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Abstract: Nonparametric estimation of a cumulative distribution function, F , is

accomplished from data containing independent observations of two types. The first

type of observation is simply a recorded value of a random variable X distributed

according to F . The second type is incomplete (or censored) and contains partial

information about X, namely only the indicator of the event [X ≤ d] is available.

The value d belongs to a grid {d1 ≤ · · · ≤ dr}, so the second type can be thought of

as a stratified sample of dichotomous observations, each of them being represented

as a pair containing a nonrandom dj and realizations of the indicator Yj = I[X ≤
dj ].

Asymptotically efficient estimates are derived for a cumulative distribution func-

tion (CDF) and therefore, for a wide class of functionals that can be expressed via

the CDF. Their limit distribution turns out to be normal, while this asymptotic nor-

mality can be established uniformly with respect to any precompact set of CDF’s.

This uniformity implies asymptotic efficiency of the proposed estimates.

Key words and phrases: Combining information, contingent evaluation, estimation

under constraints, geometric approach, incomplete observations.

1. Introduction

In this paper we consider nonparametric estimation of a cumulative distri-
bution function, F . The distinguishing feature of the problem considered here
is that some of the observations are complete and some others are radically cen-
sored. The proposed estimators efficiently combine all of the available data. The
problem was motivated by an econometric application in which individuals’ “will-
ingness to pay” were elicited in different ways. For example, one questionnaire
may simply ask how much money one would pay for something, while another
approach would set a fixed level, say d, and ask whether the respondent would
be willing to pay that much. For more on the topic of contingent evaluation, see
Desvousges et al. (1992).

To introduce some notation for such a data collection procedure, let Z be
distributed according to F . For a certain number of observations, the value of
Z is recorded. These records are denoted by X. In other subsets of given sizes,
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the observations are simple dichotomous indicators of the event [Z ≤ d]. For the
sake of definiteness, consider a fixed grid of r different thresholds d1 < · · · < dr,

for which independent samples of size m1, . . . ,mr respectively, are collected. The
partial information in the indicators is denoted by Yj = I[Z ≤ dj], taking the
values 1 and 0 according to whether the event is true or false. At last, to describe
the full data set, let

Z =
{
Zj,i : 1 ≤ i ≤ mj ; 0 ≤ j ≤ r

}
(1)

be independent real–valued random variables from the same CDF F . The com-
pletely observable sample is described by

X =
{
Xi = Z0,i : 1 ≤ i ≤ m0

}
(2)

and binary data represented as r samples,

Yj =
{
Yj,i = I[Zj,i ≤ dj ] : 1 ≤ i ≤ mj;

}
(1 ≤ j ≤ r). (3)

The first natural question to ask is: how should one estimate F (t) having
nothing more than the data in (2) and (3)? That the answer is nontrivial, may
be appreciated by simply noting that the estimate of F (d1) from the X’s will not
usually agree with that from Y1; and furthermore some less direct information
may even be found in the Y2, and so forth. The more general task is to estimate
a median, another quantile, or a more sophisticated functional Λ(F ). Once an
efficient estimate, F̂ (t), has been derived, the plug–in rule generally provides sat-
isfactory estimates of these functionals. Some notation for specific probabilities
will be relevant. Set

F (dj) = pj = Pr[Yj1 = 1], 1 ≤ j ≤ r. (4)

To avoid pathological problems we assume that all of the (r+1) cell probabilities
defined by the grid, i.e. p1, p2 − p1, p3 − p2, . . . , 1 − pr, are strictly positive. The
results here will, as well, allow one to test the null hypothesis (4) with specified
pj values against a general alternative that F and p = (p1, . . . , pr) are quite
arbitrary. However, our emphasis is on estimation. Another related issue arises
in testing whether the X’s and Y ’s are drawn from a common CDF, but we do
not pursue that here.

There are at least two distinct limiting situations that may be meaningful.
The first is the reasonable notion that all subsample sizes are of the same order
of magnitude. By setting N =

∑r
j=0 mj , the corresponding requirement is that

the fractions converge to strictly positive (possibly unknown) numbers, namely

mj

N
→ µj > 0 0 ≤ j ≤ r. (5)
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In what follows, the limiting fraction, µ0 = limn→∞ m0
n , will play a slightly

more important role than the remaining fractions, µ1, . . . , µr. The problem is
considered asymptotically as items in an array indexed by a vector subscript,
m = (m0, . . . ,mr), under assumption (5).

