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Abstract: Consider the regression model Yi = g(ti) + ei for i = 1, . . . , n. Here

−∞ < Yi, ei < ∞, ti ∈ T ⊂ Rd, g ∈ H , and H is a specified class of continuous

functions from T to R. Based on a finite series expansion g̃n of g, an M -estimate

ĝn of g is constructed, and the asymptotic normality of the estimate is investigated.

Meanwhile, a test statistic for testing H0 : g(·) = g0(·) (a known function) is dis-

cussed. We also consider M -estimates for semiparametric regression models and

show that they are consistent and asymptotically normal.

Key words and phrases: Asymptotic normality, M -estimation, nonparametotic re-

gression model, semiparametric regression model, spline smoothing technique.

1. Introduction

Consider the model given by

Yi = g(ti) + ei, i = 1, 2, . . . , (1)

where ti = (ti1, . . . , tid)τ ∈ T ⊂ Rd are fixed design points, g ∈ H is an unknown
function over T , and ei are i.i.d. random errors.

In recent years, nonparametric regression analysis has become an increas-
ingly popular tool for data smoothing. Many of the commonly used estimates
of nonparametric regression functions including kernel estimates (Härdle (1990))
and smoothing splines regression estimates (Eubank (1988) and Wahba (1990))
are based on the least squares (LS) method. However, it is well-known that the
estimates constructed by using the LS method are sensitive to outliers in the
observations, and that the error distribution may be heavy-tailed, deteriorating
their performance. Hence a more robust procedure for the model (1) needs to
be investigated. In the discussion to Stone’s (1977) paper, Brillinger raised the
point that a nonlinear M -type estimate of the nonparametric regression curve
might be worthwhile to study in order to achieve desirable robustness proper-
ties. An important paper on kernel M -estimation of the regression function is
Härdle and Gasser (1984). See also Härdle (1984), Härdle and Tsybakov (1988),
and Hall and Jones (1990). Härdle and Gasser (1984) showed that these esti-
mates have many of the advantages typically associated with robust inferences.
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Other related results about M -estimates for linear models and nonparametric
regression models havn been given by a number of authors. See, for example,
Yohai and Maronna (1979), Huber (1981), Cox (1983), Portnoy (1984, 1985),
Welsh (1989), Chen et al. (1990), Pollard (1991), Davis et al. (1992), Bai, et
al. (1992, 1993), and Shi (1992). More recently, Shi and Li (1995), based on the
unknown regression approximated by B-spline function, discussed some optimal
convergence rates of M -estimates.

In this paper, our objective is to replace the traditional choice ρ(u) = u2 with
another choice that is less sensitive to extreme values and, therefore, provides
an estimate which is more resistant to the influence of outliers. By using the
finite series expansion, we construct M -estimates and establish the asymptotic
normality of these estimates for nonparametric and semiparametric regression
models. The results given below improve and generalize the related results of
Portnoy (1985), Andrews (1991), and Gao et al. (1994).

The organization of this paper is as follows: Section 2.1 investigates the
asymptotic normality of M -estimates for nonparametric regression models. Sec-
tion 2.2 considers the asymptotic normality of M -estimates for semiparametric
regression models. Section 3 proposes a computational algorithm. Assumptions
and proofs for the results stated in Section 2 are given in Appendix.

2. Main Results

2.1. Asymptotic normality in nonparametric regression models

Consider the regression model given by (1). The objective is to estimate
various functions of g(·), such as g(t) and its first derivative g′(t) for arbitrary t ∈
T . The approach taken here is to approximate g(·) by the finite series expansion∑q

k=1 zk(·)γ0k, where {zk(·); k = 1, 2, . . .} is a prespecified family of functions
from T to R, γ0 = (γ01, . . . , γ0q)τ is an unknown parameter vector, and q = qn is
the number of summands in the series expansion when the sample size is n. In this
paper, qn is taken to be nonrandom. Some results for random data-dependent
value of qn are given in Andrews (1989). The results given below are stated
so that they can apply to any family {zk(·); k = 1, 2, . . .} that satisfies certain
properties. Families of particular interest include polynomial, trigonometric, and
B-spline functions.

