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Abstract: For analyzing record statistics from a sequence of non-i.i.d. random vari-
ables, a model with one or two parameters, controlling the occurrences of record-
breakings, is proposed. Under the model, the number of record-breakings within
n steps has a probability function including the Stirling-Carlitz polynomial of the
first kind. Its expected number is still O(log n) and saturates in the long run.
Waiting time to the sth occurrence also has a probability function of similar form.
Under this model, methods for predicting future record-breakings are proposed,
and applied to some practical data sets of weather and sports.
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1. Introduction and Preliminaries

1.1. Upper new records

Let (Zk)∞k=1 be a sequence of random variables (r.v.), in which Zk is an upper
new record (u.n.r.), or a record breaking, if Zj < Zk , 1 ≤ j ≤ k − 1 . Following
the usual convention Z1 is a u.n.r. Let Xn be the number of u.n.r.’s in (Zk)nk=1,
and let Ws be the time, or sequential index, when the sth u.n.r. occurs. The
theory of these ‘record statistics’ for a sequence of independent and identically
distributed (i.i.d.) or exchangeable r.v.’s is well established, and was surveyed by
Glick (1978) and Galambos (1978). In the usual applications like environment,
sports and economy, the i.i.d. or exchageable assumption is too restrictive, and
some generalizations have been proposed. See, for example, Nevzorov (1987) and
Nagaraja (1988) for extensive surveys up to the date. In this paper, a simple
approach, which is distribution-free but parametric, is proposed for the prediction
of future u.n.r.’s.

1.2. Nevzorov’s model

Nevzorov (1984, 1987) considered the following model. Let (Zk)∞k=1 be a
sequence of independent but nonidentically distributed r.v.’s, and let Zk itself be
the maximum of a random sample of varying size αk from a common continuous
distribution function (d.f.) H(·), that is, Zk has the d.f. Hαk(·). Let Yk, k =
2, 3, . . . be binary r.v.’s such that if Zk is a u.n.r. Yk = 1, else Yk = 0. Then
(Yk)∞k=2 are independent, and

Pr{Yk = 1} = αk/(α1 + · · · + αk) =: λk. (1.1)
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The sequence (αk)∞k=1 can consist of any positive numbers, and determined con-
versely from (λk)∞k=2 by αk = (α1 + · · ·+ αk−1)λk/(1 − λk), k = 2, 3, . . . starting
from any α1.

Nevzorov’s model is useful for studying limit theorems, but not for statistical
inference based on a single time series data set or its u.n.r.’s. In the analysis of
annual records, for example, we cannot expect a long data set, and we restrict
the sequence (αk) or (λk) to a specific one, which has one or two parameters,
includes the i.i.d. case and leads to distributions of nice properties. To prepare
for the discussion, the simplest case of Nevzorov’s model is reviewed now.

1.3. The i.i.d. case

If αk is a constant, (Zk)∞k=1 is an i.i.d. sequence, λk = 1/k, and Yk has the
probability generating function (p.g.f.)

pgf (z;Yk) = (z + k − 1)/k, k = 1, 2, . . . (1.2)

From (1.2) the p.g.f. of Xn = Y1 + · · · + Yn is

pgf (z;Xn) = z[n]/n!, (1.3)

(in terms z[n] in (1.6)) which shows the probability function (p.f.)

Pr{Xn = x} =

[
n

x

]
1
n!

, 1 ≤ x ≤ n, (1.4)

and further, the p.f. of the waiting time Ws defined in Subsection 1.1 is

Pr{Ws = w} =

[
w − 1
s − 1

]
1
w!

, s ≤ w. (1.5)

In the above expressions the brackets denote ‘unsigned’ Stirling numbers of the
first kind, which are defined by the polynomial identity

z[n] = z(z + 1) · · · (z + n − 1) =
n∑

m=1

[
n

m

]
zm. (1.6)

Hence, the Stirling numbers are positive integers if n = 1, 2, . . . and 1 ≤ m ≤ n,
and zero otherwise for nonnegative integer n and integer m except for the case
n = m = 0. (About Stirling numbers see, for example, Graham et al. (1989)).