An alternative asymptotic condition reflects another realistic assumption
that all the fractions {m0

mj
: 1 ≤ j ≤ r} converge to 0, as N → ∞. Consequently,

m0
n → 0 = µ0 and such a case can be considered from two different points of

view. But in both cases, there will be a singularity phenomenon, as far as the
estimates and their large sample behavior are concerned. Under this assumption,
the best one can achieve estimating the cell probabilities comes from the Yj

observations, while the very small sample of completely recorded X values can
be ignored. Selecting the sum,

∑r
j=0 mj , as an analogue of the sample size for

a large sample study, the whole information about F contained in the complete
observations (2) is negligible. If the sample size of the complete data alone
is considered to be increasing (m0 → ∞), i.e. m0 plays the role of n, then
the random function,

√
m0[F̂ − F ] should be analyzed. The adjustment of the

initially selected estimate, F̃ , can be produced in the same manner, as if the
probabilities assigned to the given partition were completely specified by (4).
These probabilities can be estimated with a much higher level of accuracy than
the usual n−1/2. So, whether the probabilities (4) are given or replaced by their
exceptionally precise estimates, asymptotically, this will imply the same large
sample results for the statistic

√
m0[F̂ − F ]. The phenomenon of completely

specified cell probabilities was considered by Pfanzagl (1982) as estimation under
quantile constraints.

Therefore, this paper’s emphasis is on the situation described by (5) as the
more realistic limiting condition. An example with r = 2 is also presented in the
final section.

Techniques and tools. Some necessary elements of the geometric approach
presented in Koshevnik and Levit (1976), Pfanzagl (1982), and Millar (1983)
are recalled in Section 2. Also, asymptotic normality and asymptotic efficiency
results for the proposed estimates are formulated in this section. Section 3 con-
tains proofs and necessary auxiliary results. Section 4 presents several examples,
including those already mentioned, some concluding remarks and further devel-
opments.

It turns out that asymptotic normality holds uniformly in F ∈ U , where U is
a small but fixed neighborhood of the unknown true distribution. Uniform weak
convergence was initially studied by E. Parzen (1954). Some further extensions
concerning uniformity in nonparametric CDF estimation are recalled from Ko-
shevnik (1982, 1984). These results have been extended and cover a stratified
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sample case. Uniformity results combined with the description of lower bounds
of risks, which is similar to Koshevnik and Levit (1980), lead to asymptotic
efficiency for the proposed estimates.

2. Main Ideas and Results

First we need to consider a geometric interpretation of the proposed estimate
for F (t). Its asymptotic efficiency is implied by asymptotic normality, with the
asymptotically minimal limiting variance of the process

√
N(F̂ − F ), that holds

uniformly in F ∈ U , where U is an arbitrarily small neighborhood of the unknown
true distribution F ∈ F . Some additional requirements will be formulated about
this neighborhood in the next section.

2.1. Estimated orthogonal projection

To describe an estimate of F (t) from all of the data (2) and (3), set n = m0

and let F̃ be the usual empirical CDF based only on the n complete observations,
(2), F̃ (t) = 1

n

∑n
i=1 I[Xi ≤ t]. Recall that p = (pj : 1 ≤ j ≤ r) is a vector of

probabilities directly related to the data set (3). For any j, there are at least two
natural estimates for pj, namely the value of the empirical CDF at dj , F̃ (dj) and
p̃j = Yj/mj =

∑mj

i=1 Yj,i/mj, the empirical frequency of the event [Zj,i ≤ dj ]. To
make proper use of the additional observations (3) to improve F̃ (t), consider first
the case with no relation between the unknown F and p. Then the (r + 1) data
sets (2) and (3) should be processed separately to produce an empirical estimate,
F̃ (t), for F (t) and empirical probabilities, p̃j, for each pj. The constraints in (4)
require that we do more. Under (4), introduce a family of linear combinations,

