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Abstract: A strong law is established for linear statistics that are weighted sums of

a random sample. Using an observation of Cheng (1995a) about the Bernstein and

Kolmogorov inequalities, we present an extension to the Hardy-Littlewood strong

law under certain moment conditions on the weights and the distribution. As a

byproduct, the Marcinkiewicz-Zygmund strong law and the law of the iterated

logarithm are obtained for linear statistics with slowly varying weights. The results

are applicable to some commonly used linear statistics, especially a family of linear

order statistics and some nonparametric regression estimators which motivate the

study.
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1. Introduction

Many useful linear statistics are weighted sums of i.i.d. random variables.
Examples include least squares estimators, some jackknife estimators, linear order
statistics and nonparametric regression estimators among many statistics based
on a random sample. Let X, Xi, i ≥ 1, be a sequence of independent observations
from a population distribution. A common expression for such triangular-array
weighted sums is

Tn =
n∑

i=1

an,iXi, (1.1)

where the weights an,i are constants or random variables independent of {Xi}.
Motivated by some recent results on nonparametric regression in Cheng (1995a),
we investigate, in this paper, strong laws for the linear statistics Tn of the form,
for 1 < p ≤ 2,

lim sup
n→∞

|Tn|
n1/p(log n)1−1/p

= lim sup
n→∞

|∑n
i=1 an,iXi|

n1/p(log n)1−1/p
≤ t∗ < ∞ a.s. (1.2)

Studies of strong laws for weighted sums have demonstrated significant
progress in probability theory. To address this topic, a standard setup is to
assume E|X|p < ∞ for some 0 < p ≤ 2 and EX = 0 for 1 ≤ p ≤ 2. In the case of
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equal weights Tn = Sn = X1 + · · ·+Xn, the Hartman-Wintner law of the iterated
logarithm for p = 2 improves upon the earlier strong law, (1.2) with t∗ = 0, due
to Hardy and Littlewood (1914); whereas the Kolmogorov and Marcinkiewicz-
Zygmund strong laws (cf. e.g. Chow and Teicher (1988)) for 0 < p < 2 ensure
Sn/n1/p → 0 a.s., improving on (1.2) by a factor of (log n)1−1/p for 1 < p < 2.
Extensions of these classical strong laws have been considered for a double array
of non-identically distributed independent variables. In this respect, some general
discussions were given in Stout (1974) and Petrov (1975), and a general result
on the iterated logarithm law can be found in Lai and Wei (1982). In general,
compared with (1.2), these results apply to more general sums but may provide
slower rates of convergence.

For uniformly bounded weights {an,i, 1 ≤ i ≤ n, n ≥ 1}, Teicher (1985)
obtained

lim sup
n→∞

|Tn|/bn = 0 a.s. (1.3)

at a slower rate bn = n1/p log n, and later Choi and Sung (1987), improving
upon Teicher’s result for p = 1, obtained (1.3) for bn = n. Also for uniformly
bounded weights, (1.2) for some specified positive t∗ was implicitly given in Cheng
(1995a), Theorem 2.1 and Lemma 2.1. Chow and Lai (1973) considered the
case of

∑n
i=1 |an,i|α = O(1) for some α > 0. Strong laws of the form (1.3)

with more general normalizing constants bn were obtained recently by Cuzick
(1995) under a moment condition Aα,n = (n−1 ∑n

i=1 |an,i|α)1/α = O(1) and some
additional conditions on the distribution of X. In particular, for E|X|β < ∞ with
1/α + 1/β = 1/p, his results imply (1.2) for 1 < p < 2 and α = ∞ (uniformly
bounded weights) as well as (1.3) for 0 < p ≤ 1 and bn = n1/p. Cuzick (1995),
Theorem 2.3 also gave an exact law of the logarithm for randomly re-signed
partial sums when p = 2.

Themain result of this note gives a natural extension of the Hardy-Littlewood
strong law and of Cuzick’s results to the case p = 2 and the case 1 < p < 2 and
p ≤ α < ∞, via full exploration of the basic ideas in Cheng (1995a). We shall
also use the main theorem to obtain extensions of the Marcinkiewicz-Zygmund
and the iterated logarithm laws under an additional condition on the speed of
variation of the weights, which are readily applicable to some jackknife statistics,
linear order statistics and nonparametric regression estimators (cf. e.g. Cheng
and Bai (1995) and Cheng (1995b)).

