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Abstract: The limiting distribution for M -estimates in a regression or autoregression

model with heavy-tailed noise is generally intractable, which precludes its use for

inference purposes. Alternatively, the bootstrap can be used to approximate the

sampling distribution of the M -estimate. In this paper, we show that the bootstrap

procedure is asymptotically valid for a class of M -estimates provided the bootstrap

resample size mn satisfies mn → ∞ and mn/n → 0 as the original sample size n

goes to infinity.
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1. Introduction

Recently, there has been a great deal of interest in developing estimation
procedures for statistical models designed to model heavy-tailed data. Often
one assumes in these models that the regressors and/or residuals have regularly
varying tail probabilities. In such cases, M -estimates, with an appropriately
chosen loss function, have a number of desirable properties. While the asymptotic
theory forM -estimates is well understood, the limiting distributions are generally
intractable. This precludes the use of the asymptotic distribution for inference
purposes such as for the construction of confidence intervals. In this paper, we
investigate the bootstrap for approximating the distribution of M -estimates.

The asymptotic properties of the M -estimate have been thoroughly studied
in the heavy-tailed regression and autoregression setting by Davis and Wu (1997)
and Davis, Knight, and Liu (1992). For the purpose of introduction we focus on
the AR(p) case. Suppose X1, . . . ,Xn are observations from the AR(p) process
{Xt} satisfying the recursions Xt = φ1Xt−1 + · · · + φpXt−p + Zt, where φ(z) =
1 − φ1z − · · · − φpz

p �= 0 for |z| ≤ 1 and {Zt} is an i.i.d. sequence of random
variables with distribution function F which we assume belongs to the domain
of attraction of an α-stable law with α ∈ (0, 2). The latter condition implies that
there exists a sequence of non-negative constants an → ∞ such that

nP [a−1
n Z1 ∈ dx] v→λ(dx), (1.1)
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where λ is a Lévy measure and v→ denotes vague convergence. (One can take an
to be the 1−n−1 quantile of the distribution of |Z1| which has the form n1/αL(n)
where L(·) is a slowly varying function.)

For a given loss function ρ(x), the M -estimate φ̂ of φ = (φ1, . . . , φp)′ mini-
mizes the objective function

n∑
t=p+1

ρ(Xt − β1Xt−1 − · · · − βpXt−p)

with respect to β = (β1, . . . , βp)′. The special cases ρ(x) = x2 and ρ(x) = |x|
correspond to least squares (LS) and least absolute deviation (LAD) estimators,
respectively. Under certain conditions on the loss function (which excludes the
LS case), it was shown in Davis et al. (1992) that an(φ̂ − φ) d→û, where û is the
minimizer of some stochastic process. In order to use this result to approximate
the distribution of the M -estimate, one not only needs to know the scaling con-
stants an but also the quantiles of the limit random variable û. In general, a
closed form expression for û is impossible to obtain. Alternatively, one could
simulate from the limit stochastic process and find the sample path minimum
from which quantiles of û could be estimated. However, since the limit process is
a function of the underlying parameter values and the distribution of the noise,
both of which are unknown, carrying out this resampling scheme is impractical.
This leads to the use of the bootstrap as an alternative method for approximating
the distribution of the M -estimate.

The bootstrap procedure in the AR(p) context is implemented by first gen-
erating a bootstrap replicate X∗

1 , . . . ,X
∗
m from the fitted AR(p) model

X∗
t = φ̂1X

∗
t−1 + · · · + φ̂pX

∗
t−p + Z∗

t ,

where {Z∗
t } is an i.i.d. sequence of random variables generated from the empir-

ical distribution of the estimated residuals, Ẑp+1, . . . , Ẑn (n is the length of the
observed time series). The bootstrap replicate of the M -estimate is then found
by minimizing

m∑
t=p+1

ρ(X∗
t − β1X

∗
t−1 − · · · − βpX

∗
t−p).

In Section 3, we show that am(φ̂∗ − φ̂), conditional on X1, . . . ,Xn, has the same
limit distribution as an(φ̂ − φ) provided the bootstrap sample size mn satisfies
mn → ∞ and mn/n→ 0.

The remaining hurdle in applying this bootstrap paradigm is that the nor-
malizing constants an are typically unknown. This can be overcome by using
random normalization, replacing an by the maximum of {|X1|, . . . , |Xn|} and am
in the bootstrap normalization by the maximum of {|X∗

1 |, . . . , |X∗
m|}.
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The above restriction on the bootstrap sample size m is typical in boot-
strapping heavy-tailed phenomena (see for example Athreya (1987)). One way
to see this in the present context, is to first note that the limit behavior of the
M -estimate is heavily driven by assumption (1.1). In order to reproduce the
same limiting result for the bootstrap replicates, it is necessary that a similar
condition holds for the distribution of Z∗

1 , namely that

mnP [a−1
mn
Z∗

1 ∈ · |X1, . . . ,Xn]
v→λ(·).

However, the left-hand side, evaluated at the fixed set B, is equal to

mn

(
n−1

n∑
t=1

I(a−1
mn
Ẑt ∈ B)

)
,

which converges in probability to λ(B) if and only if mn/n → 0. On the other
hand, if mn = n, then the above quantity converges in distribution to a Poisson
distributed random variable with mean λ(B).

The remainder of the paper is organized as follows. In Section 2, we consider
bootstrapping M -estimates for a linear regression model when the independent
variables are heavy-tailed and in Section 3 we consider bootstrapping in the
autoregressive case. The proofs of the more technical results in Sections 2 and 3
are contained in the Appendix.

2. Linear Regression

In this section we consider bootstrapping M -estimates in a linear regression
model. We start with a simple linear model and then indicate how to extend it
to the multiple regression case.

