is not a χ2; it has a mean of 0 and variance 4Rσ2
δ

∑K
k=1 σ2

k.
Moreover, under the normality assumption and the special structure here, it is
seen to be uncorrelated with the first and third terms. Thus, we obtain the mean
and variance of S2

i as

E(S2
i ) =

φ2(xi)
J − 1

[
R

K∑
k=1

σ2
k + (J − 1)σ2

δ

]

Var (S2
i ) =

φ4(xi)
(J − 1)2

[
2R2

K∑
k=1

σ4
k + 4Rσ2

δ

K∑
k=1

σ2
k + 2(J − 1)σ4

δ

]
.

Since the same levels of the noise factors are repeated for each control run, the
sample variances are correlated from run to run with covariance given by

Covar(S2
i , S2

i′) =
2

(J − 1)2
R2φ2(xi)φ2(xi′)

K∑
k=1

σ4
k.

When we fit the log-linear model log S2
i = xiΦ + νi in (6), the νi’s are

therefore correlated from run to run. Again, using a first-order approximation,
the variance and covariance of the error term νi can be approximated respectively
as

Var (log S2
i ) ≈ 2R2 ∑K

k=1 σ4
k + 4Rσ2

δ

∑K
k=1 σ2

k + 2(J − 1)σ4
δ[

R
∑K

k=1 σ2
k + (J − 1)σ2

δ

]2

and

Covar(log S2
i , log S2

i′) ≈
2R2 ∑K

k=1 σ4
k[

R
∑K

k=1 σ2
k + (J − 1)σ2

δ

]2 .

Again, these expressions do not depend on the settings of the control factors.
If we write σ2

z =
∑K

k=1 σ2
k, the approximate variance-covariance matrix of the

error term in the log-linear model in (6) for this situation can be written as

1[
Rσ2

z + (J − 1)σ2
δ

]2

[
(4Rσ2

δσ
2
z + 2(J − 1)σ4

δ )I + 2R2
( K∑

k=1

σ4
k

)
J
]
.
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Consider now least-squares estimates of the dispersion effects in log S2 =
XΦ + ν. Here again, the least-squares estimators of the dispersion effects are
equivalent to the generalized least-squares estimators due to the structure of the
variance-covariance matrix. Since X′JX is 0 except for its first element, the
approximate variance of the least-squares estimator of the dispersion effects Φ̂l,
for l ≥ 2 is then

Var (Φ̂l) =
4Rσ2

δσ
2
z + 2(J − 1)σ4

δ

n
[
Rσ2

z + (J − 1)σ2
δ

]2 =
2

n(J − 1)
(1 − ρ2

R),

where ρR = Rσ2
z

(J−1)/(σ
2
δ + Rσ2

z
(J−1)).

It is interesting to compare the current design where each of the K noise
variables are varied separately, each at 2 levels, with a compound noise approach
for studying the K noise variables. We do this under the assumption that σ2

z , the
variance of the compound noise variable, equals

∑K
k=1 σ2

k. In the compound noise
approach, which corresponds to the situation in Section 2.1, the approximate
variance of the dispersion effects is 2

n(J−1)(1−ρ2) where ρ = σ2
z

σ2
δ
+σ2

z
. Since ρ ≤ ρR

with equality when R = 1, the compound noise approach is more efficient when an
S2 analysis is used. In the compound noise approach, there are J true replications
from which to estimate each sample variance S2

i . In the separate noise approach,
there are also J runs to the noise array, but only 2 replications for the error
due to controlled noises, which explains why, in this case, the estimates of total
variation in the noise arrays have a greater variance.

3.2. Analysis based on sample variances

We now return to the more general model in (9). As noted earlier, the
analysis based on sample variances (or the related signal-to-noise ratios) is not
really valid when the dispersion effects associated with the different noise factors
are all different as in (9). This can be seen from the fact that, under model (9),
the expected value of S2

i in (2) is obtained as

E(S2
i ) = φ2

1(xi)σ2
1 + · · · + φ2

K(xi)σ2
K + θ2(xi)σ2

δ .

Thus, the analysis based on S2
i ’s tries to combine all of the dispersion effects

associated with the various noise factors into a single measure and tries to esti-
mate an “overall” set of dispersion effects. If the dispersion effects are all quite
different, this analysis can lead to misleading conclusions about the importance
and magnitude of the various dispersion effects. This is especially true when
there are many dispersion effects and the control array is highly fractionated. In
the presence of effect sparsity, however, it is possible that the active effects are
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correctly identified, but the magnitude of the effects will still be not estimated
correctly.