F̂a(t) = F̃ (t) −
r∑

j=1

aj(t)(F̃ (dj) − p̃j), (6)

indexed by an r–dimensional vector, a = (aj : 1 ≤ j ≤ r). If a vector a is chosen
to minimize the variance of (6), it corresponds to the orthogonal projection of
the function, U(X) = 1

n

∑n
i=1 I[Xi ≤ t], onto a subspace spanned by the random

variables,

{
Vj = Vj(X,Y1, . . . , Yr) =

1
n

n∑
i=1

(I[Xi ≤ dj ] − Yj

mj
) : 1 ≤ j ≤ r

}
,

with respect to the Hilbert norm defined by a joint distribution FN of all N

variables (1). It should be clarified that this procedure generally differs from
the one based on the exact conditional expectation of the empirical CDF, F̃ (t),
given the data sets, (2) and (3). Such a procedure typically is performed to
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adjust the initial unbiased estimate, due to the Rao–Blackwell theorem, but in
the case under consideration, the linearized version of conditionals is exploited,
with respect to the space of square integrable random variables. Asymptotically,
under the conditions (5), this procedure leads to the equivalent estimate, but
turns out to be less computationally intensive.

Each of the terms subtracted from the initial estimate F̃ (t) to obtain (6) has
zero expectation, due to (4); therefore for every a, the estimate F̂a(t) is unbiased
for F (t). To define an efficient estimate, the numbers {aj : 1 ≤ j ≤ r}, must be
chosen to minimize the variance of (6). As will be shown later, the asymptotic
variance, as well as any other rather general risk, will be also minimized, under
limiting conditions (5). Some additional notation is useful for the theorems that
follow. The coefficients a = (aj) in (6) can be described as a solution of the linear
system, which is formed by “normal equations”, Ca = D, or in more detail,

r∑
l=1

Cjlal = Dj (1 ≤ j ≤ r), (7)

involving large sample covariance for any pair of distinct j and l,

Cj,l =
1
n

[F (min(dj , dl) − F (dj)F (dl)], (8)

for any j,

Cj,j = (
1
n

+
1

mj
)[F (dj)(1 − F (dj))], (9)

and finally, the right–hand sides are

Dj = Dj(t) =
1
n

[F (min(t, dj)) − F (t)F (dj)]. (10)

These are all functionals of the unknown distribution F , so their natural estimates
have F̃ replacing F in (8), (9) and (10). The same applies to the solution of (7).
So, if F is replaced by F̃ , then the corresponding value of aj(F̃ ) will be denoted
as ãj. Certainly, the asymptotic conditions (5) should be taken into account, so
that the ideal (limiting) solution, a = C−1D, will also depend on the limiting
proportions, (5). Actually, it is here that unbiasedness and variance minimality
are replaced by their asymptotic analogues.

Although all the elements of the normal equation depend on the sample sizes,
m0,m1, . . . ,mr, we omit the extra subscripts from the notation. The reduced
asymptotic variance will appear in such a form that already assumes the limits
were properly taken.

Straightforward calculations show that after the minimizing vector, â, is
found, the minimal asymptotic variance attainable by the estimate Fâ is equal
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to limn→∞(n ·Var[F̂ (t)]) = limn→∞{(n ·Var[F̃ (t)])−a′Ca}, where a = C−1 ·D,

the r×r–matrix C has elements, (Cj,l) defined by (8) and (9), and D is an r×1–
vector, with the components given by (10). The asymptotic variance decrease,
a′D = a′Ca, due to the system (7), is non–negative, since C is positive–definite.
This is a standard reduction of the asymptotic variance due to the additional
information contained in the dichotomous observations.

2.2. Theorems

The first theorem describes a limiting behavior of the proposed projection
when the true solution to (7), the theoretical values aj = aj(F ) are used in (6).
It is similar to a projection described in Koshevnik and Levit (1976) for a one
sample study with moment constraints imposed on an underlying distribution.

