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Abstract: Accelerated degradation testing (ADT) is a useful technique to extrap-

olate the lifetime of highly reliable products under normal use conditions if there

exists a quality characteristic of the product whose degradation over time can be

related to reliability. One practical problem arising from designing a degradation

experiment is “how long should an accelerated degradation experiment last for col-

lecting enough data to allow one to make inference about the product lifetime under

the normal use condition?” In this paper, we propose an intuitively appealing pro-

cedure to determine an appropriate termination time for an ADT. Finally, we use

some light-emitting diode (LED) data to demonstrate the proposed procedure.
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1. Introduction

Traditionally, reliability assessment of new products has been based on ac-
celerated life tests (ALTs) that record failure and censoring times of products
subjected to elevated stress. However, this approach may offer little help for
highly reliable products which are not likely to fail during an experiment of
reasonable length. An alternative approach is to assess the reliability from the
changes in performance (degradation) observed during the experiment, if there
exists a quality characteristic of the product whose degradation over time can be
related to reliability.

Usually, in order to facilitate observing the degradation phenomenon or
shorten the degradation experiment under a normal use condition, it is practical
to collect the “degradation data” at higher levels of stress and, then, carry out
extrapolation in stress to estimate the reliability under normal use conditions.
Such an experiment is called an accelerated degradation test (ADT). Nelson
(1990), chapter 11 and Meeker and Escobar (1993) survey the scant literature
on the subject. Carey and Koenig (1991) describe a data-analysis strategy and a
model-fitting method to extract reliability information from observations on the
degradation of integrated logic devices that are components in a new generation
of submarine cables.
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In order to conduct an ADT efficiently, there are several factors (for example,
number of stresses, the stress levels, the sample size for each stress level and the
termination time, etc.) that need to be considered carefully. Boulanger and
Escobar (1994) address the problem of determining both the selection of stress
levels and sample size for each stress level under a “pre-determined” termination
(life-testing) time. The results are interesting. However, the termination time not
only affects the cost of performing an experiment, but also affects the precision of
estimating a product’s mean lifetime (MTTF). We use an example (in Section 2)
to explain why it is more appropriate not to fix the termination time in advance.
Thus, determining an appropriate termination time for an ADT is a real challenge
for reliability engineers.

Tseng and Yu (1997) propose a simple rule to determine the termination time
for a non-accelerated degradation model. However, for highly-reliable products,
the result can be applied only to estimate the product’s MTTF (under the normal
use condition) when the acceleration factor (AF) is known. When the AF is
unknown, we need to conduct an efficient ADT to estimate the product’s MTTF.
In this paper, by combining the approach of Tseng and Yu (1997) with an ALT
model, we propose a procedure to achieve the above goal. Finally, we also use
some LED (light emitting diode) data to demonstrate this procedure.

The rest of the paper is organized as follows: Section 2 gives an explanation
why the termination time is so important. Section 3 proposes a stopping rule
to determine an appropriate termination time for an ADT. Section 4 applies
the proposed procedure to a numerical example. Section 5 conducts a simulation
study of the proposed stopping rule. Finally, Section 6 addresses some concluding
remarks.

2. Why the Termination Time is Important?

Suppose that an ADT of a product is conducted at m higher stress levels:

Su ≤ S1 ≤ S2 ≤ · · · ≤ Sm, (1)

where Su denotes the normal use condition. For the ith stress level Si, there are
ni devices (items) which are randomly selected for performing a degradation test.
Let G(t,Θij) denote the quality characteristic of the jth item under the stress
level Si, which degrades over time t and Θij is a vector of parameters. Assume
that D is a critical value for the degradation path. Then the failure time τij is
defined as the time when the degradation path crosses the critical degradation
level D. Thus, if Θij is known, the lifetime of the jth item under Si can be
expressed by

τij = τ(D;Θij). (2)
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For example, if G(t;Θij) = e−αijtβij , then

τij =
(− lnD

αij

) 1
βij . (3)

Applying an accelerated life test (ALT) model, the lifetime distribution under a
normal use condition (say Su) can then be easily obtained.

