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AN ALTERNATE VARIABLES CONTROL CHART:

THE UNIVARIATE AND MULTIVARIATE CASE
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Abstract: A variables control chart that can be used to monitor location and scale

on a single chart is proposed. The procedure provides an alternative to the boxplot

style of simultaneous control charts with the added advantage of performing equally

well for both large and small subgroup sizes. The resulting control chart provides

information regarding the process’s proximity to the target value and its variability.

Control limits analogous to the Shewhart limits are developed and several properties

are investigated. The procedure is extended to the multivariate case and examples

illustrating both the univariate and multivariate cases included.
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1. Introduction

Traditional North American quality assurance techniques are being chal-
lenged by innovative philosophies imported from Japan. One particular phi-
losophy discussed by many authors stresses the need for considering a nominal
(target) value in assessing the quality levels of a process. In the past, attention
has focused on bringing a process within specification while placing little empha-
sis on attaining target values. Sullivan (1984), among others, provides examples
that stress the importance of controlling to a target value as well as the variabil-
ity. Juran (1951), as well as others, briefly discusses integrating targets into the
traditional Shewhart charts but fails to discuss details of those cases where the
target differs from the mean. The proposed procedure incorporates the target
into a simultaneous control charting procedure resulting in a chart that provides
information regarding (i) proximity to the target and (ii) process variability.

Simultaneous control charts refer to plots that provide graphical expressions
for a potpourri of statistics used in describing a process. Examples of this type of
control chart include those proposed by White and Schroeder (1987) and Iglewicz
and Hoaglin (1987) which use boxplots to express the information gathered at
the subgroup level. These additions to the literature are representative of an
ongoing series of improvements (e.g., Hackl and Ledolter (1991)) made to the
original control charts developed by Shewhart (1931).
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Boxplots are very informative but can be overpowering. Unless users are
familiar with the plots, the vast amount of information contained in a single
plot can be confusing. Proposed additions to the charts regarding robust and
resistant measures only serve to further clutter the inferences drawn. In the hands
of an experienced data analyst boxplots and the proposed resistant and robust
measures can be enlightening. However they may only serve to detract from the
general inferences required on the manufacturing floor. Due to their complexity,
boxplots are rarely performed by hand. In those cases where a computer is
available or where the data acquisition is automated, boxplots may be quite
convenient; however, it is unlikely that the boxplot style of simultaneous control
chart will see application on the manufacturing floor. Other drawbacks which
limit the use of boxplot style simultaneous charts include their inability to deal
with (i) small sample sizes, (ii) control limits for any measure of dispersion and
(iii) multi-characteristic processes.

There is an abundance of other newly developed control charts and proce-
dures designed to enhance the analysis of a process; most however do not re-
flect the current changes in quality assurance as pointed out in Woodall (1985).
No longer is “conforming to specifications”, without a nominal value, sufficient.
Both proximity to target and process variability are of concern in today’s quality.
The proposed procedures attempt to adopt this philosophy by monitoring both
proximity to target and process variability in a simultaneous control chart while
avoiding some of the drawbacks associated with boxplot styled charts. The tech-
niques used are similar to the traditional control charts outlined by Shewhart
with the added advantage of appearing on a single plot. Control chart constants
for the proposed measures are easily determined for sample sizes of 2 and larger,
providing the practitioner with small sample simultaneous control chart proce-
dures not available with boxplot techniques. The proposed control chart also
includes discernible control limits for a measure of dispersion at the subgroup
level and is easily extended to those cases where more than one variable will be
used in monitoring the process. The procedure is straightforward and can be
carried out by employees whose major task is to monitor and adjust the pro-
cess. The plots can be produced by hand requiring only the aid of a hand-held
calculator.