Simple Linear Model. Let (Yi,Xi), i = 1, . . . , n, be observations from the
simple linear model

Yi = βXi + Zi, i = 1, . . . , n, (2.1)

where the sequences {Zi} and {Xi} are independent with {Zi}ni=1
iid∼G and {Xi}ni=1

iid∼F . It is further assumed that F belongs to the domain of attraction of a stable
law with index 0 < α < 2 (denoted by F ∈ D(α) or Xi ∈ D(α)), i.e. there exist
a slowly varying function L(x) at ∞, constants 0 ≤ p, q ≤ 1, p + q = 1, and
α ∈ (0, 2), such that

1 − F (x) ∼ px−αL(x),

F (−x) ∼ qx−αL(x), as x→ ∞. (2.2)
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Then the partial sums
∑n
i=1Xi, scaled by an = inf{x : P (|X1| ≥ x) ≤ n−1} and

centered by nE [X1I(|X1| ≤ an)], converge in distribution to a stable distribution.
For a given loss function ρ(x), the M -estimate β̂ of the regression coefficient

β is defined as any minimizer of the objective function

g(φ) :=
n∑
i=1

ρ(Yi − φXi) =
n∑
i=1

ρ(Zi − (φ− β)Xi). (2.3)

As in Davis and Wu (1997), it is convenient to build the normalization into the
objective function. Set u = an(φ − β) and define the sequence of stochastic
processes on C(R) by

Wn(u) =
n∑
i=1

(ρ(Zi − ua−1
n Xi) − ρ(Zi)).

With this parameterization, the minimizer of Wn(u) is given by ûn = an(β̂ − β).
In Davis and Wu (1997), the stochastic processes Wn(·) were shown to converge
in distribution to a limit stochastic process W (·) from which it follows that ûn =
an(β̂ − β) converges in distribution to û, the minimizer of W (·). Unfortunately,
computing the distribution of û via simulation or analytically is intractable for
most cases. To overcome this difficulty, we use the bootstrap to approximate the
sampling distribution of ûn, which we now describe.

Our bootstrap procedure involves generating a bootstrap replicate of the
stochastic process Wn(·) and showing that it also converges in distribution to
W (·). To define the bootstrap replicate, let

Ẑj = Yj − β̂Xj , j = 1, . . . , n, (2.4)

denote the residuals from the model fit. Let F̂n be the product empirical distribu-
tion function defined by dF̂n = dF̂Z,n × dF̂X,n, where F̂Z,n(z)=n−1∑n

j=1 I[Ẑj≤z]
and F̂X,n(x)=n−1∑n

j=1I[Xj≤x]. A bootstrap replicate {(Y ∗
1 ,X

∗
1 ), . . . , (Y ∗

m,X
∗
m)}

of the data is generated from the equations

Y ∗
j = β̂X∗

j + Z∗
j , j = 1, . . . ,m, (2.5)

where {(X∗
j , Z

∗
j ), j = 1, . . . ,m} is a random sample from F̂n. The bootstrap

replicate û∗m := am(β̂∗ − β̂) of ûn is then found by minimizing

W ∗
n(u) =

m∑
j=1

(ρ(Z∗
j − ua−1

m X∗
j ) − ρ(Z∗

j )). (2.6)
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Provided the resample size m = mn is a sequence of numbers converging to
infinity with mn/n → 0, the bootstrap approximation is asymptotically correct
in the sense that for all continuity points x of the distribution of û,

P [û∗m ≤ x |X∞,Y∞]
p→P [û ≤ x], (2.7)

where X∞ = (X1,X2, . . . , ) and Y∞ = (Y1, Y2, . . . , ).
In order to give a precise statement of our results, it is necessary to introduce

some notation and definitions. First, let Mp(C(R)) be the space of probability
measures on C(R), the space of continuous functions on R where convergence is
defined as uniform convergence on compact sets. Let d0 be a metric on Mp(C(R))
which metrizes the topology of weak convergence, i.e. if λ1, λ2 ∈ Mp(C(R)), d0

can be defined as

d0(λ1, λ2) =
∞∑
k=1

2−k
| ∫

R
gk dλ1 −

∫
R
gk dλ2|

1 + | ∫
R
gk dλ1 −

∫
R
gk dλ2| ,

where {gk}∞k=1 is a dense sequence of bounded and continuous functions on C(R).
Note that if Ln and L are random elements of Mp(C(R)), then Ln

p→L if and
only if d0(Ln, L) p→0 which is equivalent to

∫
R
gkdLn

p→ ∫
R
gkdL for all k = 1, 2, . . .

Let dj denote the corresponding metric on the space of probability mea-
sures on R

j denoted by Mp(Rj). As above, if Qn and Q are random elements
of Mp(Rj), then Qn

p→Q if and only if dj(Qn, Q) p→0 which is equivalent to∫
R
j fkdQn

p→ ∫
R
j fkdQ for all k = 1, 2, . . . , where {fk}∞k=1 is a dense sequence

of bounded and uniformly continuous functions on R
j.

Theorem 2.1. Let {(Yi,Xi)}ni=1 be observations from model (2.1), where {Xi}ni=1
iid∼F with F satisfying (2.2), {Zi}ni=1

iid∼G, and the two sequences {Xi}ni=1 and
{Zi}ni=1 are independent. Let ρ(·) be a loss function whose score function ψ(x) =
ρ′(x) satisfies:
(a) ψ(·) is Lipschitz of order τ1,

|ψ(x) − ψ(y)| ≤ C|x− y|τ1 ,
for some constant τ1 > max(α− 1, 0) and some positive constant C,

(b) E|ψ(Z1)|τ2 <∞ for some τ2 > α,
(c) Eψ(Z1) = 0 if α ≥ 1.
Then, if mn → ∞ and mn/n→ 0,

Ln(·) := P [W ∗
n ∈ ·|X∞,Y∞]

p→ P [W ∈ ·]
=: L(·),
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where W (·) is the limit process defined in Theorem 2.1 of Davis and Wu (1997).
Namely,

W (u) =
∞∑
k=1

[ρ(Zk − uδkΓ
−1/α
k ) − ρ(Zk)],

where {Zk}, {δk}, {Γk} are independent sequences of random variables, {Zk}iid∼G,
{δk} are i.i.d. with P (δk = 1) = p = 1 − P (δk = −1), and Γk = E1 + · · · + Ek,
where the Ei’s are i.i.d. exponential r.v.’s with mean 1.