In practical situations, however, Θij is unknown. In addition, due to the
measurement errors, the observed degradation path at time t, LPij(t), can only
be expressed as follows:

LPij(t) = G(t;Θij) + εij(t), (4)

where εij(t) is the measurement error term which is assumed to follow a distri-
bution with mean 0 and variance σ2

ε .
To obtain a precise estimate of a product’s MTTF, the ascertainment of the

termination time is an important issue to the experimenter. We use the following
example for illustration.
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Figure 1. A typical degradation path of an LED product

Example 1. Figure 1 shows a typical degradation path of an LED product.
From the plot, it is seen that G(t,Θ) = e−αtβ is an appropriate model for the
degradation path. Now, if the experiment is terminated at 3000 hours, then
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the MLEs for α and β are α̂=0.01217156 and β̂=0.3972809. However, if the
experiment is terminated at 8000 hours, then α̂=0.008542078, and β̂=0.4448581.
Assume that D=0.50. Then the corresponding estimated lifetimes are 26226 and
19581 hours, respectively. It is clear that the termination time has a significant
impact on the precision of estimating a product’s lifetime.

For the ADT case, we now provide a three-dimensional plot for illustration.
In Figure 2, suppose that the experiment is conducted up to the time tl. Then,
based on the observed data {(tk, LPij(tk))}l

k=1, the least squares estimator (LSE)
of Θij and the corresponding jth product’s lifetime (under Si) can be obtained.
Then, by using a statistical life-stress ALT model, we can extrapolate to obtain
the MTTF under the normal use condition Su. Let ˆMTTF(l) denote the esti-
mated MTTF when the ADT is conducted up to the time tl. From the plots of
{ ˆMTTF(l)}l≥1, it is seen that the curve (path) will oscillate drastically at the
beginning; however, as the termination time tl increases, more data are collected
and the path of ˆMTTF(l) approaches an asymptote.

Stress Level

Life
Time

Testing

Time

Figure 2. A typical trend of the estimators of MTTF under normal use
condition for an ADT.

From Figure 2, it is obvious that the experiment can be terminated only if
the sequence ˆMTTF(l) is convergent. However, one usually needs to conduct a
very long life-testing time to achieve a convergent value. This is impractical for
experimenters. In the following section, we propose an intuitive procedure to
determine an appropriate termination time for an ADT.
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3. Determining the Termination Time for an ADT

The procedure for determining an appropriate termination time for an ADT
consists of three major steps labelled (A) to (C) as follows:

(A) Use the degradation paths to estimate the lifetimes of devices
under each testing stress.

Suppose that an ADT is conducted up to the time tl. Based on the degra-
dation data {(tk, LPij(tk))}l

k=1, the least squares estimator (LSE) Θ̂ij(l) of Θij

can be obtained by minimizing

SSE(Θij) =
l∑

k=1

{LPij(tk) − G(tk;Θij)}2 (5)

and the corresponding lifetime τij can be estimated by

τ̂ij(l) = τ
[
D; Θ̂ij(l)

]
. (6)

(B) Find a suitable life-stress model and use an ML procedure to esti-
mate the MTTF of the device under Su.

Applying an ALT model to extrapolate the lifetime distribution under normal
use conditions requires the following steps:
1. use probability plots to assess the lifetime distribution of {̂τij(l)}ni

j=1, for all
1 ≤ i ≤ m;

2. use scatter plots of {τ̂ij(l)}ni
j=1, 1 ≤ i ≤ m, to determine a suitable life-stress

relationship; and
3. use an ML procedure to estimate the unknown parameters in a suitable life-

stress model and then the MLE of the product’s MTTF at normal use condi-
tion Su can be obtained.

(C) Investigate the limiting property of ˆMTTF(l) and propose an ap-
propriate termination time.

Intuitively, the growth trend of ˆMTTF(l) may oscillate drastically at the
beginning. As tl increases, the growth trend will converge. Assume that l0 is
a starting point at which { ˆMTTF(k)}l

k=l0
has a convergent pattern. A conver-

gent pattern is indicated by one of the following three cases: (1) monotonically
increasing to a target; (2) monotonically decreasing to a target; and (3) slightly
oscillating around a target value. Due to the asymptotic property, there exists a
sigmoidal growth curve fl(t) which fits { ˆMTTF(k)}l

k=l0
(Seber and Wild (1989),

Chapter 7). To obtain a more precise estimator of MTTF, we can define an
asymptotic MTTF as fl(∞)(= limt→∞ fl(t)). The physical meaning of fl(∞) is
that the predicted product’s MTTF will converge asymptotically to this value
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when the experiment is conducted up to the time tl. Obviously, fl(∞) provides
a better estimator than ˆMTTF(l).