To define the M -estimates we introduce some notation. Let

Z(·) = Zq(·) = (z1(·), . . . , zq(·))τ , Z = Zq = (Z(t1), . . . , Z(tn))τ ,

Y = (Y1, . . . , Yn)τ ,

and e = (e1, . . . , en)τ . (2)
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Now, based on Assumption A.1 below and the model Yi = Z(ti)τγ0 + ei, we
define an M -estimate γ̂n = γ̂n(q) of γ0 by minimizing

n∑

i=1

ρ(Yi − Z(ti)τ γ̂n), (3)

where ρ(·) satisfies Assumption A.2 below.
The corresponding M -estimate ĝn(·) of g(·) is

ĝn(·) = Z(·)τ γ̂n. (4)

Next, we describe the functions of g(·) that we wish to estimate. Let Gn =
Gn(g) denote the estimand, where Gn(·) is a function from H to Rm. The
functionGn(·) is defined so as to include some important examples. (See Andrews
(1991) for more details.)

The corresponding M -estimate of Gn(·) that we consider is Gn(ĝn). Since
the functional Gn(·) is assumed below to be linear, we have

Ĝn = Ĝn(q) = Gn(ĝn) = Gn(Z(·)τ γ̂n(q)) = Ln
τ γ̂n(q), (5)

where Ln(k) = Gn(zk(·)) ∈ Rm for any k and Ln = (Ln(1), . . . , Ln(q))τ ∈ Rq×m.
Now, we give the main result of this section.
Theorem 2.1. Suppose that Assumptions A.1 through A.4 below hold. Then as
n→ ∞

A−1/2
n (Ĝn −Gn) →D N(0, A−2σ2), (6)

where A is defined by Assumption A.2(ii) and An = Lτ
n(ZτZ)+Ln is nonsingular

and therefore A−1/2
n is well-defined under Assumption A.4.

Remark 2.1. (i) Under very mild assumptions, we obtain the asymptotic nor-
mality of M -estimates of a class of functionals. This result generalizes Theorem
1(b) of Andrews (1991).
(ii) Although this section takes the regressor {ti} to be nonrandom, Theorem 2.1
also holds for the random design {Ti} if the assumptions of the Theorem hold
conditional on {Ti} = {ti} with probability 1.
Remark 2.2. Another important problem is testing a null hypothesisH0 : g(·) =
g0(·), where g0 is a known function. The hypothesis tests for H0 : g(·) = g0(·)
have been discussed by some authors. See, for example, Eubank and Hart (1992),
Whang and Andrews (1993), Azzalini and Bowman (1993), and Gao (1995a).
The details will be given in Section 2.2.

2.2. Asymptotic normality in semiparametric regression models
Consider the regression model given by

Yi = xτ
i β0 + g(ti) + ei, i = 1, 2, . . . , (7)
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where xi = (xi1, . . . , xip)τ (⊂ Rp, p ≥ 1) and ti = (ti1, . . . , tid)τ (∈ T ⊂ Rd) are
known and nonrandom design points, β0 = (β01, . . . , β0p)τ is a vector of unknown
parameters, g ∈ H is an unknown function, ei are i.i.d. random errors, and p is
a finite integer or p = pn → ∞ as n→ ∞. The model (7) belongs to a class of
partly linear regression models, which was discussed by some authors. See the
recent review by Gao et al. (1994) for more details.

In this section, we investigate the asymptotic normality of the M -estimate
β̂n of β0 based on g(·) approximated by a finite series expansion.

Now, based on Assumption A.6 below and the model Yi = xτ
i β0 +Z(ti)τγ0 +

ei, we define the M -estimates β̂n = β̂n(q) and ĝn(·) = Z(·)τ γ̂n of β0 and g(·) by
minimizing

n∑

i=1

ρ(Yi − xτ
i β̂n − Z(ti)τ γ̂n), (8)

where ρ satisfies Assumption A.2 below.

In the following, we give the main results of this section.