Theorem 2.2. If ρ(·) is convex and satisfies the conditions of Theorem 2.1 and
W (·) attains a unique minimum at û a.s., then

Qn(·) := P [û∗mn
∈ ·|X∞,Y∞]

= P [amn(β̂∗ − β̂) ∈ ·|X∞,Y∞]
p→ P [û ∈ ·]
=: Q(·).

Remark 1. In case ρ(·) is strictly convex, i.e. ψ(·) strictly increasing, then W (·)
has strictly convex sample paths and hence has a unique minimum. (See Remark
2 and Section 3 of Davis et al. (1992) for further discussion on this point.)

Proof of Theorem 2.1. If suffices to show that for any subsequence {nk},
there exists a further subsequence {nk′} such that Lnk′

a.s.→L relative to the metric
d0. This is equivalent to showing that for almost all sample paths of X∞,Y∞,
W ∗
nk′

d→W on C(R). Now by Lemma 4 of the Appendix, we have for any u1, . . . , uj

∈ R, Ln◦π−1
u1,...,uj

p→L◦π−1
u1,...,uj

on Mp(Rj), where πu1,...,uj : x→ (x(u1), . . . , x(uj))
is the projection mapping. Let {q1, q2, . . .} be an enumeration of the rationals.
Then using a diagonal sequence argument, there exists a subsequence {nk′} and
a probability one event Ω0 such that for all outcomes in Ω0 and any j, Lnk′ ◦
π−1
q1,...,qj → L ◦ π−1

q1,...,qj or, equivalently,

(W ∗
nk′ (q1), . . . ,W

∗
nk′ (qj))

d→(W (q1), . . . ,W (qj))

as k′ → ∞. Since the limit process W (·) is continuous, convergence on C(R)
will follow once we show that the sequence {W ∗

nk′} is tight for almost all sample
paths of X∞,Y∞. Tightness on C(R) is equivalent to tightness on C([−T, T ])
for every T > 0, so that by Theorem 8.2 in Billingsley (1968), it is enough to
check that for almost all sample paths and for every T, ε, η > 0, there exists a
δ > 0 such that

P [ sup
|t−s|≤δ
|s|,|t|≤T

|W ∗
nk′ (t) −W ∗

nk′ (s)| > ε |X∞,Y∞] < η
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for all k′. Writing n′ in place of nk′ we have for any s, t ∈ [−T, T ],

|W ∗
n′(s) −W ∗

n′(t)|

≤ |(s− t)
mn′∑
i=1

a−1
mn′X

∗
i ψ(Z∗

i ) + (s− t)
mn′∑
i=1

a−1
mn′X

∗
i (ψ(ξn

′
i ) − ψ(Z∗

i )|, (2.8)

where |ξn′
i − Z∗

i | ≤ (|s| ∨ |t|)a−1
mn′ |X∗

i | ≤ T a−1
mn′ |X∗

i |. Using the assumptions on
ψ(·), (2.8) may be bounded above by

|s− t||
mn′∑
i=1

a−1
mn′X

∗
i ψ(Z∗

i )| + |s − t|C T τ1
mn′∑
i=1

(a−1
mn′ |X∗

i |)1+τ1 .

Applying the bootstrap results for sample means in Athreya et al. (1993), a−1
mn′∑mn′

i=1 X
∗
i ψ(Z∗

i ) and a−1−τ1
mn′

∑mn′
i=1 |X∗

i |1+τ1 are bounded in probability for almost
all sample paths of X∞ and Y∞. It then follows that for almost all sample paths,
W ∗
nk′ is tight and the theorem is proved.

Proof of Theorem 2.2. By Theorem 2.1, for any subsequence {nk}, there exists
a further subsequence {nk′} such that for almost all sample paths of X∞,Y∞,
W ∗
nk′

d→W on C(R). It follows by the argument given for Lemma 2.2 in Davis

et al. (1992) that for such sample paths, û∗nk′
d→û, and hence Qnk′ (·) = P [û∗nk′ ∈

· |X∞,Y∞]a.s.→P [û ∈ ·] = Q(·), from which the theorem is immediate.

One of the difficulties in the above formulation is that the normalizing con-
stants {an} are assumed known. This can be circumvented by using a random
normalization such as the maximum of the |Xi|. In this formulation, Wn(·) and
W ∗
n are replaced by

W̃n(u) =
n∑
i=1

(ρ(Zi − uXi/Mn) − ρ(Zi))

and

W̃ ∗
n(u) =

mn∑
i=1

(ρ(Z∗
i − uX∗

i /M
∗
mn

) − ρ(Z∗
i )),

respectively, where Mn=max{|X1|, . . . , |Xn|} and M∗
mn

=max{|X∗
1 |, . . . , |X∗

mn
|}.

As might be expected, the distribution of the normalized M -estimate ũn :=
Mn(β̂ − β) can be approximated by the distribution of ũ∗mn

:= M∗
mn

(β̂∗ − β̂).

Theorem 2.3. If ρ(·) is convex and satisfies the conditions of Theorem 2.1 and
W (·) attains a unique minimum at û a.s., then

P [ũ∗mn
∈ ·|X∞,Y∞] = P [M∗

mn
(β̂∗ − β̂) ∈ ·|X∞,Y∞]

p→P [ũ ∈ ·],
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where ũ = ûΓ−1/α
1 .

Proof. Observe that W̃n(u) = Wn(uan/Mn) and since a−1
n Mn

d→Γ−1/α
1 , we con-

clude that W̃n(·) d→W̃ (·), where W̃ (u) := W (uΓ1/α
1 ). It follows that ũn

d→ũ =
ûΓ−1/α

1 . Now, using Lemma 3 and a standard point process argument, a−1
mn
M∗
mn

given X∞,Y∞ converges in distribution to Γ−1/α
1 and the convergence is joint

with that of W ∗
n . We deduce that P [W̃ ∗

n ∈ ·|X∞,Y∞]
p→P [W̃ ∈ ·] and the re-

mainder of the theorem is now argued as in the proof of Theorem 2.2.