To measure the relative rate of change of the asymptotic mean lifetime, we
consider the following h-period moving-average:

ρ(l) =
1
h

{ l∑
k=l−h+1

∣∣∣∣1 − fk(∞)
fk−1(∞)

∣∣∣∣ }
. (7)

Obviously, when h = 1, ρ(l) reduces to a one-period change rate of the asymptotic
mean lifetime. To avoid the irregular pattern of the relative change rate, we
choose h = 3 in this study. Thus, a rule for terminating the experiment can be
stated as follows:

tl is an appropriate termination time if ρ(m) ≤ ε, ∀m ≥ l,

where ε is an allowable tolerance which is commonly specified by the experi-
menters. Now, we state an algorithm to summarize the above procedure.

Algorithm for determining an appropriate termination time

Step 0. At the beginning, arbitrarily choose l = 4 as a starting point.
Step 1. Use Equations (5) and (6) to compute the estimated lifetime τ̂ij(l) of

the jth item under the stress level Si, 1 ≤ j ≤ ni, 1 ≤ i ≤ m.

Step 2. Use scatter plots to assess the life-stress relationship and compute the
MLE for MTTF.

Step 3. Plot the growth trend of { ˆMTTF(k)}l
k=2. If there exists a convergent

pattern go to Step 4. Otherwise, let l = l + 1 and go to Step 1.
Step 4. Choose a suitable starting point l0 such that the plot of { ˆMTTF(k)}l

k=l0

has a convergent trend. Then, find a suitable function fl(t) to fit
{ ˆMTTF(k)}l

k=l0
and compute fl(∞).

Step 5. Compute ρ(l). If ρ(m) ≤ ε, ∀m ≥ l, then tl is an appropriate termina-
tion time. Otherwise, let l = l + 1 and go to Step 1.

In the next section, we use a numerical example to illustrate the procedure.

4. A Numerical Example

Light emitting diodes (LEDs) have become widely used in a variety of fields.
The fields of application range from consumer electronics to optical fiber trans-
mission systems. Very-high-reliability is especially required in optical fiber trans-
missions. Thus, designing an efficient experiment to estimate its lifetime is a
challenge to the producers.

From engineering knowledge, electric current is a suitable accelerated vari-
able for LED products (see Ralston and Mann (1979)); so, three higher stress
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levels, S1 = 10 mA, S2 = 20 mA, and S3 = 30 mA, are carefully chosen to
perform an ADT. The goal is to estimate the product’s MTTF under normal use
conditions (say, 5 mA). There are n1 = 16, n2 = 14, and n3 = 18 items which
are randomly selected for performing an ADT under 10 mA, 20 mA, and 30 mA,
respectively.

A key quality characteristic of LED is its light intensity. It degrades over
time. Let LPij(t) denote the observed standardized light intensity of the jth
LED under Si. Figure 3 shows the degradation paths of the standardized light
intensity of LEDs for these three stress levels.
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Figure 3. (a), (b), and (c) are the sample degradation paths under 10 mA,
20 mA, and 30 mA, respectively.

The experiment was conducted up to 9998 hours for each stress. A practical
decision that the experimenter faces is: “Is 9998 hours long enough to provide a
precise estimation for the product’s MTTF?” If the testing time is long enough,
what is the most appropriate termination time? Next, we apply the proposed
method to address this problem.
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(A) Estimate the lifetimes of devices under each testing stress
Figure 4 is a plot of log(− log LPij(t)) vs log t. From the linear patterns,

it is seen that G(t;Θij) = G(t;αij , βij) = e−αij tβij is an appropriate model to
describe the LED data.
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Figure 4. (a), (b) and (c) are the plots of ln(− lnLPij) vs ln t for 10 mA,
20 mA, and 30 mA, respectively.

