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INCAPABILITY INDEX WITH ASYMMETRIC TOLERANCES

K. S. Chen

National Chin-Yi Institute of Technology

Abstract: Greenwich and Jahr-Schaffrath (1995) introduced an index Cpp, a simple

transformation of the index C∗
pm, which provides an uncontaminated separation

between information concerning the process accuracy and process precision. Un-

fortunately, the index Cpp inconsistently measures process capability in many cases

and thus reflects process potential and performance inaccurately. In this paper,

we consider a generalization, C′′
pp, to handle processes with asymmetric tolerances.

The generalization is shown to be superior to the original index Cpp. In addition,

we investigate the statistical properties of a natural estimator of C′′
pp assuming the

process is normally distributed.
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1. Introduction

Numerous process capability indices have been proposed to provide a unitless
measure on whether a process is capable of producing items meeting the quality
requirement preset by the product designer. The most commonly used measures
of process capability indices are Cp and Cpk (see Kane (1986)). As noted by
Boyles (1991), Cp and Cpk are yield-based indices which are independent of the
target T , which may fail to account for process centering (the ability to cluster
around the target). Chan, Cheng, and Spiring (1988) developed an index called
Cpm which takes into account the target value. This index is defined as the
following:

Cpm =
USL − LSL

6
√

σ2 + (µ − T )2
=

d

3
√

σ2 + (µ − T )2
,

where µ is the process mean and σ is the process standard deviation, T is the
target value, d = (USL−LSL)/2, USL is the upper specification limit, and LSL

is the lower specification limit.
The index Cpm is also generalized to C∗

pm to handle processes with asymmet-
ric tolerances. The generalization C∗

pm is defined as (Chan, Cheng, and Spiring
(1988)):

C∗
pm =

min(Dl,Du)
3
√

σ2 + (µ − T )2
=

d∗

3
√

σ2 + (µ − T )2
,

where Dl = T − LSL, Du = USL − T , d∗ = min(Dl,Du).
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Greenwich and Jahr-Schaffrath (1995) considered a simple transformation of
the index C∗

pm called Cpp which was defined as:

Cpp = (
µ − T

D
)2 + (

σ

D
)2,

where D = d∗/3. Greenwich and Jahr-Schaffrath (1995) defined the inaccuracy
index Cia = (µ − T )2/D2 and imprecision index Cip = σ2/D2. Thus, Cpp =
Cia + Cip.

For Cpp, consider the following example with asymmetric tolerance (LSL, T ,
USL), where T = {3(USL) + (LSL)}/4 and σ = d/3. Then for processes A
and B with µA = T − d/2 = m (the midpoint of the specification interval) and
µB = T + d/2 = USL, both have the index value of Cpp = 13 and equal degree
of clustering around the target (as |µ − T | = d/2 for both processes A and B).
However, the expected proportions non-conforming are approximately 0.27% for
process A and 50% for process B. Clearly, Cpp inconsistently measures process
capability in this case and is inappropriate for those with asymmetric tolerances.
This problem calls for a need to generalize the index Cpp to cover cases with
asymmetric tolerances so that appropriate use of the incapability index can be
continued.

2. New Incapability Index C ′′
pp

In this section, we consider a new generalization of Cpp to handle processes
with asymmetric tolerances. We refer to this generalization as C ′′

pp, which may
be defined as:

C ′′
pp = (

A

D
)2 + (

σ

D
)2,

where A = max{(µ − T )d/Du, (T − µ)d/Dl}. Let (A/D)2 be denoted by C ′′
ia.

Then C ′′
pp = C ′′

ia+Cip. If the tolerances are symmetric (T = m), then A = |µ−T |,
C ′′

ia reduces to the index Cia and C ′′
pp = Cpp.

In developing the generalization we have replaced the term |µ − T | in Cpp

by A. This ensures that the new index obtains the minimal value at µ = T

regardless of whether the tolerances are symmetric or asymmetric. For processes
with asymmetric tolerances, the corresponding loss function is also asymmetric
in T . We take into account the asymmetry of the loss function by adding the
factors d/Du and −d/Dl to µ− T according to whether µ is greater or less than
T . The factors d/Du and −d/Dl ensure that if processes A and B with µA > T

and µB < T satisfy (µA − T )/Du = (T − µB)/Dl, then the index values given to
A and B are the same. It is easy to verify that if the process is on target, then
C ′′

pp = Cip = (σ/D)2 is the minimum value.
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Table 1. A comparison between Cpp and C′′
pp (with fixed σ = d/4).

