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Abstract: There has been much justifiable recent interest in local polynomial re-
gression, and in particular in its local linear special case. Local linear regression has
advantages in terms of desirable theoretical properties both in the interior and near
the boundaries of the region of interest. For implementation, binning is useful. In
this paper, we describe a variation on local linear regression which can be consid-
ered an alternative binning thereof. We show that existing and novel methods are
almost indistinguishable. The point of the paper is not to extol the virtues of the
new version over the old, but rather (i) to show that the good properties of local
linear regression can be achieved in more than one way, and (ii) to elucidate close
links between local linear regression and other kernel smoothing methods. The lat-
ter include, most closely, a boundary corrected ‘naive’ kernel estimator and a recent
proposal of Wu and Chu (1992), as well as binned Nadaraya—Watson estimators
and methods for binomial regression.

Key words and phrases: Binning, boundary correction, kernel smoothing, nonpara-
metric regression.

1. Introduction

Local linear regression (see e.g. Hastie and Loader (1993), Wand and Jones
(1995), Chapter 5) has various advantages over other kernel-based methods for
nonparametric regression. Assume that the regression mean m has two contin-
uous derivatives and that a symmetric probability density function is used as
kernel K. In the interior of the design space, local linear regression achieves a
desirable asymptotic bias which is proportional to m”. It does so while retain-
ing the variance expected of most kernel-type estimators (but not attained by
all) (Fan (1992, 1993)). That the combination of desirable bias and variance is
not easy to achieve by direct kernel means is clear from Jones, Davies and Park
(1994). Furthermore, local linear regression behaves very well near the bound-
aries of the design space in the sense that it retains O(h?) bias everywhere, as
its single smoothing parameter, or bandwidth, » — 0 (Fan (1992), Ruppert and
Wand (1994)).

For fast implementation, binning algorithms have been developed; these are
most thoroughly investigated by Fan and Marron (1994). The binning necessi-
tates specification of a second smoothing parameter, the binwidth, or equivalently



1172 M. C. JONES

of the number of bins. But it is clear from experience that the precise value taken
for the binwidth is not crucial. The binned local linear method retains the good
properties of the unbinned version.

This paper contributes to our understanding of the processes involved in
achieving desirable performance by showing how a variation on binned local linear
regression has the same desirable properties. The novel method is developed in
Section 2 and its properties described in Section 3. This new method has close
links to “naive” kernel regression (Section 2), and further links between these
and other existing methods are given in Section 4. A complementary paper is
mentioned briefly in Section 5.

In simulations, existing and novel methods can be seen to be virtually indis-
tinguishable in practice; we save space by not illustrating this here.

2. The Modifications

We follow the notation of Fan and Marron (1994). The data are {(X;,Y;) :
i=1,...,n}. We specify an equally spaced grid z1, ..., z,, defining the binwidth
A=uzj—z;_1forany 2 < j < g. Let [; = {i : X; — z;} where the arrow denotes
replacing X; by it nearest gridpoint. (Variations on this are possible, too, but will
not be considered here.) The binned data are {(z;, YjE, ¢j): j=1,...,g} where
the “bin counts” are ¢; = Y I(i € I;), and the “bin totals” YjE =3 YI(i € 1)
are the sums of the responses in the bins.

For any [ =0,1,..., define

Ti(x)

Z Kp(z —xj)(x — :L‘j)leE and S(z) = Z Kp(z — xj)(x — ."L‘j)le.
j=1 J=1

Here, Kj,(u) = h~'K(h~'u). The quantities 7;(z) and S;(z) are binned approx-
imations to

Ti(z) = iKh(a: — Xi)(z — X)'Y; and Sy(z) = iKh(x — X))z — X,
i=1 i=1

respectively. The usual binned local linear regression estimator (Fan and Marron

(1994)) is

So(z)Th(x) — S1(z)T1(x)
S2(2)So(x) — Sf(z)

and this approximates the actual local linear regression estimator (Fan (1992)):

™ (JZ) _ SQ(SL‘)TQ(I‘) — Sl({L‘)Tl(l’)
TS (@)S(x) — SF(x)

g ()

(2.1)
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Our alternative binning can be introduced just as simply as follows. When-
ever ¢; # 0, define the “bin averages” }7] = cj_leE. Now replace smooths of YjE

and ¢; in m¥ by smooths of Y;I(c; > 0) and I(c; > 0), respectively. That is, set

g
n(x) =Y Kn(z —z;)(x — ;) VI (c; > 0)

Jj=1
and

ol(z) = ZKh(x —z;)(x — ;) I(c; > 0).
j=1

Then define

~ B

B(y) = o2(z)10(z) — 01(2)71(7)

o3(z)oo(x) — of(2)

—
8

(2.2)

The estimator 'rhéB is our proposal to compete with mf , and we shall see in
Sections 3 and 4 that the two barely differ at all, in theory or in practice.

