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Abstract: Recent years have witnessed heightened interest in the integration of sta-

tistical process control (SPC) and engineering process control (EPC). The present

study considers the utilization of the cumulative score (Cuscore) technique as an

interface between SPC and EPC in cases where a closed loop control is used for

process adjustment. Specifically, this study presents a scheme for the integrated

use of the Cuscore control chart with the minimum mean squared error (MMSE)

control. This study demonstrates the viability and potential advantages of this

scheme for combining SPC and EPC.
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1. Introduction

Industrial quality engineers and control engineers have embraced divergent
strategies to reduce the variability of manufacturing processes and to maintain
targeted quality characteristics. Quality engineers have employed statistical pro-
cess control (SPC) techniques (e.g., Shewhart control charts) to monitor the un-
derlying process, whereas control engineers have utilized engineering process con-
trol (EPC) techniques (e.g., Proportional-Integral-Differential control scheme) to
regulate the process. Though the objective of both SPC and EPC is to reduce
the variability of the process, the techniques differ substantially in approach.

Under Statistical Process Control (SPC), the results of an industrial process–
anything from automobile assembly to pesticide production–may be represented
as an ongoing series of data points plotted on any number of statistical control
charts. A sound process should ideally generate independently and identically
distributed (IID) random variables. However, fluctuations in this pattern may
arise even when a state of statistical control is achieved. Such disturbances are
reflected as irregular sequences of observations (runs that are above or below a
certain level) recorded on statistical control charts. When process outputs deviate
substantially from the target–when the most recently plotted point falls beyond
specified bounds on the statistical control chart–an “alarm” is triggered. In such
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situations, quality control engineers seek to identify and eliminate the causes.
Thus Hess (1989) suggests that SPC be regarded as an “open loop advisor”.

However, these statistical control charts presuppose the statistical indepen-
dence of each output observation. This assumption of independence demands a
strict level of statistical control rarely achieved in practice. In reality, various
factors–ranging from the continued presence of inertial elements to the results of
frequent sampling–result in the serial correlation of process observations. This
serial correlation skews the data reported on SPC charts and can increase the fre-
quency of “false alarms”. Consequently, the in-control average run length (ARL)
of the control charts would be much shorter than anticipated. The assumption
that observations are independent is a significant handicap for SPC techniques.

In fact, the presence of autocorrelation (remains in observations) is some-
times an indication that an EPC scheme is needed. A well tuned EPC should be
able to produce uncorrelated data as the output deviation from target. EPC does
not seek to isolate and eliminate the causes of departures from the target; EPC is
designed, instead, to compensate for disturbances in the process by continuously
adjusting the process. Though EPC can mitigate the effects of disturbances,
EPC can rarely succeed in fully compensating for significant disruptions of the
industrial process. Consequently, the process mean (or variability) may drift
considerably off target.

The present study aims to develop a technique which effectively fuses SPC
and EPC so that the system is able to detect the presence of the transient dis-
turbances in a process. A closed loop control will be discussed in this study.
Although the Shewhart and cumulative sum (Cusum) control charts are well
developed and are widely used in industry, they have some limitations. For ex-
ample, Montgomery (1996, p.314 and p.325) reported that Shewhart charts are
not sensitive to minor shifts in the process and that Cusum charts respond slowly
to large process shifts. Instead, Shao (1993) has found that the Cuscore control
chart is effective not only in detecting process shifts, but also in identifying tran-
sient disturbances. The present study further demonstrates and evaluates the
effective integration of SPC and EPC through use of the Cuscore control chart.