µ Cpp Cia Cip C′′
pp C′′

ia

LSL 83.25 81.00 2.25 38.25 36.00
T − 1.45d 77.94 75.69 2.25 35.89 33.64
T − 1.40d 72.81 70.56 2.25 33.61 31.36
T − 1.35d 67.86 65.61 2.25 31.41 29.16
T − 1.30d 63.09 60.84 2.25 29.29 27.04
T − 1.25d 58.50 56.25 2.25 27.25 25.00
T − 1.20d 54.09 51.84 2.25 25.29 23.04
T − 1.15d 49.86 47.61 2.25 23.41 21.16
T − 1.10d 45.81 43.56 2.25 21.61 19.36
T − 1.05d 41.94 39.69 2.25 19.89 17.64
T − 1.00d 38.25 36.00 2.25 18.25 16.00
T − 0.95d 34.74 32.49 2.25 16.69 14.44
T − 0.90d 31.41 29.16 2.25 15.21 12.96
T − 0.85d 28.26 26.01 2.25 13.81 11.56
T − 0.80d 25.29 23.04 2.25 12.49 10.24
T − 0.75d 22.50 20.25 2.25 11.25 9.00
T − 0.70d 19.89 17.64 2.25 10.09 7.84
T − 0.65d 17.46 15.21 2.25 9.01 6.76
T − 0.60d 15.21 12.96 2.25 8.01 5.76
T − 0.55d 13.14 10.89 2.25 7.09 4.84
T − 0.50d 11.25 9.00 2.25 6.25 4.00
T − 0.45d 9.54 7.29 2.25 5.49 3.24
T − 0.40d 8.01 5.76 2.25 4.81 2.56
T − 0.35d 6.66 4.41 2.25 4.21 1.96
T − 0.30d 5.49 3.24 2.25 3.69 1.44
T − 0.25d 4.50 2.25 2.25 3.25 1.00
T − 0.20d 3.69 1.44 2.25 2.89 0.64
T − 0.15d 3.06 0.81 2.25 2.61 0.36
T − 0.10d 2.61 0.36 2.25 2.41 0.16
T − 0.05d 2.34 0.09 2.25 2.29 0.04
T 2.25 0.00 2.25 2.25 0.00
T + 0.05d 2.34 0.09 2.25 2.61 0.36
T + 0.10d 2.61 0.36 2.25 3.69 1.44
T + 0.15d 3.06 0.81 2.25 5.49 3.24
T + 0.20d 3.69 1.44 2.25 8.01 5.76
T + 0.25d 4.50 2.25 2.25 11.25 9.00
T + 0.30d 5.49 3.24 2.25 15.21 12.96
T + 0.35d 6.66 4.41 2.25 19.89 17.64
T + 0.40d 8.01 5.76 2.25 25.29 23.04
T + 0.45d 9.54 7.29 2.25 31.41 29.16
USL 11.25 9.00 2.25 38.25 36.00
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3. Comparisons

In this section, the generalization C ′′
pp is compared with the original index

Cpp in terms of a process characteristic considered by Choi and Owen (1990).
We consider the following example with manufacturing specifications LSL =
T − 1.50d, USL = T + 0.50d.

Table 1 displays the values of Cpp, Cia, Cip, C ′′
pp, and C ′′

ia for various values of
µ, with fixed σ = d/4. We note that Cpp and Cia have the minimum value at the
target. But their values at the upper specification limit (say, when the expected
proportions non-conforming is 50%) are equal to those at the mid-point m. These
indices, being symmetric about the target value, do not take into account the
location of the process mean. On the other hand, our new index takes into
account the location of the process mean for asymmetric tolerances. Thus, given
two processes A and B with µA > T and µB < T satisfying (µA −T ) = (T −µB)
and Dl > Du, B has significantly higher yield than A, so the (new) incapability
index value of A is greater than the index value of B. For example, in Table 1
C ′′

pp = 38.25 for µA = T + 0.5d and C ′′
pp = 6.25 for µB = T − 0.5d. The two

process means have equal distance from the target, but B has significantly higher
yield than A, so intuitively A should score higher than B. Therefore, we conclude
that the proposed new incapability index C ′′

pp is superior to the original index
Cpp.