In the next Section 2, a polynomial generalizing Stirling number of the
first kind, Carlitz (1980a, b), is introduced. Based on this polynomial, a two-
parameter family of distributions STR1F(n, θ, τ) for the number Xn of u.n.r.’s,
and another STR1W(s, θ, τ) for the waiting time Ws until the sth u.n.r. are de-
fined. They reduce, if τ = 0 and θ = 1, to (1.4) and (1.5), respectively, and
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include the distributions of the number of future u.n.r.’s and conditional waiting
time.

In Section 3, the predictions of the number of u.n.r.’s are discussed. The
point and interval estimations in the case τ is known, and the point estimation
in the case τ is unknown, are treated. In Section 4, the predictions of the waiting
time are discussed.

In the final Section 5, applications to weather, Vancouver monthly precipita-
tion and Tokyo August temperature, and to sports, Nippon Derby and Olympic
Games, are shown.

2. Two-Parameter Family of Distributions for Record Breakings

2.1. Stirling-Carlitz polynomial

The Stirling number of the first kind is extended in many directions. The
following is one of the most natural extensions. Define R1(n,m; t) by the poly-
nomial identity

(z + t)[n] =
n∑

m=0

R1(n,m; t)zm. (2.1)

The coefficient R1(n,m; t) is a polynomial of t of order n − m with nonnegative
integer coefficients. Expanding the left side of (2.1) in the form of (1.6) and
comparing it with the right side of (2.1), we find

R1(n,m; t) =
∑
k

(
n

k

)[
k

m

]
t[n−k].

Note that

R1(n,m; 0) =

[
n

m

]
, R1(n,m; 1) =

[
n + 1
m + 1

]
,

and
R1(n + 1,m; t) = R1(n,m + 1; t) + (n + t)R1(n,m; t). (2.2)

The polynomial R1(n,m; t), as well as its R2(n,m; t) extending the Stirling num-
ber of the second kind, was introduced by Carlitz (1980a, b) and discussed further
by Koutras (1982), Broder (1984), Shanguman (1984) and Neuman (1987).

2.2. The distribution of the number of u.n.r.’s

The definition (2.1) of R1 introduces the family STR1F(n, θ, τ) of Xn with
p.f.,

pF (x;n, θ, τ) = Pr{Xn} = R1(n, x, τ)θx/(θ + τ)[n] , x = 0, 1, . . . , n, (2.3)

n = 1, 2, . . . , 0 < θ < ∞ , 0 ≤ τ < ∞,
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with the p.g.f.
pgf (z;Xn) = (θz + τ)[n]/(θ + τ)[n] . (2.4)

The distribution STR1F(n, θ, τ) is actually outside the Nevzorov model, since
(2.4) corresponds to λk = θ/(θ + τ + k − 1), k = 1, 2, . . . , and λ1 < 1 for τ > 0.
The necessity of leaving the model will be clear in the next section.

From (2.3) or (2.4),

Pr{Xn = 0} = τ [n]/(θ + τ)[n], (2.5)

Pr{Xn = 1} =



(
θτ [n]/(θ + τ)[n]

) n∑
k=1

(τ + k − 1)−1, for τ > 0,

(n − 1)!/(θ + 1)[n−1], for τ = 0,

(2.6)

E(Xn) = θ
n∑

k=1

(θ + τ + k − 1)−1 = θ(log n − log(θ + τ)) + O(1/n), (2.7)

and

Var(Xn) = θ
n∑

k=1

(θ + τ + k − 1)−1 − θ2
n∑

k=1

(θ + τ + k − 1)−2. (2.8)