Theorem 2.2. (i) Suppose that Assumptions A.2 and A.6 through A.9 hold. Let
p ≥ 1 be a finite integer. Then as n→ ∞

√
n(β̂n − β0) →D N(0, A−2B−1

0 σ2), (9)

where A and B0 are defined as in Assumptions A.2(ii) and A.7(i).
(ii) Suppose that Assumptions A.2, A.6, and A.8 through A.11 hold. Let p =
pn → ∞ as n→ ∞ and Var (ψ(e1)2) <∞. Then

(2p)−1/2σ−2(A2(β̂n − β0)τXτX(β̂n − β0) − pσ2) →D N(0, 1). (10)

(iii) Suppose that Assumptions A.2, A.10, and A.11 hold. Let g(·) ≡ 0 in (7),
p = pn → ∞ as n→ ∞ and Var (ψ(e1)2) <∞. Then (10) holds.

Remark 2.3. (i) Theorem 2.2(i) shows that the M -estimate β̂n of β0 can achieve
the optimal convergence rate n−1/2 with the smallest possible variance. This
result covers some related results for the model (7). (See, Gao et al. (1994) for
more details.)
(ii) Simulation studies suggest that when the random errors are normally dis-
tributed, the M -estimates are as good as LS estimates; however, when the ran-
dom errors are drawn from a symmetrically contaminated normal distribution,
the M -estimates are superior to LS estimates, and when the radom errors are
distributed as Cauchy distribution, the M -estimates seem acceptable but the LS
estimates behave poorly. The details of a Monte Carlo study will be given in
Section 3 below.
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(iii) Theorem 2.2(ii) generalizes Theorem 2.2(i) to the case where the dimension
number is large enough. Theorem 2.2(iii) gives the asymptotic normality of
the M -estimate β̂n of β0 for the case where (7) is a simple linear model. The
conclusion of Theorem 2.2(iii) is the same as Theorem 3.3 of Portnoy (1985) but
the conditions of Theorem 2.2(iii) are weaker than those of Portnoy.

In the following, we give the average squared error (ASE) for the nonpara-
metric regression function estimate, which also provides a reasonable selection
for q.

Theorem 2.3. Suppose that either the conditions of Theorem 2.2(i) or the con-
ditions of Theorem 2.2(ii) except Var (ψ(e1)2)<∞ hold. Then for large enough n

ASE(q) =
1
n

n∑

i=1

(ĝn(ti) − g(ti))2 = Op(
q

n
σ2) + op(

q

n
σ2). (11)

Remark 2.4. (i) It is clear from the results of Stone (1982) that q = qn =
O(n1/3) in (11) is optimal, so ASE(q) can achieve the optimal rate O(n−2/3).
(ii) By observing the conditions of Theorems 2.1 through 2.3, we know that the
number of the approximation terms qn affects the asymptotic properties of the
proposed estimates. As described in the Algorithm and Remark A.1(ii) below,
the optimal qn is proportional to the reasonable candidate n1/(2r+1) if g(·) has
r-order derivative. In fact, some optimal selective procedures for qn have been
proposed by using the GCV criterion. (See, Gao (1995a) and Section 9.3.4 of
Hastie and Tibshirani (1990) for more details.)
(iii) The above Theorems 2.1 and 2.2(i) show that under some mild conditions
there exist truncation sequences qn such that the proposed estimates Ĝn and
β̂n are asymptotically normal with zero means. Here the Assumptions A.1 and
A.6 below are two key smoothness conditions on the regression function g(·),
which guarantee that the asymptotic biases can be negligible. Normally, the
asymptotically efficient estimate in the kernel case always has a nontrivial bias.
(See Härdle (1990) and Hall and Jones (1990).) As a matter of fact, based on qn
selected by using the GCV , the Ĝn(qn) and β̂n(qn) in (5) and (8) can be modified
to asymptotically efficient estimates.