The following alternative development provides further motivation for mf
and makes a first link to alternative kernel regression approaches. Each bin
average }7] estimates m(z) for x in bin j, of course. Because of the uniform
nature of the grid, we introduce no complications (in the form of a non—uniform
“design density” f) if we simply kernel smooth the set {(z;,Y;I(c; > 0),
I(c; >0): j=1,...,g} ie. consider using mP(x) = A 79(x). The estimator
mP is the natural binned version of the basic “naive” kernel regression estimator
m(z) = n~1Ty(x) (e.g. Priestley and Chao (1972); something very closely related
to m has recently been proposed by Chu (1993)). We will see in Section 4.3
that m? is closely related to a proposal of Wu and Chu (1992). We repeat that
consideration of 7P (z) as an estimator of m(z) is justified by the uniformity of
the gridpoints which avoids inadequacies of m(x) due to nonuniform f (Jones,
Davies and Park (1994)).

It seems, therefore, as though binning might allow us to revert to naive
smoothing, and this is true in the interior of the design space; but there remains
the other inadequacy of this approach which is its failure to cope with boundaries.
We need to introduce some form of boundary kernel (e.g. Miiller (1991), Jones
(1993)). Suppose that there is a boundary at, without loss of generality, 0. One
appropriate choice of boundary kernel is to replace K(u), at x = ph say, by the
linear multiple

Kr(u) = {ao(p)az(p) — ai(p)} H{az(p) — ar(p)u} K (u),

where a;(p) = [P__2'K(z)dz. This boundary kernel can variously be motivated
as being asymptotically equivalent to that implicitly used by m, (Ruppert and
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Wand (1994)), as a sensible ad hoc device (e.g. Hart and Wehrly (1992)) and via
generalised jackknifing (Jones (1993)). It seems to be as good a choice as other
boundary kernels (Jones (1993)). Note that as we move away from the boundary,
K tends to K.

Now, unless there is no data near z, o;(x) is a Monte Carlo or quadrature
approximation (depending on the genesis of Xi,...,X,) to hla;(p). (The o;(x)
formula in fact works near any boundary — and we might well be working on
[0,1] — since it targets fcf Kp(x — u)(z — u)ldu where Cy is the support of f.)
That is, K7,(u) can be approximated by

{o0(z)o2(2) — 0F(2)} " H{oz(z) — o1 (2)hu} K (u)

and replacement of K in m?(x) by this yields precisely /P (z) as in (2.2).

Here, we have built, via binning, on the well-known approximate equivalence
(e.g. Ruppert and Wand (1994)) between local linear regression and the use of
kernel regression (in fact, naive smoothing when the design is uniform) with
boundary kernel K. Many readers will prefer the local linear motivation because
it does such boundary correction automatically, without the user imposing it.
(Now that the conceptual role of Ky, has been clarified, K will not occur again
in the remainder of the paper.) But the formulae used are essentially the same
and of the same complexity in either approach, and the similarity of (2.1) and
(2.2) reflects this.

3. Theoretical Properties

Asymptotic mean squared errors (AMSEs) of /P (x) and /P (), conditional
on Xq,...,X,, turn out to be identical, so the two are dealt with in the following
theorem. For proof of the theorem, see the Appendix.

Theorem. Suppose that the regression model is Y; = m(X;) +¢€; where the €s are
independent of each other and of the X s, having mean zero and variance v?(x;).
X1,..., X, have design density f in either sense of being chosen randomly from
[ or of being placed (close to or) at the quantiles of f. Suppose f > 0 on Cy.
Assume that K has jump discontinuities in its (2t—1)st derivative for somet > 1
and that m has max{2,2t — 1} continuous derivatives. To cope with a boundary
at, without loss of generality, 0, let x = ph. Assume also, for simplicity, that
ph is a gridpoint (otherwise, one should think in terms of interpolating between
values at gridpoints in such a way as not to introduce further approximation
error; this is unimportant in practice). Let n — oo, h = h(n) — 0 such that
nh — oo, and A = A(n) — 0 such that A/h — 0. Then

~ l{a%(p)_al(p)a?:(p)}m//x 2 2 ot 2
AMSE (M (z)) ~ (2{%@)&2@)_&%@)} (2)h® +O(A> + (A/h)*))
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1 v(z) P {a2(p) — uai(p)}? K200 , o
+ [f(a:) —oo {az(p)ao(p) — ai(p)}? K%(u)du + O(A% + (A/h) )},

where My, denotes either mg or me If K has support [—1, 1], then for an interior
point x > h, this reduces to

AMSE (M}, (x)) ~ <%52m”(1’)h2 i O(A2 + (A/h)2t)>2

1 (v%(x)
Tah UF()

/_ 11 K2(u)du + O(A? + (A/h)™)},

where so = f_ll u? K (u)du.