Multiple Regression. Here the model becomes

Yi = X′
iβ + Zi, i = 1, . . . , n,

where β = (β1, . . . , βd)′, and Xi = (Xi1, . . . ,Xid)′ are i.i.d. random vectors satis-
fying a d-variate regular variation condition (see Assumptions 1 and 2 of Davis
and Wu (1997)). Specifically, we assume that there exists a sequence an → ∞
and a Lévy measure µ on (Rd, B(Rd)), such that

nP (a−1
n X1 ∈ ·) ν−→

n→∞
µ(·),

( ν→ is vague convergence on R
d \ (0, 0, . . . , 0)). The M -estimate β̂ of β then

minimizes the objective function
n∑
i=1

ρ(Yi − X′
iφ) =

n∑
i=1

ρ(Zi − X′
i(φ − β))

with respect to φ ∈ R
d. The relevant sequence of stochastic processes, obtained

by setting u = an(φ − β), is

Wn(u) =
n∑
i=1

[ρ(Zi − a−1
n X′

iu) − ρ(Zi)],

so that the minimizer of Wn(u) is ûn = an(β̂ − β). In Davis and Wu (1997), it
was shown that if the loss function ρ(x) satisfies conditions (a)–(c) of Theorem
2.1, then ûn

d→û where û is the minimizer of the limit stochastic process of Wn(·).
The bootstrap implementation for the multiple regression case follows the de-

velopment just given for the simple linear model. A bootstrap replicate {(Y ∗
1 ,X

∗
1),

. . . , (Y ∗
m,X

∗
m)} of the data is generated from the equations Y ∗

j = X∗
j
′β̂+Z∗

j , where
{X∗

j}mj=1 and {Z∗
j }mj=1 are two independent samples drawn from the empirical

distributions based on X1, . . . ,Xn, and the estimated residuals Ẑ1, . . . , Ẑn, re-
spectively. The bootstrap replicate û∗

m = am(β̂∗−β̂) is then found by minimizing

W ∗
n(u) =

m∑
i=1

[ρ(Z∗
i − a−1

m X∗
i
′u) − ρ(Z∗

i )].
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Using the argument given for Theorems 2.1 and 2.2, the bootstrap replicate of ûm
also converges in distribution to û in the sense that P [û∗

m ∈ · |X1, . . . ,Xn, Y1, . . .,
Yn]

p→P [û ∈ ·], provided mn → ∞ and m/n→ 0.

3. Autoregression

In this section, we consider bootstrapping the M -estimate of an autoregres-
sive process. Let {Xt} be the causal AR(p) process satisfying the recursions

Xt = φ1Xt−1 + · · · + φpXt−p + Zt, (3.1)

where φ(z) = 1−φ1z− · · · −φpz
p �= 0 for |z| ≤ 1 and {Zt}iid∼F with F satisfying

(2.2) for some α ∈ (0, 2). The causality assumption implies that Xt can be
represented as the linear process

Xt =
∞∑
j=0

ψjZt−j , (3.2)

where {ψj , j = 0, 1 . . . , } are the coefficients in the power series expansion of
1/φ(z). Based on the data X1, . . . ,Xn the M -estimate, φ̂, of φ = (φ1, . . . , φp)′

minimizes the objective function

n∑
t=p+1

ρ(Xt−β1Xt−1−· · ·−βpXt−p)=
n∑

t=p+1

ρ(Zt−(β1−φ1)Xt−1−· · ·−(βp−φp)Xt−p).

Under the reparmeterization u = an(β − φ), minimizing this objective function
is equivalent to minimizing

Un(u) =
n∑

t=p+1

(
ρ(Zt − u1a

−1
n Xt−1 − · · · − upa

−1
n Xt−p) − ρ(Zt)

)

with the minimum given by ûn = an(φ̂ − φ).
In order to construct a bootstrap replicate of φ̂, let Ẑt = Xt− φ̂1Xt−1−· · ·−

φ̂pXt−p, t = p+ 1, . . . , n, denote the residuals. If F̂n(z) = (n−p)−1∑n
i=p+1 I[Ẑi≤z]

denotes the empirical distribution of the residuals, a bootstrap replicate X∗
1 , . . .,

X∗
mn

of the AR process is generated from the recursions X∗
t = φ̂1X

∗
t−1 + · · · +

φ̂pX
∗
t−p+Z∗

t , where {Z∗
t }iid∼F̂n. (The recursions can be started by setting X∗

t = 0
in the distant past.) A bootstrap replicate, û∗

m = am(φ̂∗
mn

− φ̂n) of û is then
found by minimizing

U∗
n(u) =

m∑
t=p+1

(
ρ(Z∗

t − u1a
−1
mn
X∗
t−1 − · · · − upa

−1
mn
X∗
t−p) − ρ(Z∗

t )
)
.
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As in Section 2 for simple linear regression, the distribution of ûmn given Xn =
(X1, . . . ,Xn) converges to the same limit distribution as ûn. The following the-
orem summarizes the limit behavior of both U∗

n and ûmn .

Theorem 3.1. Let X1, . . . ,Xn be observations from the AR(p) model (3.1),
where {Zt}iid∼F with F satisfying (2.2). Let ρ(·) be a loss function whose score
function ψ(x) = ρ′(x) satisfies:
(a) ψ(·) is Lipschitz of order τ1,

|ψ(x) − ψ(y)| ≤ C|x− y|τ1 ,
for some constant τ1 > max(α− 1, 0) and some positive constant C,

(b) E|ψ(Z1)| <∞ if α < 1,
(c) Eψ(Z1) = 0 and Var(ψ(Z1)) <∞ if α ≥ 1.
Then, if mn → ∞ and mn/n → 0, P [U∗

mn
∈ ·|Xn]

p→P [U ∈ ·], where U(·) is the
limit process

U(u) =
∞∑
i=1

∞∑
k=1

[ρ(Zk,i − (ψi−1u1 + · · · + ψi−pup)δkΓ
−1/α
k ) − ρ(Zk,i)],

{Zk,i}, {δk}, {Γk} are independent sequences of random variables, {Zk,i}iid∼F ,
and {δk} and Γk = E1 + · · · + Ek are as defined in the statement of Theorem
2.1 (see also Davis et al. (1992)). Moreover, if ρ(·) is convex and U(·) attains a
unique minimum at û a.s., then

P [û∗
mn

∈ ·|Xn] = P [amn(φ̂∗
mn

− φ̂n) ∈ ·|Xn]
p→ P [û ∈ ·].