4. Estimation of C ′′
pp

We treat the case when the characteristic of the process is normally dis-
tributed. Let X1, . . . ,Xn be a random sample from a normal distribution with
mean µ and variance σ2 measuring the characteristic under investigation. To es-
timate the new incapability index C ′′

pp, we consider the natural estimator which
can be defined as follows:

Ĉ ′′
pp =

(Â)2

D2
+

S2
n

D2
,

where Â = max{d(X̄ − T )/Du, d(T − X̄)/Dl}, the mean µ is estimated by the
sample mean, X̄ = (n−1)

∑n
i=1 Xi, and the variance σ2 by the maximum likeli-

hood estimator, S2
n = (n−1)

∑n
i=1(Xi − X̄)2. For the case where the production

tolerance is symmetric, Â may be simplified as |X̄ − T |. Thus, the estimator
Ĉ ′′

pp reduces to Ĉpp = (n−1D−2)
∑n

i=1(Xi − T )2, the natural estimator of Cpp

discussed by Greenwich and Jahr-Schaffrath (1995). Consequently, we may view
the estimator Ĉ ′′

pp as a direct extension of Ĉpp. To derive the rth moment of Ĉ ′′
pp

we use reasoning inspired by Vännman (1995), who derived the expected value
for the estimators of superstructure capability indices. The derivations are given
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in the appendix from which we have the rth moment of Ĉ ′′
pp as:

E(Ĉ ′′
pp)

r =
( σ2

nD2

)r e−λ/2

2
√

π

∞∑
j=0

(Pj) × 2r × Γ
(n + j

2
+ r

)

×
{

r∑
i=0

(
r

i

)
Γ([(1 + j)/2] + i)
Γ([(n + j)/2] + i)

((
d2

u − 1
)i

+ (−1)j
(
d2

l − 1
)i
)}

,

where λ = δ2, δ =
√

n(µ − T )/σ, Pj = (
√

2δ)j/(j!), du = d/Du, and dl = d/Dl.
In particular,

E(Ĉ ′′
pp) =

((n−1)σ2

nD2

)
+
( σ2

nD2

)e−λ/2

2
√

π

∞∑
j=0

(Pj)Γ
(1 + j

2

)
(1+j)

(
d2

u+(−1)jd2
l

)
,

Var (Ĉ ′′
pp) =

( σ4

n2D4

)e−λ/2

2
√

π

∞∑
j=0

(Pj)Γ
(1 + j

2

)
(1 + j)(3 + j)

(
d4

u+(−1)jd4
l

)

−
{( σ2

nD2

)e−λ/2

2
√

π

∞∑
j=0

(Pj)Γ
(1 + j

2

)
(1 + j)

(
d2

u + (−1)jd2
l

)}2

+
(2(n − 1)σ4

n2D4

)
.

We note that the estimator Ĉ ′′
pp is biased. The bias of Ĉ ′′

pp is Bpp = E(Ĉ ′′
pp)−

C ′′
pp, and the mean squared error, which is more relevant to the analysis of pro-

cess quality, is MSE(Ĉ ′′
pp)=Var(Ĉ ′′

pp)+(Bpp)2. To explore the behavior of the
estimator Ĉ ′′

pp, the bias and the mean squared error were calculated using Maple

(a computer software) for various values of a = (µ − T )/σ, b = σ/D, du, dl,
and sample size n. For example, Table 2 displays the bias and MSE of Ĉ ′′

pp for
a = −1.0(0.5)1.0, b = 1, du = 5/4, dl = 5/6, and n = 10(10)50.

Table 2. The bias and MSE of Ĉ′′
pp for a = −1.0(0.5)1.0, b = 1, du = 5/4,

dl = 5/6, and n = 10(10)50.

a = 1.0 a = 0.5 a = 0.0 a = −0.5 a = −1.0
n bias MSE bias MSE bias MSE bias MSE bias MSE
10 0.056 2.060 0.055 0.549 0.013 0.211 −0.029 0.238 −0.031 0.383
20 0.028 1.399 0.028 0.289 0.006 0.103 −0.015 0.122 −0.015 0.194
30 0.019 1.182 0.019 0.207 0.004 0.068 −0.010 0.082 −0.010 0.130
40 0.014 1.074 0.014 0.166 0.003 0.051 −0.008 0.061 −0.008 0.098
50 0.011 1.010 0.011 0.142 0.003 0.040 −0.006 0.049 −0.006 0.078

The results in Table 2 indicate that as |a| increases, the bias and the mean
squared error also increase. Further, as the sample size increases, the bias and
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the mean squared error decrease. The bias of Ĉ ′′
pp (vs. n) are plotted in Figure

1 with a = −1.0(1.0)1.0 (from bottom to top in the plot).
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Figure 1. The bias of Ĉ′′
pp (vs. n) as plotted with a = −1.0(1.0)1.0 (from

bottom to top in the plot).