The theorem shows that if A is small enough relative to h then the effect
of binning on the AMSEs can be ignored. In this case, the theorem reduces to
results of Fan (1992). The theorem is clearly novel for /P but does not seem to
have been written down elsewhere for mf either.

4. Relationships With Other Methods
4.1. Links with the Nadaraya-Watson estimator

It is worth commenting on various other kernel-based nonparametric regres-
sion estimators in the light of this work. Possibly the most popular method,
at least until recently, was the Nadaraya-Watson estimator (e.g. Hardle (1990))
which in our notation is simply m.(x) = Tp(z)/So(x). Its binned version, con-
sidered by Hirdle and Scott (1992) and Fan and Marron (1994), is mZ(z) =
To(w)/So(z). But, of course, we can now introduce an alternative binned imple-
mentation, namely mZ(z) = 7o(x)/og ().

Theoretical properties follow straightforwardly from the proof of the the-
orem. Under the same conditions as in the theorem, it is not difficult to see
that

AMSE (18 ()
(@) Las(®) e,y 1a2(p)ao(p) — ai(p)} m' (@) f'(x)7, 2
> (=)™ O+ o™ @+ 0 )"

(
2(2) P u)du
(z) ag(p)

+0(8%+ (/W) + {5
which reduces to
AMSE(m? (z)) ~ (lsz{m"(x) + 2M}h2 +O(A? + (A/h)%))2

1 l‘

/K2 (u)du + O(A% + (A/1)™)}
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in the interior. (See also Hardle and Scott (1992), who cite a Diploma thesis of
K. Breuer.) Aside from the binning terms, the latter is the usual expression for
the AMSE of the Nadaraya-Watson estimator in the interior (e.g. Hardle (1990)),
and the former is its analogue near the zero boundary.

For 2, however, the asymptotics work out differently. We get

AMSE(f (x)) ~ (- 2 ®) r@yn + L2 ragn? £ o2 + (A/h)%))2

B ag (p) 2 aO(p)
1P (e) [P K?(u)du 2 2
+nh{ fz)  d2(p) FORTE AN )}

giving the same interior formula as for the local linear estimators mf and mf in
the theorem, but leading boundary behaviour like that of /2.

The following behaviour is discernible in simulations but we shall not explic-
itly illustrate it. For small samples, mf stays close to its roots in ﬁzf’) . However,
for quite large sample sizes, in the interior, three estimators, namely ﬁmf , mf
and rhf’) , remain very close together and ﬁzf’) is indeed somewhat apart. However,
at the boundaries, 72 reverts to the less desirable behaviour of /2. This well
reflects the asymptotic results above.

An explanation of this surprising phenomenon is at hand. For n very small
relative to g, sz is either O or 17j, and Tp and 7y follow Ty in estimating m x f.
Also, Sy and og(z) follow Sy as estimators of f. Thus /2 behaves like M2, and
also like m.. On the other hand, if n is very large relative to (large) g, 7o estimates
m directly, and og becomes an estimate of unity. Estimators which target m
directly (or, more exactly, through estimating n=! 37, Kj(x — X;)Y;/f(X3)),
which include the local linear approaches as well as mZ, have quite different
properties from those taking the “mf /f” route (Jones, Davies and Park (1994)),
and these are reflected above. The estimators 7. and M continue to work in
the latter way when n is large also.

A general note is that one sometimes has to work quite hard to arrange that
f is non—uniform enough in a steep enough region of m for the differences above
to be considerable, and indeed for the differences between m. and 1y to be of
major qualitative importance (except at a boundary). The above also implies
that boundary correction of m? is called for to align it with the better estimators.
But this is exactly how ﬁzf comes about in any case.

4.2. Links with binomial regression

Suppose that on an equispaced grid {Z;,5 =1,..., g}, we have independent
binomial data B; ~ Bin(nj,p;). Kernel weighted local likelihood, in its local
constant form (Staniswalis (1989)), estimates the assumed smooth function p at
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z by maximising

> Ku(z — Z;){Bjloga+ (n; — B;)log(1l — a)}
j=1

over a. The result is precisely mf with Z;, B; and n; replacing a:j,YjE and c;j,
respectively. That is, for equispaced binomial regression — which may be of
practical interest for example in bioassay problems on a log dose scale — local
likelihood essentially suggests 2.