Another important problem considered in this section is testing the null
hypothesis H0 : g(·) = g0(·) (a known function). Like Azzalini and Bowman
(1993), we can construct a test statistic for the null hypothesis H0 : g(·) = g0(·).
But here q = qn → ∞ as n → ∞, so we need to modify the F -statistic used
by Azzalini and Bowman (1993). Based on Assumption A.6, the null hypothesis
H0 : g(·) = g0(·) is equivalent to H ′

0 : γ0 = γ̃0 (known vector). This suggests
using a test statistic of the form

F1n = (2qn)−1/2σ−2(A2(γ̂n − γ0)τZτZ(γ̂n − γ0) − qσ2), (12)
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where σ2 is defined by Assumption A.2(i) below. If σ2 is unknown, it can be
replaced by a consistent estimate σ̂2

n below without affecting Theorem 2.4 below.
Here σ̂2

n is defined by

σ̂2
n =

1
n

n∑

i=1

ψ2(Yi − xτ
i β̂n − ĝn(ti)). (13)

Next, we give the last result of this section.

Theorem 2.4. Suppose that the conditions of Theorem 2.3, Assumption A.5,
and Var (ψ(e1)2) <∞ hold. Then under H0 : g(·) = g0(·)

F̃ 2
1n →D χ2(1) (14)

as n → ∞, where F̃1n = (2qn)−1/2σ−2(A2(γ̂n − γ̃0)τZτZ(γ̂n − γ̃0) − qσ2). Fur-
thermore, if H1 : g(·) �= g0(·) holds, then F̃1n →p ∞.

Remark 2.5. (i) Theorem 2.4 states that F̃ 2
1n has an asymptotic standard χ2

distribution under H0. In general, H0 should be rejected if F̃ 2
1n exceeds some

approximate upper-tail critical value, F 2
0 , of the standard χ2 distribution.

(ii) Theorem 2.4 generalizes the related results of Eubank and Spiegelman (1990)
and Gao (1995a). When ρ(u) = u2 in (8), two different test statistics for testing
the H0 were proposed by them.

The proofs of Theorems 2.1 through 2.4 are given in the Appendix.

3. Computational Aspects

In this section, we present some procedures for estimating the parametric
components and the unknown smooth function for the model (7). The simu-
lations are based on g(·) approximated by B-spline functioans (see Schumaker
(1981) or Nurnberger (1989)). In this situation some related conditions of Theo-
rem 2.2(i) hold. The measures for the estimates β̂n and ĝn are taken respectively
to be

‖ β̂n − β0 ‖2

and
1
n

n∑

i=1

(ĝn(ti) − g(ti))2. (15)

Theoretically speaking, it can be assumed that the knots of B-splines are known
and the sample size tends to infinity with n. But dealing with real data, one needs
to consider the problem of knot placement and deletion for the finite sample case.

3.1. The algorithm

In practical application of the proposed procedure, the first problem is to
determine where the knots of B-spline functions are to be placed and how many
knots are to be used.
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For a non-negative integer m, let 0 ≤ s∗1 ≤ · · · ≤ s∗m ≤ 1 and h be a function
defined on [0, 1]. Let [s∗1, . . . , s∗m]h be the divided difference of h defined by

[s∗i ]h = h(s∗1), (16)

[s∗1, . . . , s
∗
m]h =

[s∗2, . . . , s
∗
m]h− [s∗1, . . . , s

∗
m−1]h

s∗m − s∗1
, s∗m �= s∗1 (17)

[s∗1, . . . , s
∗
m]h =

dm−1

dtm−1

h(s∗1)
(m− 1)!

, s∗m = s∗1 ∈ (0, 1) (18)

[s∗1, . . . , s
∗
m]h =

dm−1
+

dtm−1

h(s∗1)
(m− 1)!

, s∗m = s∗1 = 0 (19)

and

[s∗1, . . . , s
∗
m]h =

dm−1
−

dtm−1

h(s∗1)
(m− 1)!

, s∗m = s∗1 = 1, (20)

where
dm−1
−

dtm−1 and
dm−1
+

dtm−1 denote the mth left and right derivative operators respec-
tively.