Based on the observations {(tk, LPij(tk))}l
k=1 and Equation (5), the LSEs

(α̂ij(l), β̂ij(l)) of (αij , βij) can be computed. Then the lifetimes {τ̂ij(l)}ni
j=1 can

also be obtained by the following equation:

τ̂ij(l) =

[
− ln D

α̂ij(l)

] 1

β̂ij(l)

. (8)

(B) Find a suitable life-stress relation and use an ML procedure to
estimate product’s MTTF

Figure 5 shows two typical lognormal probability plots of {τ̂1j(l)}16
j=1,

{τ̂2j(l)}14
j=1, and {τ̂3j(l)}18

j=1 for l = 46 (7984 hours) and l = 58 (9998 hours).
It is seen that the lognormal distribution is an appropriate model to fit the
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lifetime data. Besides, the patterns of three approximately parallel lines in these
probability plots imply that the scale parameters are equal.
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Figure 5. (a) and (b) are the lognormal probability plots of {τ̂ij(l)}ni

j=1,
i = 1, 2, 3, for l = 46 and l = 58, respectively.

oo

oooo
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

oo

o

o

o

o

o
o

o

o
o

o

o

o
o

o
o

o
o

o

o

o

2.4 2.6 2.8 3.0 3.2 3.4

9.
6

10
.0

10
.4

10
.8

o
o

o
ooo

o

o

o
o
o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

oo
o

o

o

o

o

o

o

oo

o

o

oo

o
o

o

o
o

o

o

2.4 2.6 2.8 3.0 3.2 3.4

9.
8

10
.2

10
.6

ln
τ̂

i
j
(l)

ln
τ̂

i
j
(l)

ln mA ln mA

(a) (b)

Figure 6. (a) and (b) are the scatter plots of ln τ̂ij(l) vs ln mA for l = 46 and
l = 58, respectively.

Furthermore, from the log-log scale scatter plots shown in Figure 6, it is seen
that the inverse-power relationship is an appropriate model to describe the life
and current relation. Hence, the lognormal-inverse power is a suitable life-stress
model. Let µ̂l and σ̂l denote the MLEs of the location and scale parameters
of log lifetime under the normal use condition 5 mA. The µ̂l, σ̂l, and ˆMTTF(l)
for 4 ≤ l ≤ 58 are listed in Table 1. Figure 7 shows the growth trends of
{ ˆMTTF(l)}58

l=4.
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Table 1. The estimates µ̂l , σ̂l, ˆMTTF(l) , f̂l(∞), ρ(l), and ρ∗(l)

l time tl µ̂l σ̂l
ˆMTTF(l) f̂l(∞) ρ(l) ρ∗(l)

(hours)