Let B designate an F–Brownian bridge, i.e. a Gaussian process with zero
mean and covariance function, E[B(t)B(s)] = F (min(t, s)) − F (t) · F (s). Fur-
ther, let B = (B1, . . . , Br) be a Gaussian vector, having zero mean compo-
nents, independent from each other and from the process B, with the vari-
ances, Var(Bj) = pj · (1 − pj), for 1 ≤ j ≤ r. The limiting process W is
defined by W(t) = 1√

µ0
[B(t) − ∑r

j=1 ajB(dj)] +
∑r

j=1
aj√
µj

Bj, while the frac-
tions, (µj : 0 ≤ j ≤ r), are defined as limits in (5). Denote by W0 the
process W0(t) = 1√

µ0
[B(t) − ∑r

j=1 ajB(dj)]. Generally, with the cell proba-
bilities {pj : 1 ≤ j ≤ r} estimated from the samples (2) and (3), the term∑r

j=1
aj√
µj

Bj represents the difference in the asymptotic variance, compared to
that with known cell probabilities.

Notice that if all the sample sizes, (mj : 1 ≤ j ≤ r), increase more rapidly
than n = m0, then all the fractions, n/mj → 0, and using n, rather than N as
an analogue of the sample size, we can see that

√
n[F̂ (t) − F (t)] D−→ W0. It is

this process that describes large sample behavior of the estimated distribution in
the case of almost known cell probabilities. Since each of the cell probabilities is
estimated from the essentially larger sample than the one of size n, the asymptotic
accuracy will be in this case the same as if the cell probabilities were known and
equal to the corresponding accurate estimates.

To derive asymptotic distribution results uniformly in the infinite–
dimensional parameter, F , assume that F belongs a precompact set, U , in the
space C = C[−∞,∞] of all continuous functions with finite limits as t →
±∞. For such a set U , as shown in Koshevnik (1982, 1984), weak conver-
gence for the empirical CDF F̃ holds uniformly in F ∈ U . Equivalently, as
n → ∞, empirical processes, Bn =

√
n[F̃ (·) − F (·)], converge weakly to the cor-

responding (F )–Brownian bridge, B, and furthermore, for any continuous and
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bounded functional Γ on the space C, convergence is uniform in F ∈ U , i.e.
limn→∞ supF∈U |E(Γ(Bn)) − E(Γ(B))| = 0.

Theorem 1. Suppose that F̂ is defined by (6) with coefficients defined by (7).
Then, under (5), convergence in distribution,

√
N [F̂a(r) − F (t)] D−→ W(t), (11)

holds uniformly in F ∈ U .
The formulated result is not sufficient for statistical purposes. Asymptotic

efficiency of the estimate F̂ (t) cannot be claimed, since the coefficients (aj) de-
pend on the unknown distribution F . The next step is a plug–in rule that replaces
F by its empirical analogue, F̃ , and aj by ãj = aj(F̃ ). This will produce the
asymptotically efficient estimate.

Theorem 2. Suppose that coefficients, a = {aj : 1 ≤ j ≤ k}, are replaced by
their empirical versions, ã = {ãj : 1 ≤ j ≤ r}. Also assume that asymptotic
conditions (5) hold. Then the procedure (6) yields an estimate F̂ã(t) for F (t),
such that the asymptotic normality (11) also holds uniformly in F ∈ U .

Lower bounds of risks and limiting behavior of the proposed estimate can be
derived easily. In particular, the following result can be derived similar to many
other Information Inequalities (see Begun et al. (1983) for instance). Recall that
a nonnegative loss function L defined on a Euclidean r–dimensional space, Rr,
is called lower semicontinuous (semicontinuous from below) and subconvex if a
set {v ∈ Rr, such that L(v) ≤ u} is both closed and convex, for any positive u.
We also assume that L is symmetric, i.e. L(−u) = L(u), for any u. Only loss
functions with these features are considered here. As far as a neighborhood U is
concerned, the following assumption is needed.

The feature known as Extensiveness of Neighborhood is now given some
explanation. This is the most significant part of asymptotic efficiency. If U
denotes a neighborhood that contains F , then we assume that for any finite
collection, (hk(·) ∈ L2(F ) : 1 ≤ k ≤ K), of functions with zero mean, and
for every positive δ, there exists a regular parametric submodel, Uδ ⊂ U , of
probability distributions indexed by c ∈ RK such that |c| < δ, so that their
densities with respect to F =F0 can be represented as 1+

∑
1≤k≤K ck ·hδ

k(·)+o(|c|),
as c → 0, where hδ

k deviates from hk by less than δ in the L2(F )–norm.