For the case where the production tolerance is symmetric, since du = dl = 1, Ĉ ′′
pp

is an unbiased estimator of C ′′
pp (Bpp = 0). The unbiased estimator depends only

on the complete, sufficient statistic (X̄, S2
n); it follows that Ĉ ′′

pp is a uniformly
minimum variance unbiased estimator of C ′′

pp. In addition, we have the rth
moment of Ĉ ′′

pp as

E(Ĉ ′′
pp)

r = E(Ĉpp)r =
( σ2

nD2

)r
∞∑

j=0

(e−(λ/2)(λ/2)j

j!

)
×
(2rΓ[(n/2) + j + r]

Γ[(n/2) + j]

)
.

To estimate the new inaccuracy index C ′′
ia, we consider the natural estimator

Ĉ ′′
ia = (Â)2/(D)2. For the case where the production tolerance is symmetric, Â

may be simplified as |X̄−T | and the estimator Ĉ ′′
ia reduces to Ĉia = (X̄−T )2/D2,

the natural estimator of Cia discussed by Greenwich and Jahr-Schaffrath (1995).
The rth moment about zero for Ĉ ′′

ia is:

E(Ĉ ′′
ia)

r =
( σ2

nD2

)r e−λ/2

2
√

π

∞∑
j=0

(Pj) × 2r × Γ(
1 + j

2
+ r)(d2r

u + (−1)jd2r
l ).



INCAPABILITY INDEX WITH ASYMMETRIC TOLERANCES 259

In particular,

E(Ĉ ′′
ia) =

( σ2

nD2

)e−λ/2

2
√

π

∞∑
j=0

(Pj)Γ(
1 + j

2
)(1 + j)(d2

u + (−1)jd2
l ).

Var (Ĉ ′′
ia) =

( σ4

n2D4

)e−λ/2

2
√

π

∞∑
j=0

(Pj)Γ(
1 + j

2
)(1 + j)(3 + j)(d4

u + (−1)jd4
l ).

−


( σ2

nD2

)e−λ/2

2
√

π

∞∑
j=0

(Pj)Γ(
1 + j

2
)(1 + j)(d2

u + (−1)jd2
l )




2

.

Table 3 displays the bias and MSE of Ĉ ′′
ia for a = −1.0(0.5)1.0, b = 1,

du = 5/4, dl = 5/6, and n = 10(10)50.
The results in Table 3 indicate that as |a| increases, the mean squared error

also increases. Further, as the sample size increases, the bias and the mean
squared error decrease. The bias of Ĉ ′′

ia (vs. n) are plotted in Figure 2 with
a = −1.0(1.0)1.0 (from bottom to top in the plot).

In the case where the production tolerance is symmetric, we have:

E(Ĉ ′′
ia)

r = E(Ĉia)r =
( σ2

nD2

)r
∞∑

j=0

(e−(λ/2)(λ/2)j

j!

)
×
(2rΓ[(1/2) + j + r]

Γ[(1/2) + j]

)
.
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Figure 2. The bias of Ĉ′′
ia (vs. n) as plotted with a = −1.0(1.0)1.0 (from

bottom to top in the plot).
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Table 3. The bias and MSE of Ĉ′′
ia for a = −1.0(0.5)1.0, b = 1, du = 5/4,

dl = 5/6 and n = 10(10)50.

a = 1.0 a = 0.5 a = 0.0 a = −0.5 a = −1.0
n bias MSE bias MSE bias MSE bias MSE bias MSE
10 0.156 1.050 0.155 0.294 0.113 0.044 0.071 0.063 0.069 0.207
20 0.078 0.507 0.078 0.134 0.056 0.011 0.035 0.028 0.035 0.100
30 0.052 0.334 0.052 0.087 0.038 0.005 0.023 0.018 0.023 0.066
40 0.039 0.249 0.039 0.064 0.028 0.003 0.017 0.013 0.017 0.049
50 0.031 0.198 0.031 0.051 0.023 0.002 0.014 0.010 0.014 0.039

The index Cip reflects the process imprecision (process variation). Greenwich
and Jahr-Schaffrath (1995) considered an unbiased estimator of Cip which can
be defined as Ĉip = S2/D2.