To see the role of the parameter τ of the distribution, the graphs of
(Var(Xn), E(Xn)) are plotted in Figure 1 for n = 10, τ = 0, 0.001, 0.01, 0.1, 1,
10 and ∞. The mean is an increasing function of θ. As θ, τ → ∞ such that
θ/(θ + τ) → ρ, Xn approaches the binomial distribution with parameter (n, ρ).
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Figure 1. Relation between mean and variance for 0 ≤ τ ≤ ∞ and θ = 0.5, 1, 5, 10.
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2.3. The distribution of the waiting time

Consider the random walk of a particle on N0 = {0, 1, 2, . . .}, starting from
0 at time 0, moving one step to the right with the time-dependent probability
θ/(θ+τ +k−1) at time k (= 1, 2, . . .), and staying motionless with the probability
(τ +k−1)/(θ+τ +k−1). Xn is the position of the particle at time n. If Ws now
denotes the time when the particle arrives first at s, the family STR1W(s, θ, τ)
of the waiting time is

pW (w; s, θ, τ) := Pr{Ws = w} = R1(w − 1, s − 1; τ)θs/(θ + τ)[w], (2.9)

w = s, s + 1, . . . ; s = 1, 2, . . . , 0 < θ < ∞, 0 ≤ τ < ∞.

It is shown that pW is a proper distribution, namely
∑∞

w=s pW (w; s, θ, τ) = 1,
and from this fact

E((θ + τ + Ws − 1)(r)) = (θ/(θ − r))s (θ + τ − 1)(r), θ > r, (2.10)

where z(r) = z(z − 1) · · · (z − r + 1), and

µW (s, θ, τ) := E(Ws) (2.11)

=

{
(θs(θ − 1)−s − 1) (θ + τ − 1), if θ > 1, s = 1, 2, . . . ;
∞ , if 0 < θ ≤ 1, s = 2, 3, . . . ,

for τ ≥ 0. Trivially E(W1)=1 for any θ > 0 if τ = 0.
The above results are obtained by considering the random walk. They can

also be obtained from the general results on the Makov chain (see Fu (1996)).
The distributions STR1F, STR1W and related ones belong to the ‘extended

Stirling family of probability distributions’, which have p.f. including explicitly
the Stirling-Carlitz polynomial of the first or the second kind as a factor. They
extend the Stirling family of probability distributions (Sibuya (1986, 1988)). The
properties of the new extended family, as well as the above mentioned Markov
chain approach, was reported elsewhere (Nishimura and Sibuya (1997)).

3. Prediction of the Number of u.n.r.’s

3.1. Future events

Let Xn be the random variable with STR1F(n, θ, τ). The problem is to
predict

Xn+m − Xn =
m∑

k=1

Yn+k =: Xn,m, (3.1)

which has, because of (2.4), the distribution STR1F(m, θ, τ + n) and is indepen-
dent of Xn. That is, Xn,m depends on the fact that the highest record of the
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past n observations is known, and does not depend on the number Xn of u.n.r.’s
in the past.

Even in the i.i.d. case, namely τ = 0 and θ = 1, Xn,m has STR1F(m, 1, n)
and we need STR1F(n, θ, τ), τ > 0. Some known results are obtained more
systematically in terms of the new family. For example, using (2.5),

Pr{Xn,m > 0; θ = 1, τ = 0} = 1 − n[m]/(n + 1)[m] = m/(n + m). (3.2)

As noted in Subsection 2.2, the assumption τ > 0 contradicts the convention
X1 = 1 (since we regard Z1 as a u.n.r.). In developing the theory of inference
on STR1F(n, θ, τ), however, there is no problem assuming τ > 0. In the analysis
of actual data, it is likely the model τ > 0 to be useful provided that Pr{X1 =
0} = τ/(θ + τ) is not large. This point will be discussed in Subsection 3.4. If τ

is known (whether it is 0 or not), Xn is a sufficient statistics for the observations
(Y1, . . . , Yn), and we discuss this case first, in Subsections 3.2 and 3.3.