Theorem 3. Let L be an arbitrary lower semicontinuous and semiconvex sym-
metric loss function. Suppose that the neighborhood, U , has the extensiveness
property. Then the following inequality holds for any estimator, V ∗, of V =
{F (dj) : 1 ≤ j ≤ r}:

lim inf sup
F∈U

EF [L(
√

N(V ∗ − V ))] ≥ sup
F∈U

E[L(WF )], (12)
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where the lim inf is taken as N → ∞, under (5).

Theorem 4. The estimate, F̂ã(·), defined in Theorem 2 is asymptotically efficient
for the entire function, F (·). Weak convergence of random functions

√
n[F̂ã(·)

−F (·)] to a Gaussian process W holds uniformly in F ∈ U .

More general versions of Theorems 3 and 4 were presented in Koshevnik
(1992, 1993). Some of their consequences are exploited here to demonstrate why
the plug–in rule works for the problem under consideration. In particular, F̂ã(t)
turns out to be asymptotically efficient for F (t) at any fixed point t. Theorem 4
relates to estimation problems requiring the entire CDF, F (·), to be estimated as
an element of the space C. It implies that a wide class of functionals, including
various M–functionals, can be efficiently estimated via the plug–in device. The
notion of efficiency in this case means more than in Theorem 3, because F (t) is
not simply estimated at a fixed point t or a given grid of t values, but as the
whole curve (see Millar (1983) and Koshevnik and Levit (1980) for more details).

Having constructed an asymptotically efficient estimate, F̂ã(·), for F (·), one
can again use the plug–in device and estimate any affine functional, i.e.

Λ(F ) =
∫

�(x)dF (x), (13)

by substituting F̂ã for F . Using arguments from Koshevnik and Levit (1976), for
functionals that can be represented as a composition, L(Λ(F )), of a function L

with an s–dimensional argument and a vector of s affine functionals, say Λ(F ) =
(Λ1, . . . ,Λs), estimation can be conducted in the same manner. General results
from Koshevnik (1984) imply that both uniform weak convergence and lower
bounds of risks are described in terms of the same limiting Gaussian vectors and
processes, so that the desirable conclusions can be extended to a wider class of
functionals.

3. Proofs

In this section some proofs are given and others outlined. For more details
see Koshevnik (1984). In particular, uniform weak convergence for empirical
CDF’s is usually implied by the requirement that a set U of CDF’s is precom-
pact in C. This suggests that we consider, as a suitable replacement for a small
neighborhood in the family F , only those which are open (with respect to an
initially given topology) and at the same time precompact with respect to the
topology in C. It is not surprising for infinite dimensional parameter sets that a
subset U fails to be both open and precompact with respect to the same topology.
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3.1. Uniform weak convergence: some results

Let F̃ denote the empirical CDF based on n i.i.d. random variables with
CDF F .

Lemma 1. If U is precompact in C, then weak convergence

√
n[F̃ (·) − F (·)] D−→ B, (14)

as n → ∞ is uniform in F ∈ U .

This is proved in Koshevnik (1982). It was shown there that the result re-
mained valid for a multivariate distribution F . Applying Lemma 1 to observable
data (2) and (3), the next result can be derived. Its proof is quite standard and
omitted here.

Lemma 2. If N → ∞ and (5) holds, then the joint distribution of a function
and a finite dimensional vector

√
N{(F̃ (·) − F (·)), (p̃1 − p1), . . . , (p̃r − pr)} (15)

converges weakly to the distribution of
{ 1

µ0
B(·), ( 1

µ1
B1, . . . ,

1
µr

Br)
}
. (16)

Weak convergence holds uniformly in F ∈ U , whenever U is precompact in C.