2. The Procedure

Letting x1, . . . , xn represent a subgroup of n observations, traditional She-
whart control charts monitor process location and process variability by tracking
x̄ and the range (R) (or standard deviation (S)) at each subgroup. The control
limits for the subgroup means (i.e., x̄’s) are of the form ¯̄X ± A2R̄ or ¯̄X ± A3S̄

where A2, A3 are statistically determined constants, ¯̄X = k−1 ∑k
j=1 x̄j is the
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mean of the k subgroup means, R̄ = k−1 ∑k
j=1 Rj and S̄ = k−1 ∑k

j=1 Sj are
the means of the k subgroup ranges and standard deviations respectively. The
control limits associated with the subgroup range and the subgroup standard
deviation are of the form D3R̄ and D4R̄ or B3S̄ and B4S̄ respectively where
D3,D4, B3 and B4 are also statistically determined constants.

For each subgroup of n observations, the proposed measures of process per-
formance are derived from the mean square error (MSE) around the target value.
The measures monitored will be (x̄ − T )2 and MSE = (n − 1)−1 ∑n

i=1(xi − T )2

(the sample variance S2 = (n − 1)−1 ∑n
i=1(xi − x̄)2 will receive occasional at-

tention) where T denotes the target value of the process. Assuming the process
measurements are N(µ, σ2), the control limits associated with the measures will
be (i) Aσ2 for (x̄ − T )2, (ii) Cσ2 for MSE and (iii) Bσ2 for S2 where A,B and
C are constants derived from the statistical distributions associated with each of
the measures. Only upper control limits are discussed for each of the suggested
process summaries as small values of these measures are considered desirable.

Assuming X ∼ N(µ, σ2) it follows that (x̄ − T )2 ∼ n−1σ2χ2
1,λ (Johnson and

Kotz (1970)), where χ2
1,λ denotes the non-central chi-square distribution with

one degree of freedom (df) and non-centrality parameter λ = n[(µ − T )/σ]2.
Defining the UCL to be the (1 − α)100% percentile of the distribution function
associated with (x̄ − T )2 results in UCL(x̄−T )2 = n−1σ2χ2

1,λ,(1−α) = Aσ2. In
order to determine A for a particular process, [(µ − T )/σ]2 must be known. In
practice, ¯̄X = k−1 ∑k

j=1 x̄j and S̄2 = k−1 ∑k
j=1 S2

j , where k denotes the number
of subgroups and x̄j , S

2
j the sample mean and variance of the jth subgroup, are

substituted for µ and σ2 respectively (Shewhart (1931)).
The MSE will follow a (n−1)−1σ2χ2

n,λ distribution with n df and λ = n[µ−
T )/σ]2. Analogous to the UCL for (x̄−T )2, UCLMSE = (n−1)−1σ2χ2

n,λ,(1−α) =

Cσ2. ¯̄X and S̄2 will again be substituted for µ and σ2 respectively resulting
in UCL for MSE of the form UCLMSE = CS̄2. The SAS (1994) code for
calculating C is CINV ((1−α), n, λ)/(n−1), which for (1−α) = 0.9973 provides
values of C for various λ and n.

S2 will be distributed as σ2χ2
n−1,0, where χ2

n−1,0 denotes the central Chi-
square (i.e., λ = 0) distribution resulting in UCLS2 = (n− 1)−1σ2χ2

n−1,0,(1−α) =
Bσ2. The UCLS2 depends upon the value of the population parameter σ2 which
will be estimated by S̄2, resulting in UCLS2 = BS̄2. B can be calculated using
CINV ((1 − α), (n − 1), 0)/(n − 1) (SAS (1994)) for values of n. The value of
B associated with (1 − α) = 0.9973 results in a more stringent UCL than those
associated with the traditional S charts as only the lower control limit for S2

is used. In doing so we effectively make the control chart a single-tailed prob-
lem. Identification and investigation of “sharp” declines in subgroup variation is
encourage, but not viewed as an “error”.
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The procedure for creating the proposed plots is similar to that of traditional
X̄ and S charts. The subgroup means and variances, x̄ and S2, as well as ¯̄X and
S̄2 must be determined. In addition the practitioner must determine (x̄ − T )2

for each subgroup, noting the cases where x̄ < T and calculating the MSE for
each subgroup using (S2 +(n/(n−1))(x̄−T )2). Finally the UCL for each of the
measures must be found using the appropriate algorithms presented above.