On the other hand, mf is essentially a kernel smooth of the actual maximum
likelihood estimates Bj/n;, the analogue of Yj Our arguments earlier, therefore,
indicate a preference for kernel smoothing a maximum likelihood estimate rather
than kernel smoothing the log-likelihood function itself for this particular ratio
estimation problem. As an associate editor says, an explanation may be that m?
is more faithful to the observed likelihood than is /722. This may have analogues
in other indirect curve estimation problems. Gavin, Haberman and Verrall (1994)
discuss these two smooth binomial estimators in an actuarial setting, and also
have a general preference for the latter.

For non-equispaced binomial regression data, one ought, again, to fit local
lines (Tibshirani and Hastie (1987), Fan, Heckman and Wand (1995)). When
doing so for normal errors, we observe that it is discretising the local likelihood
(for fast computation purposes) that leads to mf , while we have to start with
modified data to derive mf.

4.3. Links with another kernel-type regression estimator

The method of Wu and Chu (1992) can be thought of as being very much
in the spirit of the new proposal of this paper but in perhaps a slightly less
desirable form. Wu and Chu’s “double smoothing type estimator” (DSTE) (i)
obtains binned data, but using a Nadaraya Watson weighted average (with band-
width half the binwidth) of Y's in the bin, then (ii) uses essentially Ary(x) with
the Nadaraya-Watson smooths replacing the simple bin averages. The DSTE
is clearly close to ﬁzf but it does not employ the boundary correction which
fully lines /P up with local linear regression. Also, Wu and Chu (1992) state
that the binning “is not related to the asymptotic performance” of DSTE but
do not fully exploit this for practice, while the initial Nadaraya-Watson estima-
tion seems unnecessarily complicated. The current paper delves more deeply into
appropriately modified DSTE.

5. A Complementary Paper

On completion of the current paper, the author’s attention was drawn to
Kneip and Engel (1996), a paper written independently and at much the same
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time. Kneip and Engel (1996) also have as main focus an estimator closely related
to m?: see their (3.3) (Kneip and Engel use Gasser-Miiller weights (e.g. Miiller
(1988)); because of the binning, these weights will differ little from ours). But
Kneip and Engel’s work has a different, and complementary, emphasis; they are
particularly concerned with using a coarser binning with the aim of alleviating
the design sparsity difficulty investigated by Seifert and Gasser (1996).
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Appendix: Proof of Theorem
Conditional on Xy,..., X,

n

BYF) =Y m(X)IG € 1) =n | m@)f(@)de = n{Am(z;)f(@;) + O(AY)}
i=1 J

and

Ble;) = ;= [ J@)da=n{Af(x) +O(A")},

It follows that E(Y;) ~ m(z;)+O(A?). Let x denote convolution. It then follows
that

E(Ti(x)) = n{h' (' K)p, » (mf + O(A%) + O((A/h)™)},

Si(w) = n{h' (@' K)n + (f + O(A%)) + O((A/h)*)},

and, provided we now take n large enough that we can assume that I(c; > 0) =1,

E(n(z)) ~ A7 (@' K)p + (m + O(A%) + O((A/h)*)}
and

o(x) =~ AR K), + (1) + O((A/h)*)}.
(See Hall and Wand (1996) for the genesis of the O((A/h)?!) terms.) Note that
(' K)y, * 7, say, can be expanded as a;(p)r(x) — haj1(p)r' (z) + %hgal+2(p)T//(l‘).
The biases of the theorem then follow by employing these expressions in the
formulae for mf and mP.
The variance terms will also include remainders which result in the O(A2) +

O((A/h)?") terms in the theorem, but these will not be explicitly written out

from now on for convenience. Let A;(z) be defined like S;(x) except for K being
replaced by K2. Then, conditional on X, ..., X,

Cov(Ti(x), Tu(@)) = 3" KR (e — ;) (@ — ;) Fejo?(ay) = v (0) Aryi (o).
j=1
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~ )2 (z) [ K2 ) 2@ @) —2000)a () @)t () () )
B )

*(x) — al(p)f3(2)}

by virtue of the above approximation to S;(z), and one small final step gives the
variance in the theorem. Likewise, conditional on X1, ..., X,

g
Cov (1y(z), (7)) ~ Z K,Ql(a: —xj)(z — a:j)chj_lvg(a:j) ~ U2($)@l+k($).
=1

Thus,

p o 03 E)an() — 205(@)on (@)on (2) + o (x)as ()
Var(ig (z)) = v () o@)o0(@) — (@) ’
where g
=Y Kiw—ap)o— o)t =0 [l K e/ 1),
j=1 e

and the result follows.
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