Let d = 1 and T = [0, 1] in (7). For nonnegative integers r and Kn =
[n1/(2r+1)] ([x] denotes the largest integer part of x), let vk = k/Kn, k =
0, 1, . . . ,Kn. Let again q = r +Kn and

0 = s1 = · · · = sr+1, sr+2 = v1, . . . , sq = vKn−1, sq+1 = · · · = sr+q+1 = 1,

zj(·) = (−1)r+1(sj+r+1 − sj)[sj, . . . , sj+r+1](· − s)r+, j = 1, . . . , q, (21)

and
Z(t) = (z1(t), . . . , zq(t))τ . (22)

Let m = Kn−1 in (16)-(20); for given r, Z(·) is determined by t∗1, . . . , t∗m. Hence,
we can use the notation Zt∗1 ,...,t∗m(·) instead of Z(·) in this section. Let again

St∗1,...,t∗m(θ) =
1
n

n∑

i=1

(Yi − xτ
i β − Zt∗1,...,t∗m(ti)τγ)2(1 − qn/n)−2, (23)

where θ = (βτ , γτ )τ .
Recall from (8) that θ̂t∗1,...,t∗m = (β̂τ

t∗1 ,...,t∗m, γ̂
τ
t∗1 ,...,t∗m)τ is a vector satisfying

n∑

i=1

ρ(Yi − xτ
i β̂t∗1 ,...,t∗m − Zt∗1 ,...,t∗m(ti)τ γ̂t∗1,...,t∗m) = min!, (24)

for m = 1, 2, . . .
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Let Vi = (xτ
i , Zt∗1 ,...,t∗m(ti)τ )τ , 1 ≤ i ≤ n. For an initial vector θ̂(1), the

well-known Huber iterated procedure is as follows:

θ̂(j+1) = θ̂(j) + (
n∑

i=1

ViV
τ
i )+

n∑

i=1

ψc(Yi − V τ
i θ̂

(j))Vi (25)

for j = 1, 2, . . . At some step j0, if |θ̂j0+1 − θ̂j
0| < 0.0001, then the above iter-

ative procedure is terminated and θ̂j0+1 = ((β̂j0+1)τ , (γ̂j0+1)τ )τ is taken to be
the desired estimate of θ̂t∗1,...,t∗m = ((β̂t∗1 ,...,t∗m)τ , (γ̂t∗1 ,...,t∗m)τ )τ . The LS estimate is
obtained directly from the model Yi = V τ

i θ0 + ei.
For implementing the proposed method, we adopt an automatic and stepwise

strategy for knot placement and deletion. In each step, St∗1 ,...,t∗m(θ̂) is minimized.
The first knot t∗1 is placed at the position for which the following equation is
satisfied:

St∗1(θ̂t∗1) = inf
t1∈[0,1]

St1(θ̂t1). (26)

Suppose that when t∗1, . . . , t∗m−1 have been found, the additional knot t∗m is placed
at the position satisfying

St∗1 ,...,t∗m(θ̂t∗1,...,t∗m) = inf
tm∈[0,1]

St∗1,...,t∗m−1,tm(θ̂t∗1,...,t∗m−1,tm)

and
St∗1 ,...,t∗m(θ̂t∗1,...,t∗m) < St∗1,...,t∗m−1

(θ̂t∗1 ,...,t∗m−1
). (27)

Here St∗1,...,t∗m(θ̂t∗1 ,...,t∗m) is called the score for the knot set {t∗1, . . . , t∗m}.
If the last inequality is not satisfied, then the knot placement procedure is

terminated. The current knots t∗1, . . . , t∗m are taken to be the input of the knot
deletion procedure in which the leave-one-out technique is adopted. Assume that
the current knots selected are t∗1, . . . , t∗j and the j scores obtained by leaving one
knot out are greater than that of the j+ 1 knots t∗1, . . . , t∗j+1, then the procedure
is terminated and the current knots are taken to be the optimal knots selected.
Otherwise, delete the knot that is excluded from the knot set on which the
minimum score is attained and repeat the above knot deletion procedure for the
j knots left.

3.2. Simulation conditions

In the following experiment, we investigate Huber’s M -estimates and the LS
estimates of β0 and g(·).