On the assumption of normality, Ĉip is distributed as [σ2/(n−1)D2] times a
chi-square variable with (n− 1) degrees of freedom. The rth moment about zero
for Ĉip is:

E(Ĉip)r =
( σ2

(n − 1)D2

)r ×
(2rΓ[r + (n − 1)/2]

Γ[(n − 1)/2]

)
.

In particular, E(Ĉip) = Cip and Var (Ĉip) = (2σ4)/[(n − 1)D4].
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Appendix

Theorem 1. Let X1, . . . ,Xn be a random sample from N(µ, σ2), Y =max2{duZ,
−dlZ} where Z = (n)1/2(X̄ − T )/σ is distributed as N(δ, 1) and δ = (n)1/2(µ −
T )/σ. Then Y has a weighted non-central chi-square distribution with one degree
of freedom (d.f.) and non-centrality parameter δ. The probability density function
of Y is:

fY (y) =
e−λ/2

2
√

π

∞∑
j=0

(Pj)Γ(
1 + j

2
)
(
(d−2

u )fYj (yu) + (−1)j(d−2
l )fYj(yl

)
)
,

where yu = (y/d2
u), y

l
= (y/d2

l ), and Yj is distributed as χ2
1+j . For the case where

du = dl = 1, this reduces to the probability density function of a non-central chi-
square distribution with one d.f. and non-centrality parameter δ.
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Proof. Based on the notation of theorem 1, the cumulative distribution function
of Y is:

FY (y) =
∫ √

y/du

−√
y/dl

1√
2π

exp
{
− (z − δ)2

2

}
dz.

Then

fY (y) =
e−λ/2

2
√

π

((d−2
u )

2
√

yu
× e−(yu/2) × e(δ

√
yu) +

(d−2
l )

2√y
l

× e−(y
l
/2) × e(δ

√
y

l
)
)
.

Expanding ey in power series, we have

fY (y) =
e−λ/2

2
√

π

∞∑
j=0

(Pj)Γ(
1 + j

2
)
(
(d−2

u )fYj (yu) + (−1)j(d−2
l )fYj(yl

)
)
.

Theorem 2. The rth moment about zero of Ĉ ′′
pp is:

E(Ĉ ′′
pp)

r =
( σ2

nD2

)r e−λ/2

2
√

π

∞∑
j=0

(Pj) × 2r × Γ(
n + j

2
+ r)

{ r∑
i=0

(
r

i

)
Γ([(1 + j)/2] + i)
Γ([(n + j)/2] + i)

((d2
u − 1)i + (−1)j(d2

l − 1)i)
}
.

Proof. To derive the rth moment of Ĉ ′′
pp, we introduce the notation:

1. B = σ2/(nD2),
2. K = (nS2

n)/σ2,
3. Y = max2{duZ,−dlZ}.

Assume that the process is normally distributed with mean µ and variance
σ2; then K is distributed as χ2

n−1, Y is distributed as a weighted non-central
chi-square with 1 d.f . and non-centrality parameter δ (see Theorem 1). In this
notation the estimator Ĉ ′′

pp can be rewritten as Ĉ ′′
pp = B(Y + K). Thus, the

rth moment of Ĉ ′′
pp is E(Ĉ ′′

pp)r = (B)rE(Y + K)r. Since Y is distributed as a
weighted non-central chi-square with 1 d.f . and non-centrality parameter δ, we
have:

E(Ĉ ′′
pp)

r = (B)r
e−λ/2

2
√

π

∞∑
j=0

(Pj)Γ(
1 + j

2
){E[K + (d2

u)Yj ]r + (−1)jE[K + (d2
l )Yj ]r},

where Yj is is distributed as χ2
1+j. Let ej = Yj/(K + Yj) and Wj = K +

Yj. Under the assumption of normality ej and Wj are independent random
variables (see, for instance, Johnson and Kotz (1970) or Vännman (1995)), and
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ej is distributed according to β((1 + j)/2, (n − 1)/2)). Furthermore, Wj has a
chi-square distribution with (n + j) degrees of freedom. Therefore

E(K + vYj)r = E(Wj)rE(1 + (v − 1)ej)r,

E(Wj)r =
2rΓ((n + j)/2 + r)

Γ((n + j)/2)
,

and

E(1 + (v − 1)ej)r =
r∑

i=0

(
r

i

)
(v − 1)i

Γ((1 + j)/2 + i)Γ((n + 1)/2)
Γ((n + j)/2 + i)Γ((1 + j)/2)

.

Combining the results, we can obtain the rth moment of Ĉ ′′
pp as displayed in

Theorem 2.
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