2. Relevant Works

Widespread recognition of the enormous potential for enhanced quality and
efficiency has fueled recent interest in the integration of SPC and EPC. Box
and Kramer (1992) provided an excellent examination of the interface between
statistical process monitoring and engineering feedback control and a thorough
comparison of statistical process control and automatic process control (APC).
Vandel Wiel, Tucker, Faltin and Doganaksoy (1992) proposed the algorithmic
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statistical process control (ASPC) as a method of reducing predictable varia-
tion; ASPC employs both feedback and feedforward control, and then monitors
the system to detect and remove the assignable causes of disturbances. Hunter
(1986) and Montgomery and Mastrangelo (1991) reported that the exponentially
weighted moving average (EWMA) approach is equivalent to the Proportional-
Integral-Differential (PID) control technique. However, MacGregor (1991) con-
tended that the EWMA approach and PID control differ substantially. Mac-
Gregor (1992) noted that because the level of the process output variable would
be a constant under the assumption of most control charts, the process should
be left alone unless a disturbance arising from an assignable cause is detected.
Tucker (1992) also argued that control rules will compensate for assignable vari-
ation if assignable cause variation could be predictable; when assignable cause
variation is unpredictable, a search for assignable causes must be made. Vander
Wiel and Vardeman (1992) indicated that Cuscore charts can be developed to
quickly signal the process level shifts, additive or innovational outliers, changes
in model parameters, and other fluctuations in the process. Wardrop and Garcia
(1992) highlighted the difficulty of designing an appropriate model for process
disturbances, which may assume a variety of forms (step change or linear change
disturbances), stem from a variety of causes, and enter the process at random
times. Their survey of various cases suggested that these disturbances cannot
be removed in many circumstances. Alwan and Roberts (1989), Montgomery
and Friedman (1989), and Montgomery and Mastrangelo (1991) have all rec-
ommended that, whenever observations are autocorrelated, an appropriate time
series model should be fitted to these observations and control charts then applied
to the residuals of the model.

Montgomery, Keats, Runger, and Messina (1994) examined the benefits of
combining SPC and EPC techniques. Their simulations demonstrated the supe-
riority of integrated use of SPC and EPC to the use of EPC alone. But while
their simulations employed the Shewhart, Cusum and EWMA control charts,
the present study focuses upon a recently developed control chart–the Cuscore
control chart.

3. Cuscore Control Chart

Box and Ramirez (1992) provided a thorough introduction to the Cuscore
control chart. Consider a model which can be written as

at = f(yt, xt,m), t = 1, 2, . . . , n, (1)

where yt is the output observation, xt is the independent variable, m is an un-
known parameter, and f() is some function. If m is the true value of the unknown
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parameter, then the resulting at’s would follow a white noise sequence. Apart
from a constant, the log likelihood for m = m0 is

l(m) = − 1
2σ2

n∑
t=1

a2
t0 ,

where the a2
t0 ’s are obtained by setting m = m0 in Equation (1). Let −∂at

∂m

∣∣∣
m−m0

= gt0 ; then the following relationship holds:

∂l(m)
∂m

=
1
σ2

n∑
t=1

at0gt0 .

The Cuscore statistic with the parameter value m = m0 is defined as:

Q0 =
n∑

t=1

at0gt0 . (2)

Box and Ramirez (1992) demonstrated that the following relationship holds if
the model is linear in parameter m and is approximate otherwise:

at0 = k(m − m0)gt0 + at. (3)

Equation (3) implies that an increase in discrepancy vector gt0 would be added
to at as long as the parameter m does not equal m0. This results in a sequen-
tial correlation of at0 with gt0 . Consequently, the Cuscore statistic defined in
Equation (2) would be continuously searching for the presence of the specific
discrepancy vector. In addition, the least square estimator of (m − m0) as de-
rived from Equation (3) would be m̂ − m0 =

∑
at0gt0/

∑
g2
t0 . This results in

Q = (m̂−m0)
∑

g2
t0 . Thus, when plotted against n, the Cuscore statistic should

be expected to provide a sensitive check for fluctuations in parameter m. As with
the Cusum control chart, changes in the slope of the Cuscore statistics may be
used to detect the assignable causes of process shifts and disturbances.