Consider now the variances of the estimated dispersion effects from this
analysis. For simplicity of exposition, consider first the case where K = 1 but,
unlike the set-up in Section 2, now φ is not equal to θ. Routine calculations show
that the sample variance for each run of the control array is distributed as

S2
i ∼

[
φ2(xi)σ2

z + θ2(xi)σ2
δ

]
χ2

(J−1).

To identify important dispersion effects, suppose we fit the log-linear model
log S2

i = xiΦ + νi. The error term νi has the variance-covariance matrix

Var (ν) ≈ 2
J − 1




1 ρ1ρ2 · · · ρ1ρn

ρ1ρ2 1 · · · ρ2ρn
...

...
. . .

...
ρ1ρn ρ2ρn · · · 1


 , (11)

where
ρi = φ2(xi)σ2

z

/[
φ2(xi)σ2

z + θ2(xi)σ2
δ

]
. (12)

We can re-express (11) as

Var (ν) ≈ 2
J − 1

[D(1 − ρ2) + ρρT ], (13)

where ρ is the vector whose ith element is given by ρi in (12) and D(1 − ρ2) is
the diagonal matrix with diagonal elements given by (1 − ρ2

i ), i = 1, . . . , n. The
variance of the estimated dispersion effects using least-squares can be easily ob-
tained from this. However, generalized least-squares would be more appropriate
here.

In either case, it can be seen from (11) that, as ρi → 1 for all i, the variance
of the estimated dispersion effects → 0. As the proportion of total variation that
is due to uncontrolled/unknown noise increases, ρi → 0 and the variance of the
estimated dispersion effects → 2/n(J − 1).

We now turn to the case with K noise factors. We consider only the situ-
ation where each factor is selected at two-levels and discuss separately the two
situations with:
1. two fixed settings (±

(
J−1

J

)1/2
hσk) for each of z1, . . . , zK ,

2. two randomly selected settings for each of z1, . . . , zK .
In both cases, each level is repeated R times in the noise array. In the first case
where we have fixed settings, the sample variances

S2
i =

1
J − 1

J∑
j=1

( K∑
k=1

φk(xi)(±
(J − 1

J

)1/2
hσk) + δ̃ij

)2
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have a non-central chi-square distribution, θ2(xi)σ2
δ (J−1)−1χ2

(J−1)(λ), with non-
centrality parameter given by λ = (J−1)h2 ∑K

k=1 φ2
k(xi)σ2

k/(θ
2(xi)σ2

δ ). If we now
fit the log-linear model in (6), the error term has a diagonal variance-covariance
matrix approximately equal to

Var (ν) ≈ 2
J − 1

D(1 − ρ2(h)), (14)

where

ρi(h) =
h2 ∑K

k=1 φ2
k(xi)σ2

k

h2
∑K

k=1 φ2
k(xi)σ2

k + θ2(xi)σ2
δ

.

Note that this ρi(h) reduces to ρi in (12) for h = 1 and K = 1; note also the
relationship between (14) and (13). Again, as ρi(h) goes to one, the variance of
the estimated dispersion effects decreases, and as ρi(h) goes to zero, the variance
of the estimated dispersion effects goes to 2/n(J − 1).

Finally, when two random settings are selected from each noise distribution
and varied in a fractional factorial noise array,

S2
i =

1
(J − 1)

J∑
j=1

( K∑
k=1

φk(xi)z̃kj + θ(xi)δ̃ij

)2

and it now involves summing up over J independent error terms but only 2
independent settings of each noise factor. The variance of S2

i is given by

2(J − 1)−2
[
R2

K∑
k=1

φ4
k(xi)σ4

k + 2Rθ2(xi)σ2
δ

K∑
k=1

φ2
k(xi)σ2

k + (J − 1)θ4(xi)σ4
δ

]

while the covariance between sample variances for different runs of the control
array is

Covar(S2
i , S2

i′) =
2R2

(J − 1)2

K∑
k=1

φ2
k(xi)φ2

k(xi′)σ4
k.

The variance of the estimated dispersion effects can be computed from these
expressions using a first-order approximation. However, the expressions do not
simplify nicely to allow us to express them in terms of ρ−like expressions as
before.