Now, we use Huber’s ψc-function with c = 1.5 and set p = 3, β0 = (1, 2, 3)τ ,
and g(t) = 2 cos(3tπ). xi and ti are independently drawn from multivariate
normal N(0, I) and U(0, 1) respectively. The random errors ei are independently
taken from one of the following distributions:
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1. Normal NOR = NOR(0, 1);
2. Symmetric Contaminated Normal
SCN(0, 9) = 0.85NOR(0, 1) +0.15NOR(0, 92);

3. Cauchy CAU(0, 1).
The data in each case of the error distributions consist of N = 250 replica-

tions of samples of sizes n = 30, 50, and 100.
Here, we observe from the above (21) and (22), Theorem 4.27 in Chapter 2

of Nürnberger (1989), and Lemma 5.1 of Shi and Li (1995) that Assumption A.2
holds and Assumptions A.5-A.9 below hold with probability 1.

3.3. Simulation results

In the following, by using the measure (15), we make the comparsions for
three kinds of the error distributions, the normal, the symmetric contaminated
normal, and Cauchy distributions.

Table 1. The averages of the biases and MSEs of the 250 ME (LSE)

Distribution n RBL[M ] MSE[M ] RBL[LS] MSE[LS]
NOR 30 0.22508 0.35938 0.22339 0.35163
NOR 50 0.26303 0.73738 0.49011 1.49514
NOR 100 0.15509 0.41754 0.34259 0.91502
SCN 30 0.44065 1.54111 0.74766 0.90464
SCN 50 0.26303 0.73738 0.49011 1.49514
SCN 100 0.15509 0.41754 0.34259 0.91502
CAU 30 0.54571 2.55320 2.43413 157.46580
CAU 50 0.38473 1.52363 3.11801 215.42201
CAU 100 0.22866 0.91875 4.86162 1117.10426

Table 2. The medians of the biases and the MSEs of the 250 ME (LSE)

Distribution n RBL[M ] MSE[M ] RBL[LS] MSE[LS]
NOR 30 0.21510 0.33540 0.21071 0.33066
NOR 50 0.15504 0.21807 0.14558 0.21423
NOR 100 0.09643 0.12249 0.09480 0.11966
SCN 30 0.39357 1.16801 0.66563 2.36988
SCN 50 0.23915 0.46207 0.42071 1.15080
SCN 100 0.14516 0.35872 0.32459 0.66959
CAU 30 0.46656 1.84178 1.06328 6.00122
CAU 50 0.35434 1.19524 1.20970 5.63482
CAU 100 0.21638 0.72569 1.08377 5.51905

The averages of the biases (RBL[M ] and RBL[LS]) of the M -estimates and
the LS estimates of the parametric components and the averages of the mean
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squared errors (MSE[M ] and MSE[LS]) of the B-spline M -estimates and the
LS estimates for the unknown smooth function are listed in Table 1. The corre-
sponding medians are given in Table 2.

In this section, we only conducted simulations based on g(·) being approxi-
mated by the B-splines. In fact, another simulation can be given based on the
g(·) approximated by the family of trigonometric functions. (See Gao and Liang
(1995b) for details.)
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A. Appendix

A.1. Assumptions

Assumption A.1. For q = qn ≥ 1, qn → ∞ as n → ∞ and {zk(·); k = 1, 2, . . .}
given above, there exists an unknown vector γ0 = (γ01, . . . , γ0q)τ such that for
n→ ∞

Q1/2
n

∥∥∥
q∑

k=1

zk(·)γ0k − g(·)
∥∥∥

L,T
→ 0, (28)

where ‖ f ‖L,T =
∑

r:|r|≤L supt∈T |Drf(t)|, Drf(t) = ∂|r|
∂t

r1
1 ···∂t

rd
d

f(t), |r| =
∑d

i=1 rd,

and Qn : I+ → I+ denotes the inverse function of the truncation sequence qn. It
is defined such that Qn ≥ n for any n ≥ 1. In particular, for any q ≥ 1, let

Qn = min{n ∈ I+ : qk > q for any k > n}.
If qn → ∞ as n → ∞, then Qn is well-defined on I+. For example, if qn = [nr]
for any n ≥ 1 and some r ∈ (0, 1), (here [x] denotes the integer part of x), then
Qn = [q1/r] + aq for any q ≥ 1, where aq = 0 if q1/r ∈ I+ and aq = 1 otherwise.