2. Main Results

Let X,Xi, i ≥ 1, be a sequence of i.i.d. random variables and an,i, 1 ≤ i ≤
n, n ≥ 1, be constants. It will be assumed in the sequel that for some 0 < α ≤ ∞
and 0 < β ≤ ∞

‖X‖β < ∞, lim sup
n→∞

Aα,n = Aα < ∞, (2.1)
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where ‖X‖β = (E|X|β)1/β for 0 < β < ∞, ‖X‖∞ = sup {t : P{|X| > t} > 0},
Aα,n = (n−1 ∑n

i=1 |an,i|α)1/α, 0 < α < ∞, and A∞,n = sup1≤i≤n |an,i|.
Theorem 2.1. Let Tn =

∑n
i=1 an,iXi, n ≥ 1, be the weighted sums in (1.1).

Suppose (2.1) holds and EX = 0 for β ≥ 1. Set p = (1/α + 1/β)−1. Then

lim sup
n→∞

|Tn|
n1/p(log n)1−1/p

{≤ √
2A2‖X‖2 a.s., if p = 2,

= 0 a.s., if 1 < p < 2.
(2.2)

Remark 1. For p = β = 2 and α = ∞, the upper limit
√

2A2‖X‖2 in the law
of the logarithm (2.2) is sharp, as it is attained when {an,i, 1 ≤ i ≤ n, n ≥ 1} are
i.i.d. Rademacher variables by Theorem 2.3 of Cuzick (1995).

Let 0 < c < c′ < ∞ and 1 ≤ nj < nj+1 ≤ 2nj be integers such that∑
j n

2/α∧2−2/p
j < ∞ for p < 2 ≤ β, cjα/2 ≤ nj ≤ c′jα/2 for p < β < 2, and

1 + c ≤ nj+1/nj for β = p or p = 2. The weights {an,i} in (1.1) are called slowly
varying if (log nj)1−1/pA∗

α,j ≤ c for 1 < p < 2 and (log nj/ log log nj)1/2A∗
α,j → 0

for p = 2, where A∗
α,j = maxnj−1<n<nj (n−1 ∑n

i=1 |an,i − anj ,i|α)1/α for α < ∞
and A∗∞,j = maxnj−1<n<nj max1≤i≤n |an,i − anj ,i|.
Theorem 2.2. Suppose the conditions of Theorem 2.1 hold and the weights
in (1.1) are slowly varying. Then |Tn|/n1/p → 0 a.s. for 1 < p < 2 and
lim supn |Tn|/

√
2n log log n ≤ ‖X‖2A2 a.s. for p = 2.

Proof of Theorem 2.1. Let X ′
n,i = XiI{|Xi|β > n/ log n}, X ′′

n,i = Xi −
X ′

n,i + EX ′
n,i, a′n,i = an,iI{|an,i|α > n/ log n} and a′′n,i = an,i − a′n,i. Set T ′

n =∑n
i=1 an,iX

′
n,i, T̃ ′

n =
∑n

i=1 a′n,iX
′′
n,i, and T ′′

n =
∑n

i=1 a′′n,iX
′′
n,i. By definition,

Tn = T ′
n + T̃ ′

n + T ′′
n − ET ′

n. (2.3)

Since 1/α + 1/β = 1/p, 1 < p, β(α − 1)/α > 1 and {β(α − 1)/α − 1}/β =
1 − 1/p, it follows that

|X ′
n,i| ≤ |X ′

n,i|β(α−1)/α(n/ log n)−(1−1/p).

By the Hölder inequality and the moment condition ‖X‖β < ∞

|T ′
n|

n1/p(log n)1−1/p
≤

∑n
i=1 |an,i| |X ′

n,i|β(α−1)/α

(n/ log n)1−1/pn1/p(log n)1−1/p

= n−1
n∑

i=1

|an,i| |X ′
n,i|β(α−1)/α

≤ Aα,n

(
n−1

n∑
i=1

|X ′
n,i|β

)(α−1)/α → 0 a.s.
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Note that X ′
n,i ≡ 0 for large n when β = ∞ (X bounded). Similarly, we have

ET ′
n/{n1/p(log n)1−1/p} → 0. For T̃ ′

n, we have |X ′′
n,i| ≤ 2(n/ log n)1/β and |a′n,i| ≤

|an,i|α/(n/ log n)(α−1)/α, so that

|T̃ ′
n|

n1/p(log n)1−1/p
≤ 2

∑n
i=1 |an,i|α(n/ log n)1/β

(n/ log n)(α−1)/αn(n/ log n)1/p−1
= 2Aα

α,n.