3.3. Least-squares analysis

When the noise settings zkj’s in (9) are all fixed at pre-specified values,
then it is natural to absorb the zkj’s into the structural model and estimate the
φk(xi)’s directly using least-squares or some other method. This is the response-
model approach discussed in Welch et al. (1990), Shoemaker et al. (1991),
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and others. However, these authors assumed that θ(·) in (9) is constant across
control runs. This is not an unreasonable assumption if most of the important
noise factors have been identified and controlled up front in the parameter design
study. A more important difference is that these papers assume the φk’s follow
a linear model in the control factors. The analysis based on log-variances and
the related signal-to-noise ratios assumes a log-linear response surface as in (6).
These differences should be recognized and taken into account before trying to
make comparisons of the results from different analyses.

Let us consider the analysis based on least-squares under the assumption
that θ(xi) in (9) is constant, which we can take to equal 1. Let the zkj’s be fixed
with

∑J
j=1 (zkj − z̄k)2/(J − 1) ≡ h2σ2

k. To decouple the location and dispersion
problems, we do a two-stage estimation where we first estimate the φk(xi), i =
1, . . . , n, directly by least-squares for each of the K noise factors. We consider,
as in Shoemaker et al. (1991), the situation where the response surfaces for the
φk(xi)’s are, at least approximately, linear; i.e., φk(X) = XΦk, k = 1, . . . ,K,
where X is the control array, Φk = (Φ1k, . . . ,ΦLk)′ and for l ≥ 2, the Φlk’s
correspond, for the kth noise factor, to the dispersion effects of the various control
factors. One can then fit K separate linear models in the control factors to
the estimated φk(X)’s to obtain estimates Φ̂lk of the specific dispersion effects
associated with each particular control factor. It is easily seen that the variance
of these estimated dispersion effects is then, for l ≥ 2,Var (Φ̂lk) = σ2

δ/[n(J −
1)h2σ2

k], which is the same as the (approximate) variance obtained in Section
2.3. Note, however, that in Section 2.3, we assumed a log-linear response surface
for φ(xi) and fitted a log-linear model to the least-squares estimates φ̂(xi)’s. It
is interesting that the results for these two different situations turn out to be the
same.

The situation becomes more complicated when θ(·) is not constant. Consider
a two-stage analysis as discussed above. If, for each noise factor, φk(xi), i =
1, . . . , n, is estimated by ordinary least-squares, the variance of φ̂k(xi) will now
be proportional to θ2(xi), i.e., it will depend on the level of the control factors.
So, when we fit a linear model, φ̂k = XΦk +ν, the vector of error, ν, has variance-
covariance matrix

Var (ν) =
σ2

δ

(J − 1)h2σ2
k

D(θ2(x1), . . . , θ2(xn)).

Suppose now one used least-squares to estimate the dispersion effects Φk. The
variance-covariance matrix of the least-squares estimates is given by Var (Φ̂k) =
1
n2X′Var (ν)X. The variance of the estimated dispersion effects are given by the
diagonal elements of this matrix which equal

σ2
δ

(J − 1)n2h2σ2
k

n∑
i=1

θ2(xi).
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However, the matrix is not diagonal, and the estimates are now correlated. In
any case, for this situation, weighted least-squares estimation that takes into
account the unequal variances would be more reasonable. An iterative procedure
has to be used in this case.

3.4. Variance components analysis

The least-squares analysis discussed earlier is not appropriate when the levels
of zkj’s are chosen randomly. In this section, we consider an alternative analysis
that can handle both the random and fixed noise settings cases in model (9). To
keep the notation simple, we assume without loss of generality that σ2

1 = · · · =
σ2

k = σ2
δ = 1.

As before, we consider only two level noise factors. Let R = J/2 be the
number of times each level is repeated in the noise array. All noise factors
(identified or not) are assumed to follow a standard normal distribution with
variance one, and so the Yij is distributed as N(µ(xi),

∑K
k=1 φ2

k(xi) + θ2(xi)),
i = 1, . . . , n. One might consider an analysis based on measures of variability
that estimate the contribution of each noise factor to the total variance. As such,
the usual components of variance sums of squares can be calculated for each noise
factor zk, k = 1, . . . ,K, for each row of the control array as

S2
k(xi) = (Ȳi(zkj = l1) − Ȳi.)2 + (Ȳi(zkj = l2) − Ȳi.)2,

where Ȳi. represents the average of all J responses for run i of the control array,
and Ȳi(zkj = l1) represents the average, for row i, of all responses with the kth
noise factor set at level 1. For example, if the noise array is a 22 factorial design,
the above SS for noise 1 would be

S2
1(xi) = (Ȳi(z1j = l1) − Ȳi(z1j = l2))2/2.