4 672 10.88282 0.8392298 75733.70

5 840 10.33716 0.7177683 39925.00

6 1008 10.38654 0.6822777 40916.77

7 1176 10.65507 0.6798830 53433.79

8 1344 10.56699 0.6163895 46955.72

9 1512 10.56137 0.5733802 45513.13

10 1680 10.69152 0.5502431 51170.25

11 1848 10.84014 0.5383829 58987.15

12 2016 11.01169 0.5235960 69478.49

13 2184 11.05117 0.5113794 71820.66

14 2352 11.05379 0.5103521 71971.57

15 2688 11.03400 0.4919222 69912.45

16 2856 11.10751 0.4802682 74820.06

17 3024 11.07192 0.4611743 71557.86

18 3192 11.19982 0.4578258 81196.78

19 3360 11.25725 0.4514328 85746.92

20 3528 11.22251 0.4326228 82132.92

21 3696 11.21631 0.4183135 81130.02

22 3864 11.22478 0.3978159 81138.83

23 4032 11.20680 0.3882441 79393.19

24 4200 11.12957 0.3168698 71666.48

25 4368 11.12286 0.3115891 71069.12

26 4536 11.14599 0.3140012 72786.83

27 4704 11.15853 0.3115086 73648.01

28 4800 11.20639 0.3103663 77231.05

29 4968 11.22875 0.3038130 78818.73

30 5136 11.23306 0.2966744 78989.90

31 5304 11.22737 0.2898643 78384.71

32 5472 11.23355 0.2795926 78640.07

33 5808 11.25729 0.2725032 80372.36

34 5976 11.27010 0.2668184 81283.49

35 6144 11.25848 0.2621115 80244.58

36 6312 11.24769 0.2551912 79241.55

37 6480 11.22495 0.2480252 77320.14

38 6640 11.20611 0.2389135 75709.55

39 6808 11.19458 0.2295610 74677.60 71155.27 0.04950206

40 6976 11.17881 0.2243968 73422.80 68910.15 0.06548613

41 7144 11.16832 0.2198768 72583.83 68641.46 0.05743435

42 7312 11.16162 0.2149444 72021.60 69128.86 0.01418406 0.04184576

43 7480 11.15189 0.2106033 71258.87 68710.26 0.00568505 0.03709216

44 7648 11.14633 0.2063289 70800.15 68604.46 0.00489860 0.03200519

45 7816 11.13770 0.2000467 70102.55 68076.63 0.00509632 0.02975953

46 7984 11.13094 0.1957814 69571.74 67586.29 0.00547879 0.02937652

47 8152 11.12573 0.1919512 69158.57 67244.02 0.00665359 0.02847181

48 8320 11.12120 0.1881049 68795.63 67003.35 0.00528200 0.02674917

49 8488 11.11544 0.1844696 68354.17 66705.45 0.00436309 0.02471652

50 8656 11.10968 0.1806594 67914.49 66360.53 0.00439863 0.02341703

51 8824 11.10162 0.1775599 67331.79 65843.33 0.00580354 0.02260610

52 8992 11.09496 0.1740044 66842.81 65274.44 0.00720154 0.02402735

53 9160 11.09089 0.1708101 66534.79 64819.96 0.00779881 0.02645538

54 9328 11.08587 0.1673328 66162.92 64389.59 0.00741404 0.02754064

55 9494 11.08197 0.1647577 65877.33 64038.80 0.00635000 0.02870968

56 9662 11.07871 0.1630199 65643.82 63779.25 0.00538013 0.02923489

57 9830 11.07811 0.1604922 65577.91 63689.31 0.00363703 0.02965336

58 9998 11.07372 0.1577884 65262.30 63548.85 0.00255619 0.02696280
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Figure 7. The trend of { ˆMTTF(l)}58
l=4. Figure 8. The trend of ρ(l).

(C) Investigate the limiting property of ˆMTTF(l) and determine an
appropriate termination time.

Observing Figure 7, it is seen that the ˆMTTF(l) curve changes drastically
before t34 = 5976 hours. After t34, there appears an exponentially decreasing
pattern and the curve of ˆMTTF(k) levels off after t42 = 7312 hours. Hence, we
use the following growth curve to describe { ˆMTTF(k)}l

k=34 for l ≥ 42:

fl(t) = al + e(bl+cl∗t). (9)

Obviously,
fl(∞) = lim

t→∞ fl(t) = al. (10)

Using the method of non-linear least squares, we obtain the asymptotic mean
lifetime âl = f̂l(∞) and the value ρ(l). The results are shown in Columns 6 and
7 of Table 1. Figure 8 also shows the plot of ρ(l).

From Table 1, it is seen that the estimated asymptotic mean lifetime is near
63550 hours if the experiment is conducted up to 9998 hours. Besides, from
Figure 8, we can obtain a reasonable estimate of MTTF within 1% error if the
experiment time is conducted at least 7480 hours (which is about 11% of the
product’s MTTF).

5. A Simulation Study of the Proposed Rule

The proposed stopping rule is very intuitive. Due to the complexity of the
model, it is not easy to provide analytical support for this rule. Instead, we
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conducted a simulation study to investigate the performance of this rule. Assume
that the degradation path LPij(t) satisfies equation (4), where Gij(t) = e−αijtβij

and εij(t) follows N(0, σ2
ε ). In order to conduct a simulation study, we specify

the joint distribution of (αij , βij), ∀1 ≤ j ≤ ni, 1 ≤ i ≤ 3. Then, we use the
termination time of 9998 hours as a benchmark to estimate these values. The
LSEs (α̂ij , β̂ij) of (αij , βij) have the following approximate relationships:

ln β̂ij = pi1 + pi2α̂ij, α̂ij ∈ (αiL, αiR),

where

(pi1, pi2) =




(−0.5914,−10.2371), for i=1,
(−0.4898,−9.8540), for i=2,
(−0.7635,−8.9020), for i=3,

and

(αiL, αiR) =




(0.3127, 0.8065), for i=1,
(0.4636, 0.6328), for i=2,
(0.2927, 0.4490), for i=3.

In addition, the R2 values for these three models are 0.9974, 0.9807 and 0.9875,
respectively. Thus, the following model is appropriate for describing the rela-
tionship between αij and βij :

lnβij = pi1 + pi2αij + ηij , αij ∈ (αiL, αiR), (11)

where ηij is N(0, σ2
η). From Section 4, we obtain σε ≈ 0.01 and ση ≈ 0.2563.