The suggested plotting strategy is to first plot the values of (x̄−T )2 for each
subgroup along with the UCL(x̄−T )2 . The plotting characters “−” for x̄ < T

and “+” for x̄ ≥ T are suggested when plotting the subgroup values of (x̄ − T )2

as they will be of assistance in identifying any trends which may be obscured
through examining squared differences form the target. The plotting characters
will also be used in conjunction with the detection rules discussed in Section 7
to assist the practitioner in identifying systematic runs and trends.

The practitioner then plots the MSE and the UCL for both S2 and MSE.
The plotting characters used here are of little consequence as any trends that
may occur should be obvious regardless of the plotting characters used. Plotting
the MSE rather than S2 is suggested, as the MSE must always be greater than
or equal to (x̄ − T )2 for each subgroup. This is not neccesarily the case for S2.
In the case of successive subgroups (i.e., ith and ith+1) where (x̄−T )2i is greater
than S2

i and (x̄− T )2i+1 less than S2
i+1 the plots will overlap and may clutter the

graphical inference.
Similar to the standard control charts, those subgroups with either (or both)

of the proposed measures above the appropriate UCL should be highlighted and
investigated. As well, if any sharp declines, unusual trends or actions appear
they too should be investigated. Any decisions and actions made at this stage
will be similar to those taken for the traditional control charts. If for example
the subgroup means appear to be drifting away from the target (i.e., (x̄ − T )2

is moving away from 0) or if the overall variability is changing in a systematic
fashion, the process should be investigated. Trend and run rules that will assist
in identifying systematic shifts in the process are discussed in Section 7.

In some subgroups it may occur that both MSE and (x̄ − T )2 are within
their respective control limits but S2 exceeds its UCL (this can only occur when
the (x̄− T )2 is small and S2 large). In cases such as this, the difference between
plotted points (x̄ − T )2 and MSE will be large indicating that S2 is large. To
prevent practitioners from missing significant increases in the variability of a
process (i.e., significant increases in S2), it is suggested that the UCLS2 be used
as a “warning limit” for the MSE. That is, for all subgroups where the MSE

exceeds the UCLS2, but is less than the UCLMSE, S2 should be included in the
plot. For clarity, a different plotting symbol for S2 is suggested for this situation.
In those cases where the MSE > UCLMSE practitioners should plot S2 in order



UCLMSE

UCL
S2

UCL
(x̄−T )2

Figure 1. Alternate variables control chart for Braverman example.

From Figure 1 we see that none of the subgroups exceed the UCL for (x̄−T )2

with most appearing to be close to 0 indicating reasonable proximity to the target.
Subgroups 7, 12 and 26 have the largest departures from the target but are within
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the control limits. Nineteen of the subgroups have sampling means below the
target as denoted by the negative signs. The longest sequence of similar signs is
five (subgroups 1 to 5), indicating that the longest run of subgroup means either
above or below (in this case below) the target is five. There does not appear to be
any significant drifting from the target nor does there appear to be any cyclical
relationships occurring. However before any formal inferences can be drawn the
MSE for each subgroup must be investigated.

None of the subgroups exceed the UCL for MSE, but subgroup 15 has a
MSE that exceeds the UCL for S2. Closer investigation finds (x̄ − T )2 to be
small for subgroup 15 resulting in a large S2 (i.e., S2

15 = 252.250) which exceeds
the UCLS2 = 228.5 suggesting that the process variance has increased and the
process should be examined for assignable cause. Analysis of the rest of the
plot follows in a predictable fashion. Subgroups 14, 24 and 28 require further
investigation as they appear to have small variability as well as being quite close
to the target. Additional information such as individual deviations from the
target for subgroup 15, for example, may prove interesting and can easily be
added to the plot.