If τ is known, for testing H0 : θ ≤ θ0 versus H1 : θ > θ0, the rule to reject
H0 if Xn ≥ c, where c is a constant determined by the significance level, is the
uniformly most powerful. A special case, τ = 0 and H0 : θ = 1, is the hypothesis
of randomness of (Zk)nk=1. The power of the randomness test against H1 : θ > 1
was compared with Kendall’s rank correlation test by Iiyama et al. (1995).

3.2. Known τ , point prediction

Write (2.7) as

µF (n, θ, τ) := E(Xn) = θ
n∑

k=1

(θ + τ + k − 1)−1, (3.3)

and Xn is the uniformly minimum variance unbiased estimator of µF (n, θ, τ). To
predict Xn,m or to estimate µF (m, θ, τ + n), a simple method is to use

X̂n,m = µF (m, θ̂, τ + n), (3.4)

where θ̂ is the solution of µF (n, θ̂, τ) = Xn and is the maximum likelihood (m.l.)
estimator. To solve this nonlinear equation of θ̂, we start from θ̂0 � 1 and
repeat the Newton-Raphson process for θ̂j while it is increasing, or start from an
over-estimate θ̂0 = (τ + (n − 1)/2)/(n/Xn − 1).

If τ is known, the Fisher information of STR1F(n, θ, τ) is

IF (θ;n, τ) = µF (n, θ, τ)/θ2 −
n∑

k=1

(θ + τ + k − 1)−2 = Var(Xn)/θ2. (3.5)
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The last equality holds because of (2.8). Since (∂/∂θ)µF (n, θ, τ) = Var(Xn,m)/θ,
the asymptotic variance of the estimate X̂n,m is Var(Xn,m)/Var(Xn).

3.3. Known τ , interval prediction

The relationship (3.1) leads to the conditional distribution of (Xn,Xn,m)
given Xn + Xn,m = u,

pC(x;u, n,m) := Pr{(Xn,Xn,m) = (x, u − x) |Xn + Xn,m = u}
= R1(n, x; τ)R1(m,u − x; τ + m)/R1(n + m,u; τ), (3.6)

which is independent of θ. Takeuchi (1975) showed that there exists, for such a
case, a randomized unbiased prediction interval with the given confidence coeffi-
cient of the uniformly shortest expected length. Since the randomized selection
of the end points is necessary for the exact confidence coefficient, this optimal
interval is not practical.

Because of the log-concavity of pF ’s of Xn and Xn,m, the p.f. (3.6) is also
shown to be log-concave, and hence it is unimodal. For a given u, let [a∗(u), b∗(u)]
be the ‘modal interval’ of pC , depending on n,m, and confidence coefficient α.
It is the shortest interval such that

pC(x;u, n,m) ≥ pC(y;u, n,m) for any x ∈ [a∗(u), b∗(u)], y �∈ [a∗(u), b∗(u)],

and Pr{Xn ∈ [a∗(u), b∗(u)] | Xn + Xn,m = u} ≥ α.

Define the confidence belt

B0(α) = {(x, u) : x ∈ [a∗(u), b∗(u)], 0 ≤ u ≤ m + n};

then the interval estimator of Xn,m given Xn = x is

B(x, α) = {y = u − x : (x, u) ∈ B0(α)} =: [a(x), b(x)].

This interval guarantees Pr{Xn,m ∈ B(Xn, α)} ≥ α.

3.4. Unknown τ

If τ is unknown, we use Xn0 and Xn, n0 < n, to estimate θ and τ and to
predict Xn,m. That is, the estimating equation is

µF (n0, θ̂, τ̂ ) = Xn0 and µF (n, θ̂, τ̂) = Xn, (3.7)

where the latter equation can be replaced by

µF (n − n0, θ̂, τ̂ + n0) = Xn − Xn0 . (3.8)
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Unfortunately, the estimate is not stable with respect to the choice of n0.
Fortunately, however, if n is large compared with m the estimate of Xn,m is
not affected much by this instability. Under the same condition, the convention
X1 = 1 seems to have little effect on the estimate Xn,m. The application to the
Nippon Derby data in Section 5 confirms this fact.