The proof of this theorem is omitted since it is almost identical to that given
for Theorems 2.1 and 2.2 with Lemma 9 replacing Lemma 4.

As in Section 2, the bootstrap approximation suggested by Theorem 3.1
requires that we know the sequence of normalizing constants {an} or the ratios
{an/amn}. Instead, random normalization, such as the maximum of the process,
may be used. To incorporate random normalization, define the processes

Ũn(u) =
n∑

t=p+1

(
ρ(Zt − u1

Xt−1

Mn
− · · · − up

Xt−p
Mn

) − ρ(Zt)
)

and

Ũ∗
n(u) =

m∑
t=p+1

(
ρ(Z∗

t − u1
X∗
t−1

M∗
mn

− · · · − up
X∗
t−p

M∗
mn

) − ρ(Z∗
t )

)
,

where Mn = max{|X1|, . . . , |Xn|} and M∗
mn

= max{|X∗
1 |, . . . , |X∗

mn
|}. Observe

that Ũn(u) = Un(uan/Mn) and Ũ∗
n(u) = U∗

n(uamn/M
∗
mn

). Now from the point
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process result in Theorem 2.4 of Davis and Resnick (1985) and Lemma 8 of the
Appendix, we conclude that a−1

n Mn and a−1
mn
M∗
mn

given Xn converge in distri-

bution to ψ+Γ−1/α
1 , where ψ+ := max∞j=0 |ψj |. It follows that Ũn(·) d→Ũ(·) and

P [Ũ∗
n ∈ ·|Xn]

p→P [Ũ ∈ ·], where Ũ(u) = U(uΓ1/α
1 /ψ+). The following theorem is

now an immediate consequence of this result.

Theorem 3.2. If ρ(·) is convex and satisfies the conditions of Theorem 3.1 and
U(·) attains a unique minimum at û a.s., then Mn(φ̂n−φ) d→ũ and P [M∗

mn
(φ̂∗

mn
−

φ̂n) ∈ ·|Xn]
p→P [ũ ∈ ·], where ũ = ûψ+Γ−1/α

1 .

Unknown Location Parameter. The bootstrap implementation described
above can also be used for the case when a location parameter is included in the
model. The AR(p) model with location parameter is given byXt = φ0+φ1Xt−1+
· · · + φpXt−p + Zt and the M -estimates φ̂0, φ̂1, . . . , φ̂p are found by minimizing

n∑
t=p+1

ρ(Xt − β0 − β1Xt−1 − · · · − βpXt−p)

with respect to β0 and β. Provided ρ is convex with a Lipschitz continuous
derivative ψ(·), an(φ̂ − φ) has the same limit distribution as described in Theo-
rem 3.1 while n1/2(φ̂0 − φ0) is asymptotically normal with mean 0 and variance
E(ψ2(Z1))/(E(ψ′(Z1)))2 (see Davis et al. (1992)). The two quantities are also
asymptotically independent.

Now let φ̂∗0 and φ̂
∗ be the M -estimates of the parameters based on the

bootstrap replicate X∗
1 , . . . ,X

∗
m. Then, if m/n→ 0, the quantities m1/2(φ̂∗0− φ̂0)

and am(φ̂∗ − φ̂) have the same limiting distribution as the original M -estimates.
The proof of this result combines a Taylor series expansion argument (see Davis
et al. (1992)) with the stochastic process convergence described in Theorem 3.1.
The details are omitted.

Least Absolute Deviation. The loss function ρ(x) = |x| corresponding to
least absolute deviation estimation does not meet the technical assumptions of
Theorems 3.1 and 3.2. Nevertheless, the bootstrap procedure is still valid for the
LAD estimate as described in the following theorem.

Theorem 3.3. Let {Xt} be an AR(p) process satisfying (3.1), where the inno-
vations are assumed to have median 0 if α ≥ 1. Assume either
(a) α < 1; or
(b) α > 1 and E|Z1|τ <∞ for some τ < 1 − α; or
(c) α = 1 and E(ln |Z1|) > −∞,
and that W (u) has a unique minimum û a.s., where W (u) =

∑∞
i=1

∑∞
j=1[|Zi,j −

(ψi−1u1 + · · · + ψi−pup)δjΓ
−1/α
j | − |Zi,j |]. If m → ∞ and m/n → 0, then
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P [a−1
m (φ̂∗

m − φ̂) ∈ · |Xn]
p→P [û ∈ ·], where φ̂ is the LAD estimate based on the

original data X1, . . . ,Xn and φ̂∗
m is the LAD estimator based on the bootstrap

replicate X∗
1 , . . . ,X

∗
m.

Remark 2. A similar result is also valid for LAD estimation in the multivariate
regression model of Section 2.
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Appendix

In this section we collect some of the technical results used throughout the
paper. Much of the requisite background material on point processes, as well
as notation and definitions, can be found in Davis and Resnick (1985), Resnick
(1987), and Davis et al. (1992). For Lemmas 1–4 below, the assumptions of
Theorem 2.1 are assumed to be met.

Lemma 1. Let µn(dz, dx) and µ̂n(dz, dx) be the random measures defined on
rectangles of the form E = A×B ⊂ R × (R \ {0}) as

µn(E) =
(
n−1

n∑
i=1

I(Zi ∈ A)
)(
mnn

−1
n∑
i=1

I(a−1
mn
Xi ∈ B)

)
and

µ̂n(E) =
(
n−1

n∑
i=1

I(Ẑi ∈ A)
)(
mnn

−1
n∑
i=1

I(a−1
mn
Xi ∈ B)

)
.