4. The Multivariate Case

The methods and sampling schemes used to gather information in the mul-
tivariate case are assumed identical to the univariate case where subgroups con-
sisting of n samples are drawn periodically from the process. In the general
multivariate case, a set of p characteristics is measured on each sampling unit
and recorded in a p-dimensional vector X

˜
′ = [x1, . . . , xp] with each xi represent-

ing the numerical value associated with one of the p quality characteristics. The
subgroup mean in the multivariate case (X̄

˜
) will be a vector of means of the form

X̄
˜
′ =

[
n−1

n∑
i=1

X
˜ i

]′
=

[
n−1

n∑
i=1

x1i, . . . , n
−1

n∑
i=1

xpi

]
.

Assuming k subgroups, the grand mean ( ¯̄X
˜

) is also a vector which for the p-
variable case is

¯̄X
˜
′
=

[
k−1

k∑
j=1

X̄
˜ j

]′
=

[
(nk)−1

k∑
j=1

n∑
i=1

x1ij , . . . , (nk)−1
k∑

j=1

n∑
i=1

xpij

]
.

The target will be a vector T
˜
′ = [T1, . . . , Tp], with Ti the target value for the ith

variable.
The measure T̃p = (X̄

˜
−T

˜
)′Σ−1(X̄

˜
−T

˜
), with Σ denoting the covariance ma-

trix, is used to assess proximity to the target value. For each of the k subgroups,
(X̄
˜
− T

˜
)′Σ−1(X̄

˜
− T

˜
) provides a scalar measure of proximity to the target. As
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the center of mass (X̄
˜

) drifts from the target (T
˜
), the generalized distance T̃p

will reflect these departures by increasing in magnitude. Increasing values of T̃p

reflect greater departures from the target while small values (minimum of zero)
reflect close proximity to the target. T̃p can be determined for each subgroup
and will be used to monitor the process’s proximity to the target. This multi-
variate analogue of (x̄ − T )2/σ2 uses generalized Mahalanobis (1936) distances
in assessing the process’s ability to produce at the target. In the univariate case
(x̄−T )2 is the measure of interest and the process variability (i.e., σ2) is reflected
in the control limits. In the multivariate case the dispersion is incorporated in
the actual measurement rather than being reflected in the control limits.

The proposed multivariate measure of variability within a subgroup is MSEp

= (n− 1)−1 ∑n
i=1(X˜ i − T

˜
)′Σ−1(X

˜ i − T
˜
) which assesses the amount of dispersion

around the target within each subgroup. MSEp confounds proximity to the
target and the inherent variability within a subgroup in a single measure but can
be partitioned into (n−1)−1 ∑n

i=1(X˜ i−X̄
˜

)′Σ−1(X
˜ i−X̄

˜
) and (X̄

˜
−T

˜
)′Σ−1(X̄

˜
−T

˜
),

with the first component being a measure of dispersion around the subgroup mean
and the second the proposed measure of proximity to the target within a subgroup
(T̃p). The measures used to monitor the process are (i) T̃p = (X̄

˜
−T

˜
)′Σ−1(X̄

˜
−T

˜
),

(ii) MSEp = (n − 1)−1
n∑

i=1

(X
˜ i − T

˜
)′Σ−1(X

˜ i − T
˜
) and

(iii) S2
p = (n − 1)−1

n∑
i=1

(X
˜ i − X̄

˜
)′Σ−1(X

˜ i − X̄
˜

).

The upper control limits for the proposed multivariate measurements are
based on the assumption that the process measurements (i.e., p-dimensional vec-
tors) are multivariate normal variates with mean vector µ

˜
and dispersion matrix

Σ (i.e., MVNp(µ
˜
,Σ)). The UCL will be of the form UCLT̃p

= n−1χ2
p,λ,(1−α) = D.