Box and Ramirez (1992) presented the centred Cuscore (CC), the Cuscore
evaluated at m = m̄ = (m0 + m1)/2. The CC is defined as:

CC =
n∑

t=1

ātḡt,

where āt = at(m̄) and ḡt = gt(m̄). They noted that the construction of control
limits with a Cuscore control chart would be equivalent to a series of Wald
sequential tests (Wald (1947)) with boundaries (0,H). That is, if β (type II error)
is negligible and can be ignored, then H = σ2 ln(1/α)/δ, where δ = m1 − m0.
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Therefore, to detect changes in parameter m, control limits may be determined by
plotting centred Cuscore statistics (which are evaluated at (m0 + m1)/2) against
n. That is,

UCL (upper control limit) =
σ2 ln(1/α)

δ+
when m1 > m0

LCL (lower control limit) =
σ2 ln(1/α)

δ−
when m1 < m0,

where δ+ = m1 − m0 (when m1 > m0) and δ− = m1 − m0 (when m1 < m0).

4. Cuscore Control Chart for a Closed Loop Control

4.1. Transient disturbances

Manufacturing process control seeks to minimize the deviation of the process
output from the target quality characteristic and to minimize the process vari-
ability as a means to enhance and maintain the quality of the finished product.
However, industrial processes are frequently disturbed by unforeseen incidents
and by deliberate adjustments to the process. Changes in product design (short
production runs), vacillations in material properties (such as chemical impuri-
ties), or unanticipated events (power or equipment failure) may all upset the
production process and demand correction. These disruptions may all be con-
sidered transient disturbances.

Transient disturbances typically fall into one of two categories: (1) step
change disturbances and (2) linear change disturbances (or ramps). Step change
disturbances may result from adjustments in the process target; linear change
disturbances (LCD) may result from wearing out of a tool.

MacGregor, Harris, and Wright (1984) and Shao, Haddock, Runger, and
Wallace (1993) have examined transient models which represent step change dis-
turbances as (1) (1−B)Dt = βt and linear change disturbances as (2) (1−B)(1−
B)Dt = βt, where

B: Backward shift operator (e.g., B2Dt = Dt−2.)
Dt: The transient disturbances at time t, and we assume that Dt would follow

either step or linear changes disturbances.
βt: A random variable, and βt would be zero most of the time except when the

transient disturbances have occurred.

4.2. Step change transient disturbance with Cuscore control chart

According to MacGregor (1988), when the noise of the zero order system
follows IMA (1,1) process, the minimum mean squared error (MMSE) controller
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should behave as an integral controller. Similarly, when the noise of the first-
order system follows the IMA (1,1) process, the MMSE controller should behave
as a proportional-integral (PI) controller. In addition, since the integral and
PI controllers are widely used in industry, this study uses the MMSE (which is
equivalent to integral or PI) control mode for feedback control action in the closed
loop control. Appendix A shows that when a step-change disturbance enters the
process, the output deviation would be yt+i = Dθi−1 + at+i. Therefore, after the
transient disturbance has been generated, the process may be described as:

yt = Dθt−1 + at.

In order to employ the Cuscore control chart, the above relationship could be
reconstructed as yt = mDθt−1 + at. Therefore, at = yt − mDθt−1, and gt0 =
−∂at

∂m |m−m0 = Dθt−1, at0 = (m − m0)gt0 + at = yt. The Cuscore statistic, thus,
would be

Q0 =
n∑

t=1

at0gt0 =
n∑

t=1

ytD(θt−1).

4.3. Linear change transient disturbance with Cuscore control chart

In the case of the linear change transient disturbance, Appendix B shows that
the output deviation would be yt+i = b(θi−1

θ−1 )+at+i. Therefore, after the transient
disturbance has been generated, one can represent the process as: yt = b(θt−1

θ−1 )+
at. To use the Cuscore control chart, this relationship could be reconstructed as
yt = mb(θt−1

θ−1 ) + at. Therefore, at = yt − mb(θt−1
θ−1 ), and

gt0 = −∂at

∂m

∣∣∣
m−m0

= b
(θt − 1

θ − 1

)
, at0 = (m − m0)gt0 + at = yt.