Assumption A.2. (i) ρ(·) is a convex function over R, with left and right
derivaties ψ and ψ+, and ψ is a function in R such that ψ ≤ ψ ≤ ψ+;
(ii) Eψ(e1) = 0 and Eψ(e1)2 = σ2 <∞;
(iii) there exist some constants A �= 0, B, and C > 0 such that as |x| → 0
Eψ(e1 + x) = Ax+Bx2 + o(|x|2) and E[ψ(e1 + x) − ψ(e1)]2 ≤ C|x|.
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Assumption A.3. (i) max1≤i≤n pii = O(q/n) → 0 as n → ∞, where {pii}
denotes the ith diagonal element of the n×n projection matrix P = Z(ZτZ)+Zτ

and (·)+ denotes the Moore-Penrose inverse;
(ii) either Z is full column rank qn for n large or Gn(g) = g(tj) for some regressor
{tj} that is observed for n large and zk(tj) �= 0 for some k;
(iii) q3/2 max1≤i≤n ‖ zin ‖→ 0 as n → ∞, where {zin} satisfies zτ

inzin = Z(ti)τ

(ZτZ)+Z(ti) and ‖ · ‖ denotes the Euclidean norm.

Assumption A.4. (i) Gn(·) is a uniformly bounded sequence of linear functional
on H. That is, Gn(·) is linear and for some C < ∞ and L > 0, we have
‖ Gn(h) ‖≤ C ‖ h ‖L,T for a ll n ≥ 1 and all h ∈ H;
(ii) lim infn→∞ λmin(Lτ

nLn) > 0, where λmin(B) denotes the smallest eigenvalue
of B;
(iii) lim infn→∞ qnλmin(Lτ

n(ZτZ/n)+Ln) > 0.

The following Assumption A.5 is sufficient for establishing the asymptotic
normality of a generalized quadratic form.

Assumption A.5. (i) There exists a sequence of real numbers jn (jn → ∞ as
n→ ∞) such that for n→ ∞

jnq
−1
n max

1≤i≤n

n∑

j=1, �=i

p2
ij → 0; (29)

(ii) q−1
n max1≤i≤n λi(P ) → 0, where {λi(P )} denotes the ith eigenvalues of P .

Assumption A.6. For q = qn≥1, q=qn→∞ as n→∞ and {zk(·), k=1, 2, . . .}
given above, there exists an unknown parameter vector γ0 = (γ01, . . . , γ0q)τ ∈ Θ2

such that for n large enough supt∈T |∑q
i=1 zk(t)γ0k − g(t)| = o(n−1/2).

Assumption A.7. (i) As p is a finite integer, there exists a positive definite
matrix B0 with the order p× p such that

lim
n→∞n−1

n∑

i=1

xix
τ
i = B0. (30)

(ii) Assume that X and Z satisfy orthogonality condition

XτZ = 0, (31)

where X = (x1, . . . , xn)τ .

Assumption A.8. (i) Z is of full column rank q for n large enough, and
lim infn→∞ qnλmin(ZτZ/n) > 0;
(ii) max1≤i≤n pii = O(q/n) → 0 as n → ∞, where {pij} denotes the ith row
element and jth rank element of the n× n projection matrix P = Z(ZτZ)+Zτ .
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The following Assumption A.9 is needed for the case where p is a finite
integer or p = pn → ∞ as n→ ∞.

Assumption A.9. r3n max1≤i≤n{xτ
i (XτX)+xi + Z(ti)τ (ZτZ)+Z(ti)} → 0 as

n→ ∞, where rn = max(p, qn).
As p = pn → ∞, we need the following assumption.