If τ is unknown and the observation (y1, . . . , yn) of (Y1, . . . , Yn) is available,
we maximize the likelihood

l(θ, τ) =
n∑

k=1

(yk log θ + (1 − yk) log(τ + k − 1) − log(θ + τ + k − 1)) (3.9)

with respect to θ and τ to obtain the m.l. equations

xn/θ =
∑
yk=0

(τ + k − 1)−1 =
n∑

k=1

(θ + τ + k − 1)−1, (3.10)

where xn =
∑n

k=1 yk is the observation of Xn. These equations can be solved by
the Newton-Raphson method starting from the moment estimates, or from the
m.l. estimates of θ for some preassigned values of τ .

Testing the hypothesis τ = 0 and interval prediction of Xn,m for unknown τ

are open problems.

4. Prediction of Waiting Time

4.1. Future events

Let us turn to the prediction of Ws+t based on the given value Ws = w.
From the relation

Pr{Ws+t = u}
=

∑
w+v=u

Pr{Ws = w}Pr{Ws+t − Ws = v |Ws = w}

=
∑

w+v=u

R1(w−1, s−1; τ)
θs

(θ + τ)[w]
R1(v − 1, t − 1; τ + s)

θt

(θ + τ + s)[v]
, (4.1)

we find

Pr{Ws+t = w + v |Ws = w} = R1(v − 1, t − 1; τ + s)
θt

(θ + τ + s)[t]
, (4.2)

v = t, t + 1, . . . ; t = 1, 2, . . . ;
w = s, s + 1, . . . ; s = 1, 2, . . . ; 0 < θ < ∞; 0 ≤ τ < ∞.
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That is, Ws+t |Ws has the distribution STR1W(t, θ, τ + s), and it depends on the
fact the sth u.n.r. was observed, but does not on when it occurred. The point
prediction of Ws+t |Ws or the point estimation of

E(Ws+t |Ws = w) = µW (t, θ, τ + s), (4.3)

is possible when the expectation is finite, namely, only if θ > 1.

4.2. Point estimation

We discuss only the known τ case. The score function of pW (· ; s, θ, τ) is
sθ−1 −∑Ws

k=1(θ + τ + k − 1)−1 and the m.l. equation of θ is expressed in terms
of µF (not µW ), s = µF (Ws, θ̂, τ). Compare it with the m.l. equation in (3.2),
Xn = µF (n, θ̂, τ). The same computer function, with the arguments of the
modified role, is utilized for solving the equation.

The moment estimating equation of θ is Ws = µW (s; θ̂, τ), whose solution is
more complicated than that of the m.l. equation.

A point estimate of Ws+t − Ws, using one of the above estimates θ̂, is
µW (t, θ̂, τ + s). The Fisher information of pW is

IW (θ; s, τ) = sθ−2
∞∑

w=0

pW (w; s, θ, τ)
w∑

k=0

(θ + τ + k − 1)−2,

where the summations start from w = k = 1 if τ = 0. Compare IW with IF in
(3.5). The estimation is difficult unless θ is large enough and many u.n.r.’s are
occurring.

5. Applications

5.1. Vancouver precipitation

Glick (1978) listed monthly total precipitations during 1900–1973, except for
1904 and 1905, and monthly total hours of bright sunshine during 1909–1973, in
Vancouver, B.C. We predict the number of u.n.r.’s of monthly total precipitation,
for each month, in the last 26 years from that in the first 39 years (the 3/5 parts),
assuming τ = 0.