The SAS (1994) code for calculating D is CINV ((1 − α), p, λ)/n and will pro-
duce D for various λ, p and n when (1 − α) = 0.9973. The UCL for MSEp

will be UCLMSEp = (n − 1)−1χ2
np,λ,(1−α) = E. The SAS (1994) code for calcu-

lating E is CINV ((1 − α), np, λ)/(n − 1) and will provide E for values of λ,
p and n when (1 − α) = 0.9973. In both cases the non-centrality parameter is
defined to be λ = n(µ

˜
− T

˜
)′Σ−1(µ

˜
− T

˜
). Analogous to the univariate case and

consistent with techniques used in Shewhart charts, ¯̄X
˜

and S̄
˜

will be substiuted
for µ

˜
and Σ where S̄

˜
= k−1 ∑k

j=1 S
˜j , and S

˜j = n−1 ∑n
j=1(X˜ i − X̄

˜
)(X

˜ i − X̄
˜

)′ for
j = 1, . . . , n. The UCL for S2

p will be UCLS2
p

= (n − 1)−1χ2
(n−1)p,(1−α) = F and

can be calculated using CINV ((1−α), (n−1)p, 0)/(n−1) for values of p, (1−α)
and n. Note that when p = 1, the multivariate measures and their associated
control limits are analogous to their univariate counterparts outlined in Section
2, differing only by where the dispersion is incorporated in the calculations.



280 FRED A. SPIRING AND SMILEY W. CHENG

The proposed plotting strategy is to determine and then sketch the control
limits UCLT̃p

, UCLs2
p

and UCLMSEp on the chart. The limits are a function of
the subgroup sample size (n), number of quality characteristics considered (p),
the degree of off-targetness ((µ

˜
−T

˜
)′Σ−1(µ

˜
−T

˜
)), and the level of significance (α)

desired. Unlike the univariate and Shewhart procedures, the limits are completely
specified once n, α, and (µ

˜
− T

˜
)′Σ−1(µ

˜
− T

˜
) are known. In essence the limits

in the univariate procedures are also known once the sample size and level of
α are fixed, however traditional procedures incorporate the overall measure of
dispersion in the control limits rather than the measurement, making plotting
and calculating somewhat simpler.

The plotting characters used in the multivariate case are of little consequence
and any useful character can be used. The MSEp rather than S2

p is used to
monitor dispersion within a subgroup, as the MSEp must always be greater than
or equal to T̃p resulting in no crossovers in the plot. As a result it is suggested
that only T̃p and MSEp be plotted for each subgroup and S2

p added in those cases
where MSEp exceeds either the UCLS2

p
or UCLMSEp. Inferences drawn will be

similar to those inferences drawn from the multivariate control charts based on
Hotelling’s T 2 (Hotelling (1947)) as discussed by Alt (1986).

5. Multivariate Example

Sultan (1986) discusses a problem from a steel manufacturing process that
measured the Brinnel hardness (x) and tensile strength (y) for 30 samples. To
illustrate the multivariate control chart procedure the 30 samples of the form
(x, y)′ were aligned in subgroups of five using the sequential sample numbers.

Subgroups

1 2 3 4 5 6
1 143, 6 178, 11 175, 16 182, 21 160, 26 195,

34.2 51.5 57.3 57.2 45.5 58.0
2 200, 7 162, 12 187, 17 177, 22 183, 27 134,

57.0 45.9 58.5 50.6 53.9 45.7
3 160, 8 215, 13 187, 18 204, 23 179, 28 187,

47.5 59.1 58.2 55.1 51.2 42.0
4 181, 9 161, 14 186, 19 178, 24 194, 29 135,

53.4 48.4 57.0 50.9 57.7 40.5
5 148, 10 141, 15 172, 20 196, 25 181, 30 159,

47.8 47.3 49.4 57.9 55.6 58.0

From the subgroup information, ¯̄X
˜

=
[174.67

51.80

]
and S̄

˜
=

[332.13 67.48
67.48 29.62

]
which

when substituted for µ
˜

and Σ results in n−1λ = ( ¯̄X
˜
− T

˜
)′S̄

˜
−1( ¯̄X

˜
− T

˜
) = 0.6174
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S2

UCL
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Figure 2. Simultaneous multivariate control chart.