The Cuscore statistic, thus, would be

Q0 =
n∑

t=1

at0gt0 =
n∑

t=1

ytb
(θt − 1

θ − 1

)
. (4)

However, since the MMSE control action cannot completely compensate for
the linear change transient disturbance, the centred Cuscore’s ability to detect the
assignable causes of transient disturbances attracts considerable interest. Con-
sider a linear change disturbance with slope b = 1 (i.e., trend per period is of
magnitude unity). The value of m0 is thus equal to 0, m1 is equal to 1 and
m̄ = (m0 + m1)/2 = 0.5. The CC is then obtained as the following:

CCt =
n∑

t=1

ātḡt =
n∑

t=1

[
yt − 0.5b

(θt − 1
θ − 1

)][
b
(θt − 1

θ − 1

)]
. (5)
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5. Simulation Studies

5.1. Use of Cuscore control chart

The performance of the Cuscore control chart may be illustrated through
simulation of a process upset by a linear change disturbance. Specifically, this
study examined simulations of a zero-order process (both with and without en-
gineering process control) in which a linear change disturbance with slope 1 is
introduced after observation 201 in a series of 400 observations. The value of pa-
rameters q = 0.8 and θ = 0.5 are arbitrarily selected (however, they are typical
of those encountered in practice). The white noise follows a normal distribution
with mean 0 and standard deviation 1.

Figure 1 displays the process output deviations from target in the absence of
engineering process controls; after observation 201, the linear change disturbance
persists unabated for the duration of the process. Figure 2 shows the output de-
viations from target after the integral control (i.e., Equation (A.1)) is introduced
to tune the process. The integral control (which is equivalent to MMSE) partially
compensates for the linear change disturbance, but it fails to return the process
outputs to target. Figure 3 plots both the Cuscore (defined as Equation (4)) and
the CC statistic (defined as Equation (5)) against time. The linear increase in
the Cuscore statistic values following observation 201 reflect the linear change
disturbance. A CC value falling beyond an upper or lower bound would signal
the presence of a linear change disturbance. For example, H would be equal to
4.61 with α(type I error)= 0.01. Thus, according to Figure 3, an out of control
alarm due to the assignable causes may be expected at time 203.
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Figure 1. Output deviations from target (without use of EPC). A linear
disturbance starts at t = 201.
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Figure 2. Output deviations from target (with use of MMSE control). A
linear disturbance starts at t = 201.

Cuscore

CC

H

Observation Number, t

Figure 3. Plot of Cuscore and Centred Cuscore statistics. An out-of-control
signal is given at t = 203.

This simulation assumed that the period needed to identify and eliminate
the assignable cause of the linear change disturbance was 10 times unity from the
point of initial detection by the Cuscore control chart. Thus, in this simulation,
the disturbance was detected at time 203 and terminated at time 212. Figure
4 plots output deviations from target after the Cuscore control chart is applied,
and it shows that the linear change disturbance is compensated by employing
the integration of Cuscore control chart and MMSE control.
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Figure 4. Output deviations from target (with use of MMSE/Cuscore). A
linear disturbance starts at t = 201.

5.2. Performance of Cuscore control chart in comparison

The first simulation demonstrated the effectiveness of the Cuscore control
chart as a tool for integrating SPC and EPC. As a supplementary consideration,
a second comprehensive simulation was conducted to compare the performance
of the Cuscore control chart with the performance of other SPC techniques in
integrated EPC/SPC schemes.

As in the previous simulation, this simulation examines zero-order processes
(both with and without engineering process control), with parameter values of
q = 0.8 and θ = 0.5, in which a linear change disturbance is introduced after
observation 201 in a series of 400 observations. The performance measure (PM)
applied is the average squared deviation from the target (T). That is, PM =
1/n

∑n
t=1(yt − T )2.

In Figure 1, with no EPC (i.e., integral control) action, PM = 7103.292; in
Figure 2 with applying integral control action, PM = 3.0805. This simulation
also assumes that the linear change disturbance results from the assignable cause,
and that the magnitudes of the trend are 0.1, 0.5, 1.0, 1.5, and 2.0 units per
period. As in the previous simulation, the assignable cause occurs at time 201
and the period needed to identify and eliminate the assignable cause is 10 times
unity once detected.