The data and actual results are shown in Table 1. The predictors of θ,Xn,m

and the estimates of their standard deviations are computed following Subsection
3.2, and the interval prediction of Xn,m is computed following Subsection 3.3.
All results are summarized in Table 2. Observing Table 2, we can accept the
i.i.d. assumption, τ = 0 and θ = 1. The randomness tests based on the total 65
years are not significant, and the predictors look reasonable.
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Table 1. Vancouver monthly precipitation. Number of upper new records
during the first n=39 years and the last m=26 years.

month Ja Feb Mar Ap May Jun Jul Aug Sep Oct Nov Dec
Xn 4 4 2 3 4 3 5 2 6 3 3 5

Xn,m 0 1 0 0 2 1 0 0 0 1 1 0

Table 2. Point and interval prediction of the future record breakings based
on the past in Table 1. [a, b] is the interval covering Xn,m with confidence
coefficient 0.9017.

Xn θ̂ SD(θ̂) X̂n,m SD(X̂nm) a b actual Xn,m

1 0.0000 0.0000 0.0000 0.0000 0 1 –
2 0.2640 0.0758 0.1839 0.1829 0 1 0,0
3 0.5744 0.1919 0.3976 0.3930 0 1 0,1,1,1
4 0.9325 0.3566 0.6408 0.6289 0 2 0,1,2
5 1.3400 0.5802 0.9134 0.8893 0 2 0,0
6 1.7994 0.8752 1.2156 1.1730 0 3 0
7 2.3140 1.2575 1.5477 1.4786 0 3 –
8 2.8878 1.7472 1.9103 1.8052 0 3 –
9 3.5258 2.3696 2.3044 2.1516 0 4 –

Actually, there were dry years, especially dry winters, in the beginning, and
if we use the lower new records the predicted values θ̂ and X̂n,m are larger and
the actual values of Xn,m are smaller. It is an open problem to predict upper
and lower records simultaneously.

5.2. Tokyo summer temperature and horse race

Iiyama et al. (1995) listed Tokyo August mean temperatures during 1950–
1994, and the winning times of Nippon Derby (Tokyo thoroughbred race) during
1932–1994, except for 1945 and 1946. The mean temperature is the monthly
arithmetic mean of 24 hourly measurements of everyday. We study first the
u.n.r.’s of the temperature and the lower new records of the winning time, ap-
plying the predictors of Subsection 3.2. The times (years) when a new record
occurred are listed in Table 3.

Table 3. Data for Figs. 2 and 3. The time when a new record occurred. From
Iiyama et al. (1995).

Fig. Dataset n the years when a new record occurred
2 Tokyo Aug. T. 45 1, 2, 3, 5, 8, 13, 24, 29, 45
3 Nippon Derby 61 1, 2, 6, 7, 11, 12, 18, 24, 27, 28, 30, 39,

40, 41, 46, 49, 55, 57
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Using the data of N years (N =45 or 60) we predict the last N− n years
from the first n years, changing n = 22, . . . , 40 for August temperature and
n = 30, . . . , 56 for Nippon Derby. The results are summarized in Figures 2 and
3. In Figures 2a and 3a for θ, θ̂’s are plotted by dots against n, and θ̂ ± 2SD(θ̂)
are plotted by minuses. In Figures 2b and 3b for Xn,m, X̂n,m are plotted by dots,
X̂n,m + 2SD(X̂n,m) by minuses, and actual values of Xn,m by pluses. The values
of X̂n,m − 2SD(X̂n,m) are negative and not shown.
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Figure 2. Tokyo August temperature (45 years).
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Figure 3. Nippon Derby (61 years).