Then if mn/n→ 0,
µn(E) p→ν(E), (A.1)

where ν(dz, dx) = G(dz)×λ(dx), G is the distribution function of Zi and λ(dx) =
α(px−α−1I(x > 0) + (1− p)(−x)−α−1I(x < 0))dx. Moreover, if P [Z1 ∈ ∂A] = 0,
then

µ̂n(E) − µn(E) p→0. (A.2)

Proof. The Laplace transform of mnn
−1∑n

i=1 I(a
−1
mn
Xi ∈ B) is

[
1 +

1
n

n

mn
(e−t

mn
n − 1)mnP (a−1

mn
X1 ∈ B)

]n

which by (2.2) converges to e−tλ(B) as n→ ∞. Thus µn(E)
p→EI(Z1 ∈ B)λ(B) =

ν(E).
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As for the second statement, we have

µ̂n(E)−µn(E)=
(
n−1

n∑
j=1

(
I(Zj ∈ A) − I(Ẑj ∈ A)

) )(
mnn

−1
n∑
j=1

I(a−1
mn
Xj ∈ B)

)
.

By the argument above, the second term in parentheses converges in probability
to λ(B). On the other hand, the modulus of the first factor has expectation
bounded by

E|I(Z1 − (β̂ − β)X1 ∈ A) − I(Z1 ∈ A)|
which converges to 0 since the M -estimate β̂ is consistent. This proves (A.2).

Lemma 2. Let µ∗n be the random point measure

µ∗n(·) =
mn∑
j=1

ε(Z∗
j ,a

−1
mnX

∗
j )(·)

defined on R × (R \ {0}). For any collection of bounded disjoint rectangles
E1, . . . , Ed ∈ R × (R \ {0}),

P [(µ∗n(E1), . . . , µ∗n(Ed)) ∈ · |X∞,Y∞]
p→P [(µ(E1), . . . , µ(Ed)) ∈ ·)],

where µ(·) is the Poisson process
∑∞
j=1 ε(Zj ,δjΓ

−1/α
j )

(·).
Proof. It is enough to show that for any non-negative integers r1, . . . , rd

P [µ∗n(E1) = r1, . . . , µ
∗
n(Ed) = rd |X∞,Y∞]

p→P [µ(E1) = r1, . . . , µ(Ed) = rd].

Using the independence of the sample {(Z∗
i ,X

∗
i ), i = 1, . . . ,mn}, the left-hand

side is equal to

mn!
r1!···rd!(mn−r1−···−rd)!

( µ̂n(E1)
mn

)r1 · · · ( µ̂n(Ed)
mn

)rd(
1 − µ̂n(∪dj=1Ej)

mn

)mn−r1−···−rd

p→ 1
r1! · · · rd!ν

r1(E1) · · · νrd(Ed) exp{−(ν(E1) + · · · + ν(Ed))}
= P [µ(E1) = r1, . . . , µ(Ed) = rd],

where the limit follows from Lemma 1.

Lemma 3. For any continuous function g on R×(R\{0}) with compact support,

P [µ∗n(g) ∈ · |X∞,Y∞] p→P [µ(g) ∈ ·], (A.3)

where µ∗n(g) =
∫
g dµ∗n and µ(g) =

∫
g dµ.

Proof. By Lemma 2, (A.3) holds for a suitably chosen class of step functions.
Now if g is continuous with support contained in a compact rectangle E, then
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for any ε > 0 there exist a constant Kε and a step function gε with support E
such that P [µ(E) > Kε] < ε and |g(z, x)− gε(z, x)| ≤ ε/Kε for all z and x. Since

|µ∗n(g) − µ∗n(gε)| ≤
ε

Kε
µ∗n(E),

it follows that

P [µ∗n(g) ≤ x |X∞,Y∞] ≤ P [µ∗n(gε) ≤ x+ εµ∗n(E)/Kε |X∞,Y∞]

≤ P [µ∗n(gε)≤x+ε |X∞,Y∞]+P [µ∗n(E) > Kε |X∞,Y∞]
p→ P [µ(gε) ≤ x+ ε] + P [µ(E) > Kε]

≤ P [µ(g) ≤ x+ 2ε] + 2P [µ(E) > Kε].

A similar lower bound can be obtained in exactly the same fashion. Letting
ε → 0, we find that P [µ∗n(g) ≤ x |X∞,Y∞] p→P [µ(g) ≤ x] from which (A.3)
follows using a routine weak convergence argument.

Lemma 4. For any u1, . . . , ud ∈ R,

P [(W ∗
n(u1), . . . ,W ∗

n(ud)) ∈ · |X∞,Y∞] p→P [(W (u1), . . . ,W (ud)) ∈ ·].

Proof. We just provide the proof for d = 1 since the case d > 1 is similar using
the Cramér-Wold device. First note that

W ∗
n(u) =

∫
R×(R\{0})

g dµ∗n,

where g(z, x) = ρ(z − ux) − ρ(z). Set SK = {(z, x) : |z| ≤ K1,K
−1
2 ≤ |x| ≤ K2}

and define gK = gISK
(z, x). Using a modification of Lemma 3, we have

P [µ∗n(gK) ∈ · |X∞,Y∞] p→P [µ(gK) ∈ ·], (A.4)

so that it just remains to replace K (K1 and K2) by ∞ in (A.4).
For any ε > 0,

P [|µ∗n(g − gK)| > 3ε |X∞,Y∞]

≤ P [|µ∗n(gI(|x| ≤ K−1
2 ))| > ε |X∞,Y∞] + P [|µ∗n(gI(|x| > K2))| > ε |X∞,Y∞]

+P [|µ∗n(gI(|z| > K1,K
−1
2 < |x| < K2))| > ε |X∞,Y∞]

=: I + II + III. (A.5)

We handle each of the three terms separately. We have

II = P [(|
mn∑
i=1

g(Z∗
i , a

−1
mn
X∗
i )I(a

−1
mn

|X∗
i | > K2)| > ε |X∞,Y∞]
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≤ P [∪mn
i=1{a−1

mn
|X∗

i | > K2} |X∞,Y∞]

≤ mnP [a−1
mn

|X∗
1 | > K2 |X∞,Y∞]