6. Properties

The run length of a control procedure is defined to be the number of sam-
pling periods observed before an out-of-control signal arises, with the average run
length (ARL) used to describe the performance of the control procedure. The
ARLs for (x̄− T )2 and MSE can be determined assuming the process measure-
ments are N(µ0, σ

2
0) for (i) subgroups of size n, (ii) perturbations from the target

of (µ − T )2 and (iii) variance inflaters β (i.e., βσ2
0) for various “steady states”

(i.e., λ0 = n(µ0 − T )2/σ2
0) using

ARLMSE = 1/{1−Pr(MSE > UCLMSE|MSE ∼ βσ2
0(n−1)−1χ2

n,n(µ−T )2/(βσ2
0),

UCLMSE = σ2
0(n − 1)−1χ2

n,λ0
(0.9973))},

where χ2
n,λ0

(0.9973) and χ2
1,λ0

(0.9973) represent the value of χ2 variates associ-
ated with (1−α) = 0.9973. The resulting ARLs provide insights into how quickly
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we expect the charting procedure to identify shifts in the proximity to the target
and/or changes in the MSE.

The ARLs for various values of β (representing a change in the variabil-
ity) and (µ − T )2 (representing a shift in location) provide performance as-
sessment of the Alternate Variables Control chart that can be investigated and
compared with other charting procedures. The ARLs can be determined using
(1 − PROBCHI(CINV ((1 − α), df, n∗mtstead)/b, df, (n∗mtpert)/b))∗∗(−1) for
subgroups of size n, variance inflaters b, “steady state” deviations from the target
mtstead (i.e., (µ0−T )2 in units of σ2

0), perturbations from the target mtpert (i.e.,
(µ − T )2 in units of σ2

0) and df = 1 for the (x̄ − T )2 chart and df = n for the
MSE chart.

The ARLs provide insights into the strengths and weaknesses of the con-
trol chart procedures. In the case of the Alternate Variables Control chart the
ARLs suggest that the procedure’s ability to identify changes in the process are
comparable to the abilities of the Shewhart procedures. For example, the ARL
associated with the (x̄ − T )2 chart when the process is in-control and centered
at the target (i.e., β = 1, (µ − T )2 = 0 and λ0 = 0) is 370.4 for all subgroup
sizes, which is identical to the ARL for Shewhart’s x̄ chart when the process is
in-control. On the other hand, a process whose “steady state” is such that it is
centered

√
0.5 standard deviations from the target (i.e., (µ0−T )2/σ2

0 = 0.5), has
an ARL of 71.3 associated with a shift in location of 1 standard deviation (i.e.,
(µ − T )2/σ2

0 = 1) when using subgroups of size 4 . The equivalent ARL for the
Shewhart Chart is between 120 and 200 (Champ and Woodall (1987)).

The ability of the Alternate Variables Control chart to detect changes in the
process varies by situation. For example, in the “steady state” case where the
process is centered 1 standard deviation from the target (i.e., (µ0 − T )2/σ2

0 = 1)
and where the process remains centered 1 standard deviation (i.e., (µ−T )2/σ2

0 =
1) from the target, as indicated earlier the ARL for subgroup size 3 is 370.4.
This result suggests that the average number of subgroups of size 3 encountered
prior to an out-of-control signal (where the process remains centered 1 standard
deviation from the target) is 370.4. The ARL associated with the Alternate
Variables Control Chart in the case where the same process experiences a shift
such that it is now centered at the target (i.e., (µ − T )2/σ2

0 = 0) is 2640.9
suggesting that the chart’s ability to detect a process’s shift closer to the target
is poor. This particular process shift may be more quickly identified through the
use of supplemental detection rules (see Section 7). The ARLs associated with
the MSE portion of the chart provide similar insights as to how quickly shifts in
the variability and/or proximity to the target are picked up by the MSE portion
of the chart.
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7. Detection Rules

Several of the common detection rules used to enhance the ARLs of the
Shewhart procedures can be adapted for use with the Alternate Variables Control
chart procedures. The adapted Western Electric (1956) Handbook’s Test for (i)
two out of three consecutive points between µ + 2σ and µ + 3σ (or µ − 2σ and
µ − 3σ) becomes two out of three consecutive points between the 95.44% and
99.73% percentiles; (ii) four out of five consecutive points between µ + 1σ and
µ+3σ (or µ−1σ and µ−3σ) becomes four out of five consecutive point between the
68.26% and 99.73% percentiles (iii) six consecutive points increasing or decreasing
becomes six consecutive points with the same sign and either steadily increasing
or decreasing; and (iv) fifteen points in the interval (µ ± 1σ) becomes fifteen
consecutive points inside the 68.26% percentile.