These bounds and (2.3) imply

t∗p = t∗p(X) = lim sup
n→∞

|Tn|
n1/p(log n)1−1/p

≤ 2Aα
α + lim sup

n→∞
|T ′′

n |
n1/p(log n)1−1/p

. (2.4)

We use the Bernstein inequality and rescaling method to bound the right-
hand side of (2.4). Due to the levels of truncation for a′′n,i and X ′′

n,i, |a′′n,iX
′′
n,i| ≤

2(n/ log n)1/α+1/β = 2(n/ log n)1/p, and as 1/α+1/β = 1/p < 1 and max(α, β) >

2, we have

E
n∑

i=1

(a′′n,i)
2(X ′′

n,i)
2 ≤ nAα∧2

α∧2,n(n/ log n)(2−α)+/α‖X‖β∧2
β∧2(n/ log n)(2−β)+/β

≤ Aα∧2
α∧2,n‖X‖β∧2

β∧2 log n(n/ log n)2/p.

(Here α ∧ β = min(α, β).) It follows from the Bernstein inequality that

P{|T ′′
n | > t log n(n/ log n)1/p}

≤ 2 exp
{ −t2(log n)2(n/ log n)2/p

2Aα∧2
α∧2,n‖X‖β∧2

β∧2 log n(n/ log n)2/p + 2t log n(n/ log n)2/p

}

= 2exp
{
− t2 log n

2Aα∧2
α∧2,n‖X‖β∧2

β∧2 + 2t

}
.

Hence, by (2.4) and the Borel-Cantelli lemma, t∗p(X) ≤ 2Aα
α + t if t2 >

2Aα∧2
α∧2‖X‖β∧2

β∧2+2t. Replacing X by cX and t/c by s, we find t∗p(X) = t∗p(cX)/c ≤
c−12Aα

α+s if s2 > 2Aα∧2
α∧2‖X‖β∧2

β∧2c
β∧2−2+2s/c. Letting c → ∞, we find t∗p(X) = 0

for β < 2 and t∗p(X) ≤ √
2A(α∧2)/2

α∧2 ‖X‖2 for β ≥ 2. Similarly, the scale change
an,i → can,i with c → ∞ gives t∗p = 0 for α < 2. Thus t∗p(X) ≤ √

2A2‖X‖2I{β ≥
2, α ≥ 2}. This proves (2.2) for p = 2. For 1 < p < 2, we may truncate and
center X at a fixed level and use the result for p = α = 2 (β = ∞) and the above
to find

lim sup
n→∞

|∑n
i=1 an,iXiI{|Xi| ≤ c} +

∑n
i=1 an,iXiI{|Xi| > c}|

n1/p(log n)1−1/p

≤
√

2A2

√
EX2I{|X| > c} → 0, as c → ∞.



STRONG LAW FOR WEIGHTED SUMS 927

Proof of Theorem 2.2. Since the weights are slowly varying, by Theorem 2.1
we only need to show {2nj log log nj}−1/2 max1≤n≤nj |

∑n
i=1 anj ,iXi| ≤ A2‖X‖2 +

o(1) a.s. for p = 2, which follows from the proof of Theorem 2.1 with log n replaced
by log log n and summation over the subsequence nj in the Borel-Cantelli lemma.
For 1 < p < 2 we need n

−1/p
j max1≤n≤nj |

∑n
i=1 anj ,iXi| → 0 a.s., which follows

from the inequalities

n
−1/p
j

∣∣∣E
n∑

i=1

anj ,iXiI{|Xi|β ≤ nj}
∣∣∣ ≤ Aα,njn

1−1/β
j E|X|I{|X|β > nj} → 0,

and with max(α, β) > 2 and (2/p−1)α/2−1 = {(2−β)/β}α/2 for p < β < 2 ≤ α,

∑
j

1

n
2/p
j

E
∣∣∣

nj∑
i=1

anj ,iXiI{|Xi|β ≤ nj}
∣∣∣2

≤
∑
j

A2
α∧2,nj

n
2/α∧2
j

n
2/p
j

E|X|2I{|X|β ≤ nj} < ∞,

in view of the Kolmogorov inequality and the Borel-Cantelli lemma.
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