In both datasets, θ is larger than 1, and the hypothesis of randomness is
rejected in both cases. After 1950, the effect of the increasing energy consumption
and the green-house effect is apparent in Tokyo temperature. The horse-race
speed is steadly up (from 2 min. 45 sec. to 2 min. 25 sec.) in these years due to
improvement of race field, training of riders and horses, and breeding.
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In Fig. 2b, the actual observations of Xn,m are not far from the predicted
values, and the assumption τ = 0 seems to work. The estimates θ̂ are rather
stable. The point predicion of the waiting time of Subsection 4.2 is applied to
this case, with W9 = 45 regarded as the given data. The results in Table 4 are
comparable to the point estimate X̂45,5 = 0.31 and X̂45,10 = 0.59.

In Fig. 3b, the gaps between the actual observations Xn,m and the predicted
values are larger, and the estimates θ̂ are not stable. Hence, the prediction
method of Subsection 3.4, using the estimating equation (3.7) and the m.l. equa-
tion (3.10), is applied to get the results in Table 5. Compared with the case
where τ = 0 is assumed, the two-parameter model gives a more reasonable pre-
dictor, although estimates vary by the prediction methods. In the table, to check
the effect of disregarding the convention X1 = 1, the estimate from the data
neglecting the first occurrence is computed, with (n0 = 30, n = 61). The effect is
comparable with that of changing the prediction method. The likelihood func-
tion of this example has a steep edge and the maximization is difficult. This fact
may correspond to the instability in the moment method.

Table 4. Tokyo August temperature (Fig. 2 and Table 3). Point estimation
of Ws+t from the last occurrence s = 9 and Ws = 45. θ̂ = 3.10.

t 1 2 3 4 5
Ŵs+t 5.28 13.07 24.56 41.52 66.53

Table 5. Nippon Derby (Fig. 3 and Table 3). Point prediction (unknown τ)
of the future record breakings.

methods θ̂ τ̂ X̂61,5 X̂61,10

τ=0 8.25 – 0.58 1.12
n0 = 20 (1/3) 34.18 54.32 1.79 3.32
n0 = 30 (1/2) 18.23 18.48 2.09 3.57
n0 = 40 (2/3) 28.24 40.69 1.86 3.39
1st negl. (1/2) 23.41 29.80 1.95 3.46

max. likel. 21.34 25.22 1.99 3.50

5.3. Olympic Games (22 times, 1896-1992)

Modern Olympic Games started 1896. Among 25 planned sessions, three
were cancelled by the First and Second World Wars, and there are at most 22
golden medalist records for each game (Watanabe (1989)). The marathon course
distance was not fixed in the early era. Hence, the times in the era are modified
according to the present 42.195km. Many record-breakings are still occurring in
traditional sports, except for some field sports and races. Since the data are not
long, the two parameter model is not adequate, and we assume τ = 0.
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Table 6 shows the interval prediction, with confidence coefficient more than
0.9, of the number of record-breakings in future five games.

Table 6. Interval prediction [a, b] of the number of new records in future 5
Olympic Games.

category sports n Xn θ̂ a b

field (men) long jump 22 9 5.17 0 2
triple jump 22 13 12.46 0 4
shot put 22 16 24.89 0 5
discus 22 17 32.46 1 5

track (men) 100m race 22 8 4.07 0 2
400m race 22 10 6.49 0 3
800m race 22 14 15.53 0 4
1500m race 22 14 15.53 0 4

marathon (men) 22 12 10.04 0 3
swimming (men) 100m free 19 16 45.01 1 5

400m free 19 18 158.78 3 5
1500m free 19 14 22.46 0 4
800m relay 19 17 73.39 2 5

swimming (women) 100m free 16 11 14.27 0 4
400m free 16 15 109.78 2 5
400m relay 16 15 109.78 2 5

confidence coefficients of [a, b] n=22 α =0.9016
19 0.9004
16 0.9038

In the long jump, 100m and 400m races, and the marathon, all for men,
the record-breakings are saturated. In other field and track sports, the record-
breakings are starting to saturate. In swimming, specially in the 400m free and
800m relay for men, and the 400m free and 400m relay for women, new record-
breakings are promising.
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