The multipliers used in determining the 68.26% and 95.44% for the (x̄−T )2

chart (A6826, A9544) and MSE chart (C6826, C9544) can be calculated using
CINV ((1−α), 1, λ)/n in the case of A and CINV ((1−α), n, λ)/(n− 1) in the
case of C using (1−α) = 0.6826 and (1−α) = 0.9544 respectively (SAS (1994)).
The 68.26% and 95.44% for the (x̄ − T )2 chart become A6826σ2 and A9544σ2

and can be calculated using A6826S̄2 and A9544S̄2. Similarly the 68.26% and
95.44% for the MSE are C6826σ2 and C9544σ2 and calculated using C6826S̄2

and C9544S̄2.
The detection rules outlined have similar probabilistic interpretations of the

Western Electric rules. Rules (i), (ii) and (iv) have identical probabilistic inter-
pretations of the equivalent Western Electric rules, while rule (iii) has similar
but not exact probability interpretations. If µ �= T then the probability of oc-
currence for Rule (iii) will be slightly larger or smaller than the Western Electric
rules depending on the magnitude and sign of (µ − T ).

8. Multivariate ARLs, Masking and Identifying Assignable Causes

The proposed multivariate version of the Alternate Variables Control chart
summarizes the behaviour of a process with respect to multidimensional targets
and dispersion. Analogous to the univariate case the ARLs associated with the
multivariate procedures provide insights into the ability of the charting proce-
dures to detect shifts in the process. Assuming the process measurements are
MVNp(µ

˜0
,Σ0) the ARLs associated with T̃p and MSEp for (i) subgroup sizes n,

(ii) process perturbations λpert and “steady states” λucl can be defined as

ARLT̃p
= 1/

{
1 − Pr(T̃p > UCLT̃p

|T̃p ∼ n−1χ2
p,nλpert

,

UCLT̃p
= n−1χ2

p,nλucl
(0.9973))

}
,
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ARLMSEp = 1/{1 − Pr(MSEp > UCLMSEp|MSEp ∼ (n − 1)−1χ2
np,nλpert

,

UCLMSEp = (n − 1)−1χ2
np,nλucl

(0.9973))},

where λpert = (µ
˜
− T

˜
)′Σ−1(µ

˜
− T

˜
) represents perturbations resulting from shifts

in proximity to the target and/or a changes in the dispersion matrix experienced
by the process and λucl = (µ

˜0
− T

˜
)′Σ−1

0 (µ
˜0

− T
˜
) represents the degree of off-

targetness associated with the process when in-control. The SAS (1994) code
(1 − PROBCHI(CINV ((1 − α), df, n∗lucl), df, (n∗lpert)))∗∗(−1) produces the
ARLs associated with subgroups of size n, dimension p, “steady states” of lucl,
perturbations of lpert and df = p for the T̃p chart and df = np for the MSEp

chart.
Although the proposed multivariate procedures allow users to detect simul-

taneous movements that may not be uncovered by univariate charts, situations
may arise where the procedures mask univariate movements. For example, it may
occur that one process variable moves closer to its target while simultaneously a
second variable moves further from its target, but the values of T̃p and MSEp are
unchanged. If practitioners suspect such a situation they may wish to examine
the univariate Alternate Variables Control charts for the individual variables.
Alternatively practitioners may wish to examine subsets of the p quality vari-
ables simultaneously or attach more importance to particular variables and less
to others within the set of p quality variables. The contributions of individual
quality variables, subsets of the p quality variables or weighted subsets of the
quality variables can be examined using the proposed multivariate procedures in
conjunction with a weight function.