= mnn
−1

n∑
i=1

I(a−1
mn

|Xi| > K2)

p→ λ[K2,∞) (as n→ ∞ by Lemma 1)

→ 0

as K2 → ∞. Next, by Lemma 1,

III ≤ P [∪mn
i=1{|Z∗

i | > K1,K
−1
2 < a−1

mn
|X∗

i | ≤ K2} |X∞,Y∞]

≤ mnP [|Z∗
1 | > K1,K

−1
2 < a−1

mn
|X∗

1 | ≤ K2 |X∞,Y∞]

= µ̂n({|z| > K1} × {K−1
2 < |x| ≤ K2})

p→ P [|Z1| > K1]λ(K−1
2 < |x| ≤ K2) (as n→ ∞)

→ 0

as K1 → ∞ and then K2 → ∞. As for the first term in (A.5), we have, using
the bound |g(z, x)| ≤ |uxψ(z)| + C|ux|1+τ1 , that

I ≤ P [|ua−1
mn

mn∑
i=1

X∗
i ψ(Z∗

i )I(a
−1
mn

|X∗
i | ≤ K−1

2 )| > ε/2 |X∞,Y∞]

+P [C|ua−(1+τ1)
mn

mn∑
i=1

|X∗
i |1+τ1I(a−1

mn
|X∗

i | ≤ K−1
2 )| > ε/2 |X∞,Y∞].(A.6)

Using Markov’s inequality and Karamata’s theorem, the mean of the second term
in (A.6) is bounded by

C|u|2ε−1mna
−(1+τ1)
mn

E
[
E
(
|X∗

1 |1+τ1I(a−1
mn

|X∗
1 | ≤ K−1

2 ) |X∞,Y∞
)]

= (const)mna
−(1+τ1)
mn

E
(
n−1

n∑
i=1

|Xi|1+τ1I(|Xi| ≤ K−1
2 amn)

)

∼ (const)α(1 + τ1 − α)−1mna
−(1+τ1)
mn

(K−1
2 amn)1+τ1P [|X1| > K−1

2 amn ]

→ (const)α(1 + τ1 − α)−1K
α−(1+τ1)
2 (as n→ ∞)

→ 0

as K2 → ∞.
In order to show that I converges to 0 after taking a limit on n → ∞ and

then K2 → ∞, we require the following ancillary results:
For all γ > 0

mnP [|a−1
mn
X∗

1ψ(Z∗
1 )I(a−1

mn
|X∗

1 | ≤ δ)| ≥ γ |X∞,Y∞]
p→0, (A.7)
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as n→ ∞ and δ → 0;

mnE[a−1
mn
X∗

1ψ(Z∗
1 )I(a−1

mn
|X∗

1 | ≤ δ)I(|X∗
1ψ(Z∗

1 )| ≤ amnγ) |X∞,Y∞] p→0 (A.8)

as n→ ∞ and then δ → 0; and

mnE[a−2
mn

(X∗
1ψ(Z∗

1 ))2I(a−1
mn

|X∗
1 | ≤ δ)I(a−1

mn
|X∗

1ψ(Z∗
1 )| ≤ γ) |X∞,Y∞] p→0

(A.9)
as n→ ∞, δ → 0, and γ → 0. The proofs of these relations are omitted since they
use standard arguments which rely on Markov’s inequality, Karamata’s theorem,
and the assumption on ψ.

To finish the proof of the lemma, write for any γ > 0

a−1
mn

mn∑
i=1

X∗
i ψ(Z∗

i )I(a
−1
mn

|X∗
i | ≤ K−1

2 )

= a−1
mn

mn∑
i=1

X∗
i ψ(Z∗

i )I(a
−1
mn

|X∗
i | ≤ K−1

2 )I(a−1
mn

|X∗
i ψ(Z∗

i )| ≤ γ)

+a−1
mn

mn∑
i=1

X∗
i ψ(Z∗

i )I(a
−1
mn

|X∗
i | ≤ K−1

2 )I(a−1
mn

|X∗
i ψ(Z∗

i )| > γ).

By (A.8) and (A.9) the conditional variance and conditional mean of the first
term converges to 0 in probability as n→ ∞,K2 → ∞ and γ → 0. Similarly, by
(A.7), the conditional probability that the last term is positive also converges to
0 as the same 3 indices tend to their respective limits. Hence the first term in
(A.6) must converge to 0 in probability as n→ ∞,K2 → ∞ as claimed.

We now turn our attention to establishing analogues of the foregoing for the
case of an autoregressive process. In the remainder of the appendix, the assump-
tions of Section 3, namely that {Xt} is an AR(p) process satisfying (3.1) where
{Zt}iid∼F with F satisfying the regular variation condition (2.2), are assumed to
be met. The corresponding sequence of point processes is now given by

µ∗n(·) =
m∑
t=1

ε(Z∗
t ,a

−1
m Y ∗

t )(·),

where
Y ∗
t−1 = u1X

∗
t−1 + · · · + upX

∗
t−p.

We write Pn and En for the probability measure and expectation functional,
respectively, conditional on Xn = (X1, . . . ,Xn)′. The first objective is to show
that

Pn[µ∗n ∈ ·] d→P [µ ∈ ·], (A.10)
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where µ is the random measure

µ(·) =
∞∑
i=1

∞∑
j=1

ε
(Zi,j ,(u1ψi−1+···+upψi−p)δjΓ

−1/α
j )

,

the ψj ’s are defined in (3.2) (ψj := 0 if j < 0) and the sequences {Zi,j}, {δj}
and {Γj} are as specified in the statement of Theorem 2.1. The proof of (A.10)
follows the sequence of steps (see Theorem 2.4 in Davis and Resnick (1985)) used
for establishing the result

µn(·) :=
n∑
t=1

ε(Zt,a
−1
n Yt)

(·) d→µ(·).

We break up the proof of (A.10) into a series of lemmas.