We consider both the case where the noise variables are pre-selected at fixed
values and the case where the levels are randomly selected from the noise distri-
bution and repeated for each control run setting.

3.4.1. Fixed settings

Assume that we have K two-level noise factors, each with levels fixed at
±h. In this case, the K sums of squares corresponding to the K controlled noise
factors are

S2
k(xi) = (Ȳi(zkj = h) − Ȳi.)2 + (Ȳi(zkj = −h) − Ȳi.)2

= (φk(xi)h + δ̄i(zkj = h) − δ̄i)2 + (−φk(xi)h + δ̄i(zkj = −h) − δ̄i)2

=
2
J2

[Jφk(xi)h + θ(xi)(
∑

j:zkj=h

δij −
∑

j:zkj=−h

δij)]2.
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Since the noise levels are fixed, the expression in the last parenthesis above is dis-
tributed as N(Jφk(xi)h, Jθ2(xi)) and it follows that the S2

k(xi)’s are distributed
as non-central χ2,

S2
k(xi) ∼ 2

J2
Jθ2(xi)χ2

1(α) =
θ2(xi)

R
χ2

1(α),

with non-centrality parameter α = 2Rφ2
k(xi)h2/θ2(xi).

Next, we fit a log-linear model to each S2
k(xi), k = 1, . . . ,K, to identify

the dispersion effects associated with the kth noise factor. We fit the log-linear
model log S2

k(xi) = xiΦk + νi, where we use a first-order approximation to get
the following approximate variance-covariance matrix of the error term,

Var (νi) ≈ 2
[θ4(xi) + 4Rh2φ2

k(xi)θ2(xi)
(θ2(xi) + 2Rh2φ2

k(xi))2
]

= 2(1 − ρ2
ki(h)),

where

ρki(h) =
2Rh2φ2

k(xi)
θ2(xi) + 2Rh2φ2

k(xi)
. (15)

Since the levels of the noise factors are fixed, the sample variances are not cor-
related from run to run, so the variance-covariance matrix of the νi’s is diagonal
with the diagonal entries given above. Note again the relationship between these
results and those in Section 4.1.

If we use least-squares estimation to obtain the dispersion effects, the ap-
proximate variance of the least-squares estimates Φ̂k associated with the kth
noise factor is then

Var (Φ̂k) =
2
n2

X′D(1 − ρ2
k1(h), . . . , 1 − ρ2

kn(h))X. (16)

Of course, one might consider doing weighted least squares in this situation. Re-
gardless, the same conclusion as before holds about the importance of identifying
and controlling the variability associated with the noise variables.

3.4.2. Random levels

Now assume that two settings for each of the K noise factors are chosen
randomly from the corresponding noise distribution. The settings are denoted
by zk1 and zk2 and varied according to a (fractional) factorial design. The same
settings are repeated across the control runs. Here as above,

S2
k(xi) = (Ȳi(zkj = zk1) − Ȳi.)2 + (Ȳi(zkj = zk2) − Ȳi.)2

=
2
J2

[
Rφk(xi)(zk1 − zk2) + θ(xi)(

∑
j:zkj=zk1

δij −
∑

j:zkj=zk2

δij)
]2

,
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and if the zk’s and δij are all independently normally distributed with variances 1,
the expression in the last parenthesis is distributed as N(0, 1

2J2φ2
k(xi)+Jθ2(xi)).

It follows that the K sums of squares are distributed as (φ2
k(xi) + θ2(xi)

R )χ2
1.

With the levels of the noise factors random but repeated for each control
run, the νi’s in the log-linear model log S2

k(xi) = xiΦk + νi are correlated. Using
a first-order approximation, the variance-covariance matrix is approximated as

Var (ν) ≈ 2




1 ρk1ρk2 · · · ρk1ρkn

ρk1ρk2 1 · · · ρk2ρkn
...

...
. . .

...
ρk1ρkn ρk2ρkn · · · 1


 ,

where

ρki =
Rφ2

k(xi)
Rφ2

k(xi) + θ2(xi)
.

In this case, the approximate variance-covariance matrix of the estimated
dispersion effects associated with the kth noise factor, based on least-squares, is

Var (Φ̂k) =
2
n2

X′(D(1 − ρ2
k1, . . . , 1 − ρ2

kn) + ρkρ
′
k

)
X, (17)

where ρk = (ρk1, . . . , ρkn)′. Note that if the levels of the noise factors are fixed
such that h2 = 1/2 then ρki(h) in (15) is equal to ρki. In this case, the matrix in
(17) is equal to the matrix in (16) plus the term 2

n2X′ρkρ
′
kX.