Three different SPC control charts for the output deviation from target were
examined: a Shewhart chart for individuals with 3σ control limits, a Cusum
chart with k = 0.5 and h = 5, and a Cuscore chart with H = 4.61. The
values of k = 0.5 and h = 5 for the Cusum chart were selected because they
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are effective across a broad range of process shifts (Montgomery, Keats, Runger,
and Messina (1994)). Performance measures are computed across 400 periods
for 1000 simulation runs; likewise, the integral control action is employed for all
400 periods of 1000 simulation runs.

Table 1 shows the simulation results for 5 different conditions with 5 different
trend of magnitudes per period. The results reported are average values of the
PM and the associated standard error (in parentheses) based on 1000 simulation
runs. The first condition (second column of Table 1) gives the average value of
the PM prior to the occurrence of the linear change transient disturbance (i.e.,
for period 1-200). The second condition (third column of Table 1) gives the
average value of the PM for period 201-400 with integral control action (without
applying any SPC charts). The remaining columns report the average value of
the PM for period 201-400 with integral control together with use of the Cuscore
(column 4), Shewhart (column 5) and Cusum (column 6) charts.

Table 1. Averages of the performance measures for EPC/SPC schemes based
on 1000 simulations. Standard deviations of the performance measures are
given in parenthesis.

LCD with Prior EPC EPC/ EPC/ EPC/
Slope Per to Only Cuscore Shewhart Cusum
Period LCD
0.1 1.04715 1.06584 1.31585 1.06677 1.51963

(0.06348) (0.07259) (0.46651) (0.07987) (0.40027)
0.5 1.04715 1.91691 1.55491 1.74468 1.53653

(0.06348) (0.40273) (0.37007) (0.42350) (0.34791)
1.0 1.04715 4.76576 1.70931 1.79161 1.71972

(0.06348) (0.20206) (0.39225) (0.35505) (0.38624)
1.5 1.04715 9.59794 1.95228 1.99800 1.97721

(0.06348) (0.08809) (0.40750) (0.41713) (0.40741)
2.0 1.04715 16.41345 2.29058 2.28466 2.32172

(0.06348) (0.35560) (0.42474) (0.40908) (0.41667)

To ensure a consistent comparison for all conditions, this study used the same
seed for random number generators. Thus, column one indicates that the PM
prior to the linear change disturbance is the same for all five trend magnitude sizes
evaluated. The results in Table 1 suggest that the combined EPC/SPC scheme
has a smaller PM than the application of EPC alone, especially with larger
trends of magnitude. The significant exception occurs with a trend magnitude
of 0.1. As established earlier, EPC succeeds in partially compensating for linear
change disturbances and provides virtually complete compensation for negligible
disturbances. Thus, despite a disturbance of trend magnitude 0.1, the process
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operating with EPC alone acts as if there is no linear change disturbance for the
period of 201-400.

Nevertheless, there is a firm indication that the PM for the integrated EPC-
SPC schemes is smaller than the PM for the EPC mode in the remaining condi-
tions. Furthermore, when the condition of a disturbance with trend magnitude
of 0.1 is discarded, the PM for the EPC/Cuscore scheme seems to appear smaller
than the PM for the EPC/Shewhart and EPC/Cusum schemes. Although the
values of averaged PM in Table 1 do not show much superiority of the Cuscore
to other charts, this might be due to the PM which takes the average squared
deviation from the target for the 400 observations and makes the PM’s for dif-
ferent control charts quite close. Table 2 shows the simulation results for average
detecting time of 4 different trend magnitudes per period by applying Cuscore,
Shewhart, and Cusum charts. This sensitive measure apparently indicates that
Cuscore control chart has the shortest average time for detecting the linear change
disturbances.

Table 2. Average time for detecting the linear change disturbances based on
1000 simulations.

LCD with EPC/ EPC/ EPC/
Slope Per Cuscore Shewhart Cusum
Period
0.5 10.24 35.99 10.98
1.0 3.59 7.44 4.05
1.5 1.95 2.89 2.44
2.0 1.34 1.34 1.72

6. Conclusions

This study addresses the integration of EPC and SPC techniques in quality
control with specific emphasis upon application of the Cuscore control chart.
The integrated use of the Cuscore control chart and EPC tactics in a closed loop
process is discussed and demonstrated through simulation.