Assumption A.10.
(i) X is of full column rank p for n large enough, and lim infn→∞λmin(XτX/n)>

0;
(ii) max1≤i≤n rii = O(p/n) → 0 as n → ∞, where {rij} denotes the ith

row elememt and jth rank element of the n × n projection matrix R =
X(XτX)+Xτ ;

(iii) p3
n max1≤i≤n[xτ

i (X
τX)+xi] → 0 as n→ ∞.

The following Assumption A.11 is sufficient for establishing the asymptotic
normality of a generalized quadratic form.

Assumption A.11. (i) There exists a sequence of real numbers kn (kn → ∞ as
n→ ∞) such that for n→ ∞

knp
−1
n max

1≤i≤n

n∑

j=1, �=i

r2ij → 0;

(ii) p−1
n max1≤i≤n λi(R) → 0, where λi(R) denotes the eigenvalues of R.
Some important remarks for the Assumptions A.1-A.11 above can be found

in Gao (1995c).

A.2. Lemmas

Lemma A.1. Under either the conditions of Theorem 2.2(i) or those of Theorem
2.2(ii) except Var (ψ(e1)2) <∞, we have

lim
n→∞ r3nv

τ
i (V τV )+vi = 0, (32)

where vi = (xτ
i , Z(ti)τ )τ , V = (v1, . . . , vn)τ , (V τV )+ = (vij)1≤i,j≤2, v11 =

(XτX)+, v22 = (ZτZ)+, and v12 = v21 = 0.

Lemma A.2. (i) Under the conditions of Theorem 2.1, we have as n→ ∞

γ̂n − γ0 = A−1(ZτZ)+
n∑

i=1

Z(ti)ψ(ei) + op((λZ)−1/2), (33)

where λA = λmin(AτA) throughout this paper.
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(ii) Under either the conditions of Theorem 3.1(i)or those of Theorem 3.1(ii) ex-
cept Var (ψ(e1)2) <∞, we have as n→ ∞

θ̂n − θ0 = A−1(V τV )+
n∑

i=1

viψ(ei) + op((λV )−1/2), (34)

where θ̂n = (β̂τ
n, γ̂

τ
n)τ and θ0 = (βτ

0 , γ
τ
0 )τ .

The proofs of Lemmas A.1–A.2 can also be found in Gao (1995c). Here we
omit the details.

A.3. Proofs of Theorems

In the following, we only give an outline of the proofs. The details can also
be found in Gao (1995c).

A.3.1. Proof of Theorem 2.1

By Assumptions A.1, A.3, A.4, and Lemma A.2(i), we have

Ĝn −Gn = Ĝn − G̃n + G̃n −Gn

= Lτ
n[(ZτZ)+A−1

n∑

i=1

Z(ti)ψ(ei) + op((λZ)−1/2)] +Gn(g̃n − g), (35)

where g̃n = Zγ0.
Now, by checking the Lindeberg condition and using Assumptions A.1, A.3,

and A.4, we can get the proof of Theorem 2.1. In fact, the proof of Theorem
2.1 can also be obtained by using similar reasoning as in (A.1) through (A.10) of
Andrews (1991).

A.3.2. Proofs of Theorems 2.2 through 2.4

(i) By the definition of (V τV )+ (see Lemma A.1) and Lemma A.2(ii), we have

β̂n − β0 = (XτX)−1XτΨ(e) + op((λX)−1/2) (36)

and
γ̂n − γ0 = (ZτZ)−1ZτΨ(e) + op((λZ)−1/2), (37)

where Ψ(e) = (ψ(e1), . . . , ψ(en))τ .
Thus, using Assumption A.7 and checking the Lindeberg condition again,

we obtain the proof of Theorem 2.2(i) immediately.
(ii) Theorem 2.2(iii) is a special case of Theorem 2.2(ii). Its proof is trivial.
The proof of Theorem 2.2(ii) follows similarly from that of Theorem 2.2 of Gao
(1995a) by using (36) and Assumption A.10(i).
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(iii) The proof of Theorem 2.3 follows from that of Theorem 2.6 of Gao and Liang
(1995b) by using (37) and Assumption A.8(i).
(iv) The proof of Theorem 2.4 follows similarly from that of Theorem 2.2(ii) by
using Assumption A.5. We have now finished all proofs.
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