Thus, we choose various combinations of ση = (1 + δ1) ∗ 0.2563 and σε = (1 +
δ2) ∗ 0.01 (where −5% ≤ δ1 ≤ 5% and −20% ≤ δ2 ≤ 20%) for the simulation
study. Set n1 = 16, n2 = 14, and n3 = 18, the sample sizes used in the example
of Section 4. Now, the simulation procedure is summarized as follows:

For 1 ≤ j ≤ ni, 1 ≤ i ≤ 3,
1. Generate (αij , βij) from Equation (11).
2. Generate a degradation path {LPij(tk)}58

k=1 from Equation (4).
3. Use the procedure given in Section 3 to estimate {τij} and the corresponding

MTTF under normal use conditions.
4. Determine the termination time t∗l and the corresponding asymptotic mean

lifetime f̂l(∞) with a tolerance error ε = 0.01.
For each cell of (δ1, δ2), we conduct 100 trials and the following quantities

are computed:
Mf : the sample mean of asymptotic mean lifetime {f̂l(∞)};
Sf : the standard error of asymptotic mean lifetime {f̂l(∞)};
φtl : the sample mean of termination time {t∗l }.

These values are given in Table 2.
From the results, it is seen that:
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1. The value of Mf in each cell is very close to 63548.85 hours (the asymptotic
mean lifetime which was obtained in Section 4). The largest absolute error is
less than 3.5%. It shows the proposed stopping rule is quite robust to variation
of δ1 and δ2.

2. The values of Sf are moderately affected by the values of δ1 and δ2. Thus, the
values of σε and ση have a moderate impact on the precision of the asymptotic
mean lifetime.

3. The values of φtl are less than 7480 hours (the termination time which was
obtained in Section 4). It means the termination time of the simulation data
is shorter than that of the real LED data. This may be due to the reason that
the real LED data in Section 4 fluctuate more irregularly than our simulation
data.

Table 2. The values of Mf , Sf , and φtl
under various combinations

of (1 + δ1) ∗ 0.2563 and (1 + δ2) ∗ 0.01

δ1

-5% 0% +5%
δ2

Mf = 64779.40 Mf = 65771.43 Mf = 64770.12
-20% Sf = 5262.235 Sf = 5684.418 Sf = 6254.110

φtl
= 5181.46 φtl

= 5335.48 φtl
= 5423.00

Mf = 65172.55 Mf = 64862.06 Mf = 64201.84
0% Sf = 5855.343 Sf = 6356.580 Sf = 6506.734

φtl
= 5424.49 φtl

= 5526.97 φtl
= 5553.90

Mf = 64048.70 Mf = 63471.92 Mf = 64674.68
+20% Sf = 6026.102 Sf = 6381.975 Sf = 6758.642

φtl
= 5618.76 φtl

= 5761.09 φtl
= 5888.25

6. Concluding Remarks

Determining an appropriate termination time for conducting an ADT is an
important decision problem for experimenters. By modifying Tseng and Yu
(1997), we propose an intuitive method to achieve the above goal. The method
consists of using the traditional ALT and ML procedures to estimate the unknown
parameters and MTTF of the device under a normal use condition. Finally, an
appropriate termination time is determined by using the limiting property of the
estimator of MTTF.

Finally, some concluding remarks about the method are as follows:
(1) The proposed method provides the decision maker an on-line real-time infor-

mation about the product lifetime. It assesses the lifetime distribution of the
product at each testing time. Thus, some important reliability measures, such
as MTTF, hazard function and pth percentile under the normal use conditions
can be easily obtained. Taking the LED data mentioned above, for example,
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if the experiment is terminated at t46 = 7984 hours and the decision-maker
wishes to estimate the 5th percentile of the product’s lifetime, then, from Ta-
ble 1, we have µ̂46 = 11.13094 and σ̂46 = 0.1957814. Thus, the 5th percentile
of the product’s lifetime is 49459.44 hours.

(2) This method also provides the decision-maker with a simple criterion to mea-
sure the difference between the estimated MTTF and the asymptotic mean
lifetime. It can be expressed as follows:

ρ∗(l) =

∣∣∣∣∣1 −
ˆMTTF(l)

f̂l(∞)

∣∣∣∣∣ . (12)

Column 8 of Table 1 lists the values of ρ∗(l). It shows that the differences are
not significant (less than 3%) if the experiment is conducted over 7816 hours.

(3) Although there is no analytical support for the proposed stopping rule, we
conducted a simulation study to assess its performance. The results in Table
2 indicate that the proposed rule is quite robust in estimating the asymptotic
mean lifetime.
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