As ρki → 1 (or ρki(h) → 1) for all i, i.e., the proportion of variation controlled
through the kth noise factor is large compared to the uncontrolled/unknown
variation, the variance of the estimated dispersion effects corresponding to the kth
noise factor, Var(Φ̂lk) decreases. On the other hand, as ρki → 0 (or ρki(h) → 0),
Var(Φ̂lk) → 2

n(J−1) , which would correspond to the variance of the estimated
dispersion effects if the kth noise factor varied independently from run to run.

4. Miscellaneous Remarks

4.1. Estimation of location effects

While the focus of this paper is on estimating dispersion effects, we briefly
discuss estimation of location effects in this section. We show that similar con-
clusions about efficiency also hold for location effects.

Consider the model in (3) with µ(xi) = x′
iα where α = (α1, . . . , αL) and

for l ≥ 2, the αl’s denote the location effects. We first consider the use of ordi-
nary least-squares (OLS) estimates to estimate location effects. The properties
of weighted least-squares (WLS) estimators, which are more appropriate here
because of the unequal variances, is discussed later. The perceived variance of
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the estimator when the zj ’s are (wrongly) assumed to vary independently is seen
to be (Jn2)−1 (σ2

z + σ2
δ ) X′D(φ2)X, where φ = (φ(x1), . . . , φ(xn))′. Consider

now the actual variance. It is clear that if the zj ’s in (3) are fixed during the
experiment, the actual variance of the OLS estimator is obtained by replacing
the factor (σ2

z + σ2
δ ) in the above expression by σ2

δ . So, the ratio of the actual
variance to the perceived variance is σ2

A/σ2
P = (1− ρ) where ρ is given by (5). It

is interesting to compare this expression with the result for the dispersion effects
given in (4).

We briefly turn to WLS estimators. Since the variances are unknown, one
would use iteratively reweighted least squares to estimate the location effects.
The variances of these estimators can be approximated by the known φk’s situa-
tion. If we do this, the perceived variance of the WLS estimator can be approxi-
mated by J−1 (σ2

z + σ2
δ ) (X′D−1(φ2)X)−1. If the zj ’s in (3) are fixed during the

experiment, then it is clear that the actual variance of the WLS estimator can
be approximated by replacing the factor (σ2

z +σ2
δ ) in the above expression by σ2

δ .
Hence, the conclusion is the same as that for the OLS case.

When the zj ’s are random, one can reach the same conclusion as that for
the fixed zj ’s in the special case where the φk’s are constant, i.e., when there
are no dispersion effects. In general, however, the results for random zj ’s are
complicated, and we will not discuss them in detail here.

4.2. Dynamic characteristics

We have so far considered only static robust design experiments. Robust
design studies with the so-called dynamic characteristics are increasingly com-
mon in industry. The efficiency results obtained in Sections 2.1 and 2.2 can be
shown to hold also in the context of parameter designs with dynamic character-
istics. Consider a model as in (3) but where the system’s performance (output
y) depends on a signal factors (x) and noise Variable (z),

Yijk = µ(xi;Mk) + φ(xi)[zj + δijk]. (18)

Here, Yijk denotes the observation corresponding to the ith setting of the control
factors, jth setting of the noise factor and kth setting of the signal factor, for
i = 1, . . . , n, j = 1, . . . , J and k = 1, . . . ,K. Note that for this model, the signal
factor affects the response only through the location parameter.

One approach for estimating the φ2(xi)’s in this case might be to consider the
signal factor as an extra control factor. The control array can then be thought
of as having nK rows since for each setting of the control factors, there are K

settings of the singnal factor. As in the static case, the noise array of size J is
repeated across all the nK control runs. We first obtain nK sample variances and
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then for each of the n settings of the control factors, average the corresponding
sample variances over the K signal settings,

S2
i =

1
K(J − 1)

K∑
k=1

J∑
j=1

(Yijk − Ȳik)2.

This essentially corresponds to the situations analyzed in Sections 2.1 and 2.2 so
that the same efficiency results hold true here.

Now, instead of the general model in (18), we consider more specifically a
linear signal-response relationship of the form

Yijk = Mkβ(xi) + φ(xi)[zj + δijk].