The weight function is a p × p diagonal matrix where wi represents the
weight assigned to the ith quality variable such that 0 < wi < p for all i

and
∑p

i=1 wi = p. The resulting measures T̃p|w, MSEp|w and S2
p|w become

(X̄
˜

− T
˜
)′W

˜
′Σ−1W

˜
(X̄
˜

− T
˜
), (n − 1)−1 ∑n

i=1(X˜ i − T
˜
)′W

˜
′Σ−1W

˜
(X
˜ i − T

˜
), and

(n−1)−1 ∑n
i=1(X˜ i−X̄

˜
)′W

˜
′Σ−1W

˜
(X
˜ i−X̄

˜
) respectively and provide practitioners

with the ability to attach more or less importance to various quality character-
istics in the multivariate setting.

Several authors have examined methods for examining and decomposing a
variable’s (or group of variables) contribution in a multivariate setting (e.g.,
Hawkins (1993)). The proposed weighting method allows practitioners to attach
more or less importance to the individual quality characteristic by decreasing
or increasing the individual weights assigned to each. The weight function ef-
fectively alters the regions that will produce values of T̃p|w, MSEp|w and S2

p|w
that fall below the respective UCLs previously established. These regions will in
general be p-dimensional ellipsoids whose axes and shape are altered by changes



W2

W1
X2 T

˜

X̄
˜

X1

Figure 3. Bivariate bounds for X̄
˜ 1 for UCLT̃p|w = 4.435 using W1 =

(1 0
0 1

)

and W2 =
(1.5 0

0 0.5

)

When used in this fashion, the weight function effectively alters the covari-
ance structure and the resulting measurement region responsible for values of
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T̃p|w below the UCLT̃p|w
. A weight function with w1 = 2.0, w2 = 0 in the bi-

variate case applies all the influence or weight to x2 while the one with w1 = 0,
w2 = 2.0 applies the entire influence to x1. Increasing the differences among
the wi’s allows the practitioner to shift the influence of the individual charac-
teristics, in turn allowing practitioners to decompose and examine the process
measurements in various ways.

9. Comments

A simultaneous control chart has been presented that mirrors recent changes
in quality assurance. The proposed chart is analogous to the traditional X̄ and
S chart providing much of the information available from the traditional con-
trol charts while incorporating additional pertinent information. The additional
information has been incorporated in a single plot. The calculations required
for the univariate case are straightforward requiring only a hand-held calculator.
The procedure is easily adapted to computer analysis and graphics.

Many of the properties derived and examined for the traditional control
charts apply to the new procedure as the measures used are similar in nature.
The (x̄ − T )2 portion of the chart allows the practitioner to assess the stability
of the location of the process while also providing an assessment of proximity
to the target. The MSE portion provides an assessment of the stability of the
variability of the process. Replacing the target value in the new procedure with
¯̄X results in a plot that provides all the information included in the traditional
control chart. However in current philosophy emphasis is placed on proximity to
the target value when monitoring a process.

The simultaneous nature of the proposed procedure has been achieved with-
out substituting clarity. The resultant control chart purveys more information
than is available in traditional charts while not being dramatically different from
the traditional charts in their motivation or inference. Although the new pro-
cedure does not provide all the information that may be contained in a boxplot
style chart, it does have features such as (i) explicit boundary values for S2 and
MSE and (ii) small sample results that are unavailable in boxplot procedures.

The proposed multivariate procedure is similar to the traditional Hotelling
T 2 style of chart but results in a plot that allows investigation of both proximity
to the target and overall variability where as Hotelling’s procedure confounds
these measures. The motivation for the multivariate chart is identical to that
for the univariate chart as is also the case for the inferences. The performance
of the multivariate chart provides users with serious alternatives to current mul-
tivariate charts as their ARLs are similar to those of the univariate Shewhart
charts. Detection and weighting rules designed to enhance the performance of
the multivariate charting procedures need to be developed.
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