Lemma 5. For any k ≥ 1

Pn[Im,k ∈ ·] p→P [Ik ∈ ·],
where Im,k =

∑m
t=1 ε(Z∗

t ,a
−1
m Z∗

t−1)
, Z∗

t−1 = (Z∗
t−1, . . . , Z

∗
t−k), Ik =

∑k
i=1

∑∞
j=1

ε(Zi,j ,δjγ−1/αei)
and ei is the basis element of R

k with ith component equal to one
and the rest 0. (The relevant state space for the point processes is R × (Rk \
(0, . . . , 0)).)

The proof of this lemma is quite similar to the combined arguments used
for Proposition 2.1 and Theorem 2.2 of Davis and Resnick (1985). The technical
details are omitted.

Lemma 6. Set Y ∗ =
∑∞
j=0 |cjZ∗

j | where the coefficients {cj} decrease to 0 at an
exponential rate. Then
(i) lim supnmE[Pn[Y ∗ > amx]I(|φ − φ̂| < δ)] ≤ (const)x−α

∑∞
j=0 |cj |α

and
(ii) lim supnma−γm E[En[(Y ∗)γI(Y ∗ ≤ aδm)]|I(|φ − φ̂| < δ)] ≤ (const)δγ−α

for all γ > α.

Proof. (i) Following the argument given on p.228–230 of Resnick (1987), we
have

mPn[Y ∗ > amx]
= mPn[Y ∗ > amx,

∨
j

|cjZ∗
j | > amx] +mPn[Y ∗ > amx,

∨
j

|cjZ∗
j | ≤ amx]

≤
∑
j

mPn[|cjZ∗
j |>amx]+mPn[

∑
j

|cjZ∗
j |I(|cjZ∗

j |≤amx)>amx]

≤
∑
j

(
mn−1

n∑
t=1

I(|cj Ẑt| > amx)
)
+
∑
j

(
mx−1a−1

m n−1
n∑
t=1

|cjẐt|I(|cj Ẑt| > amx)
)

=: A+B.



1152 RICHARD A. DAVIS AND WEI WU

Also, Ẑt = Zt+(φ− φ̂)Xt−1 which, on the set |φ− φ̂| < δ for δ small, is bounded
by |Zt| + δ|Ut−1| where Ut−1 = Xt−1 + · · · +Xt−p =:

∑∞
j=0 djZt−1−j . Using this

bound, and the fact that |Zt| + δ|Ut−1| has regularly varying tail probabilities,
we have

E[AI(|φ − φ̂| < δ)] ≤
∑
j

mP [|cj |(|Z1| + δ|U0|) > amx]

→
∑
j

(|cj |α(1 + δαd+)x−α)

≤ (const)x−α
∑
j

|cj |α,

where d+ :=
∑
j |dj |α. As for the second term, assume that 0 < α < 1. Then, by

Karamata’s theorem,

E[BI(|φ−φ̂|<δ)] ≤
∑
j

(mx−1a−1
m |cj |E(|Z1|+δ|U0|)I(|cj |(|Z1|+δ|U0|)>amx)]

→ (const)x−α
∑
j

|cj |α(1 + δαd+).

The case α ≥ 1 is handled using the method described in Resnick (1987).
(ii) We have

ma−γm En[(Y ∗)γI(Y ∗ ≤ aδm)] ≤maγm

∫ (amδ)γ

0
Pn[(Y ∗)γ > x]dx.

=m

∫ δ

0
Pn[Y ∗ > amx]dx.

After taking expectations on the set |φ − φ̂| < δ for δ small, it can be shown
using the first part of the lemma that the resulting limit (as m→ ∞) is

(const)
∑
j

|cj |α
∫ δ

0
xγ−1−αdx = (const)δγ−α.

This completes the proof of the lemma.

Lemma 7. For any ε > 0 and γ > 0

lim
k→∞

lim sup
m→∞

P [Pn[a−1
m

m∨
t=1

|
k∑
j=0

ψ̂jZ
∗
t−j − Y ∗

t−1| > γ] > ε] = 0.

Proof. Since φ̂ is weakly consistent, it suffices to consider the outside probability
on the set |φ− φ̂| < δ for some small δ. If δ is sufficiently small, then on this set,
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the modulus of the coefficients ψ̂j can be bounded by positive constants cj which
are exponentially decreasing. It follows that the inner-conditional probability, on
the set |φ − φ̂| < δ, is bounded by

mPn[
∑
j>k

|ψ̂j ||Z∗
j | > amγ]I(|φ − φ̂| < δ) ≤ mPn[

∑
j>k

|cj ||Z∗
j | > amγ]I(|φ − φ̂| < δ)

and the latter has the desired limit by Lemma 6(i). This proves the result.

Lemma 8. Pn[µ∗n ∈ ·] d→P [µ ∈ ·].
Proof. The proof of this result is omitted since it is essentially identical to the
proof of Theorem 2.4 given in Davis and Resnick (1985) with Lemma 2.3 being
replaced by Lemma 7.

Lemma 9. For any u1, . . . , ud ∈ R,

Pn[(U∗
n(u1), . . . , U∗

n(ud)) ∈ ·] p→P [(U(u1), . . . , U(ud)) ∈ ·].

Proof. The proof of this result follows the argument given for the proof of The-
orem 2.1 in Davis et al. (1992). Specifically, it suffices to establish the analogues
of (2.7)–(2.10) in Davis et al. (1992) which in turn were immediate consequences
of their Proposition A2. In the current setting, it suffices to show that for all
ε, η > 0

lim
K→∞

lim sup
n→∞

P
[
Pn[
∣∣∣a−1
m

m∑
t=1

Y ∗
t−1I(|Y ∗

t−1| > amδ)ψ(Z∗
t )I(|Z∗

t |>K)
∣∣∣>η]>ε]=0,

a−(1+τ1)
m

m∑
t=1

|Y ∗
t−1|1+τ1I(|Y ∗

t−1| ≤ amδ)
p→0,

as m→ ∞ and then δ → 0, and

a−(1+τ1)
m

m∑
t=1

|Y ∗
t−1|1+τ1I(|Y ∗

t−1| > amδ)I(|Z∗
t | > K) p→0,

as m → ∞ and K → ∞. The adaptation of Proposition A2 to the present
framework is straightforward with Lemma 6 playing the key role. The tedious
details are omitted.
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