Typically, the slope β would first be estimated for each run of the control array
by fitting a simple linear regression model with the signal factor as regressor. We
then estimate the dispersion effects φ2(xi) by the residual sum of square

S2
i = (Yi − Mβ̂(xi))′(Yi − Mβ̂(xi)), (19)

where Yi is a JK × 1 vector of responses corresponding to all combinations of
signal and noise levels at the ith control array setting and M is a JK × 1 vector
of the K signal levels repeated for each of the J noise levels. In order to identify
the distribution of the sample variances, we rewrite (19) as

S2
i = (Yi − Mβ(xi))′(I − HM )(Yi − Mβ(xi)),

where HM = M(M ′M)−1M ′. If the zj’s are fixed during the experiment, Yi −
Mβ(xi) has multivariate normal distribution NJK(φ(xi)z, φ2(xi)σ2

δI) where z is
the JK×1 vector of the J noise settings repeated for each of the K signal levels.
It follows that the residual sum of squares S2

i has a non-central χ2 distribution,
φ(xi)2σ2

δχ
2
JK−1(λ) with non-centrality parameter

λ =
z′(I − HM )z

σ2
δ

= (1/σ2
δ )

[
K

J∑
j=1

z2
j −

∑K
k=1 Mk

∑J
j=1 zj

J
∑K

k=1 M2
k

]
.

In the special case where the noise factors are centered and chosen such that∑J
j=1 (zj − z̄)2/(J − 1) ≡ h2σ2

z for some fixed h, the non-centrality parameter
reduces to K(J − 1)h2σ2

z/σ
2
δ . Again, this is similar to the distribution of the

sample variances S2
i in the static setting analyzed in Section 2.2, and we have

essentially equivalent efficiency results.

5. Conclusion

We have considered several different models and methods of estimation for
robust parameter design experiments. For all of these situations, we have shown
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the efficiency to be gained from carefully planned experiments in which the im-
portant sources of noise variation are identified up front and varied systematically.
Thus, it is important that the analysis methods explicitly take into account the
structure of the noise array. Many of the current analysis methods do not do this
and hence are unnecessarily inefficient. Finally, there are many possible methods
one can entertain for analyzing data with location and dispersion effects. There
have been different approaches that have been advocated in the literature, but
the fact that they are all based on different models has not been emphasized
enough. These differences should be recognized before one tries to compare the
results from different methods of analysis.

Acknowledgements

The authors are grateful to Michael Hamada, David Steinberg, Jeff Wu, and
the reviewers for helpful comments. This research was supported by NSF Grants
DMS 9404300 and DMI 9501217.

References

Box, G. E. P. (1988). Signal-to-noise ratios, performance criteria, and transformations (with

discussion). Technometrics 30, 1-40.

Box, G. and Jones, S. (1992). Split-plot designs for robust product experimentation. J. Appl.

Statist. 19, 3-26.

Carroll, R. J. and Ruppert, D. (1988). Discussion of “Signal-to-noise ratios, performance crite-

ria, and transformations”. Technometrics 30, 30-31.

Gunter, B. (1988). Discussion of “Signal-to-noise ratios, performance criteria, and transforma-

tions”. Technometrics 30, 32-35.

Kackar, R. N. (1985). Off-line quality control, parameter design, and the Taguchi method. J.

Quality Technology 17, 176-188.

León, R., Shoemaker, A. C. and Kacker, R. N. (1987). Performance measures independent

of adjustment: An explanation and extension of Taguchi’s signal-to-noise ratios (with

discussion). Technometrics 29, 253-285.

Lunani, M., Nair, V. N. and Wasserman, G. (1997). Graphical methods of data analysis for

robust design with dynamic characteristics. J. Quality Technology, to appear.

Miller, A. and Wu, C. F. J. (1996). Parameter design for signal-response systems: A different

look at Taguchi’s dynamic parameter design. Statist. Science 11, 122-136.

Nair, V. N. (1992). Taguchi’s parameter design: A panel discussion. Technometrics 34, 127-161.

Nair, V. N. and Pregibon, D. (1986). A data analysis strategy for quality engineering experi-

ments. AT&T Technical J. 65, 73-84.

Nair, V. N. and Pregibon, D. (1988). Discussion of “Signal-to-noise ratios, performance criteria,

and transformations”. Technometrics 30, 24-30.

Phadke, M. S. (1989). Quality Engineering Using Robust Design. Prentice-Hall, New Jersey.

Shoemaker, A. C., Tsui, K. L. and Wu, C. F. J. (1991). Response model analysis for robust

design experiments. Technometrics 33, 415-427.

Steinberg, D. M. and Bursztyn, D. (1998). Noise factors, dispersion effects, and robust design.

Statist. Sinica, to appear.
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