This study’s principal purpose was to examine the feasibility of using the
Cuscore control chart as an interface between EPC and SPC techniques. Be-
cause the Cuscore control chart is simple to use and sensitive to the appearance
of transient disturbances in an industrial process, its use may be integrated with
the application of EPC techniques to both monitor an industrial process and
to detect and eliminate the assignable causes of transient disturbances. This
present effort has demonstrated the effective incorporation of Cuscore and EPC
techniques. Additionally, the simulation results appear to confirm the superior-
ity of integrated SPC and EPC schemes over control schemes employing EPC



250 Y. ERIC SHAO

alone in many circumstances and, furthermore, to suggest the superiority of Cus-
core/EPC scheme to other SPC/EPC integrations in certain circumstances.
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Appendix A. Output Deviations Under Zero Order System with Inte-
gral Control When Step Change Transient Disturbance Exists

The zero order system with noise of IMA(1,1) process could be modelled as
yt+1 = qxt + dt+1, and dt+1 = (1−θB)at

(1−B) , where dt+1 is the noise at time t + 1
and it follows IMA(1,1) process, yt+1 is the output deviation from target at time
t + 1, and xt is control variable’s deviation from nominal value at time t. The
integral (I) control action is (MacGregor (1988))

xt = −(1 − θ)
q

t∑
j=−∞

yj. (A.1)

Now, suppose the step change transient disturbance has started to affect the
process at time t + 1, then the following consequences would happen.

(1) At time t + 1.
Since the step change transient disturbance has started to affect the process at
time t + 1, therefore the process should be represented as

yt+1 = qxt + dt+1 + Dt+1. (A.2)

Substituting Equation (A.1) into Equation (A.2), it can be shown that:

yt+1 = q
[
− (1 − θ)

q

t∑
j=−∞

yj

]
+ dt+1 + Dt+1

= Dt+1 + at+1

(
since

t∑
j=−∞

yj =
at

(1 − B)

)
.

Therefore, the control action would be

xt+1 = xt − (1 − θ)
q

Dt+1 − (1 − θ)
q

at+1. (A.3)

(2) At time t + 2.
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The underlying process should be represented as

yt+2 = qxt+1 + dt+2 + Dt+2. (A.4)

Substituting Equation (A.3) into Equation (A.4), it can be shown that: yt+2 =
aa+2 + Dt+2 − (1 − θ)Dt+1. Therefore, the control action would be xt+1 =
xt − (1−θ)

q yt+2. Continuing doing this way, we are able to conclude that

yt+i = Dt+i−(1−θ)Dt+i−1−(1−θ)θDt+i−2−(1−θ)θ2Dt+i−3+ · · ·+at+i, (A.5)

where i stands for the time when the transient disturbance started affecting the
process. In the case of step change transient disturbance, the magnitude of the
level is assumed to be D. Therefore, Dt+i = Dt+i−1 = Dt+i−2 = · · · = Dt+1 = D.
Equation (A.5) can be rewritten as

yt+i = D[1 − (1 − θ)− (1 − θ)θ − · · · − (1 − θ)θi−2] + at+i

= D[1 − (1 − θ)(1 + θ + θ2 + · · · + θi−2)] + at+i.

Then, it can be shown that yt+i = Dθi−1 + at+i.

Appendix B. Output Deviations Under Zero Order System with Inte-
gral Control When Linear Transient Disturbance Exists

In the case of linear transient disturbance, the disturbance can be reformed
as Dt = a + bi, where a is the magnitude of the level and b is the slope. Suppose
a = 0 without lose generality, then Equation (A.5) can be reformed as

yt+i = b{i − (1 − θ)[(i − 1) + θ(i − 2) + θ2(i − 3) + · · · + θi−2]} + at+i.

It can be shown that yt+i = b(θi−1
θ−1 ) + at+i.
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