Turn now to the orthogonal projections that play such an important role
here. First, they appear in the lower bounds of risks, derived in Koshevnik and
Levit (1976). Furthermore, Pfanzagl (1982), as well as Begun et al. (1983), also
provide necessary explanations of this procedure. The second reason to illustrate
their importance is that in this case the projection is performed empirically.
The theoretical procedure adjusting the initial estimate, such as F̃ (t) for F (t),
essentially depends on a true distribution F itself, while after F̃ is repeatedly
used to estimate the orthogonal projection matrix, the same limiting behavior
can be derived for the proposed estimate. This phenomenon can be referred to
as adaptiveness. Having known the vector a = a(F ), it is possible to improve
the initial estimate. Otherwise, the estimate ã, adapted to the observed data,
replaces the unknown a, and the improvement is also implemented.

3.2. Lower bounds of risks

To avoid some technical difficulties, only Theorem 3 is proved here, rather
than its natural extension covering the more general situation of estimating the
whole CDF F . Consider a finite–dimensional vector representing the values taken
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by F on a given grid that includes several t values. This includes the case when
the estimand is a set of values taken by F on the grid d = (d1 < · · · < dr). The
unknown CDF F is, therefore, replaced by a vector V = (F (dj) : 1 ≤ j ≤ r). The
empirical frequencies {nj = nF̃ (dj) : 1 ≤ j ≤ r} and {Yj : 1 ≤ j ≤ r} together
form a sufficient statistic for V . The initially nonparametric problem therefore
becomes a parametric one, with a likelihood function,

L(p) = Const ·
[ ∏

1≤j≤r

(pj − pj−1)nj−nj−1

]
(1 − pr)n−nr

[ ∏
1≤j≤r

p
Yj

j (1 − pj)mj−Yj

]
.

Here we assume, for the sake of brevity, p0 = 0 and n0 = 0. The interpreta-
tion of a maximum likelihood estimate (MLE) and its one–step approximation in
terms of efficiency is based on a geometric approach and can be performed sim-
ilar to Millar (1983). The 2r–dimensional parameter relevant for an alternative
hypothesis, under the assumption (4), turns into an r–dimensional one, so that
a one–step approximation is efficient. Limiting behavior of the one–step maxi-
mum likelihood procedure is established with the same orthogonal projection as
in Theorems 1, 2 and 4.

Proof of Theorem 4. This is implied by Lemma 2 and the following extension
of the Continuous Mapping Theorem established in Koshevnik (1982). For the
sake of simplicity, our goals are limited to finite dimensional vectors only. Finally,
we address the proof that using empirical values, ãj , still yields asymptotically
efficient estimates.

The following result seems to be rather obvious, and up to the technical
details, its proof simply reproduces the routine arguments, quite common in the
weak convergence theory. For the sake of convenience, we only formulate this
result as

Lemma 3. Suppose that random vectors V n
θ converge weakly to Vθ, as n → ∞

uniformly in θ ∈ Θ. If the functions (Kθ : θ ∈ Θ) mapping each v into another
finite dimensional vector, Kθv, satisfy the Lipschitz condition, with the same
constant C, i.e. ρ2[Kθ(u),Kθ(v)] ≤ Cρ1[u, v] for any pair u, v, any θ ∈ Θ, where
ρ1 and ρ2 denote distance functions in V and Z, respectively, then transformed
random variables Kθ(V n

θ ) converge weakly to Kθ(Vθ) uniformly in θ ∈ Θ, as
n → ∞.

To prove Theorem 4, suppose first that the values aj(F ) from (7) are all
given. These values enable one to improve the initial estimates of F (t), just
as Theorem 1 suggests. However, only the estimates ãj are available. Invoking
Lemma 3, we can show that weak convergence in Theorem 1 holds for any fixed
given set of coefficients (aj(F ) : 1 ≤ j ≤ r), uniformly in a ∈ A, whatever a
precompact set A is chosen. Therefore, using a consistent estimate ã replacing
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a, the adaptive estimates under consideration converge to the same limit as for
the theoretical values. In fact, this is just the uniform version of the well known
Slutsky’s theorem.

4. Examples and Further Developments

Consider a simple example that motivated our attention to the general prob-
lem. A hypothetical survey asked n = 100 respondents a direct question to obtain
X = (Xi : 1 ≤ i ≤ 100). In two additional surveys of m1 = m2 = 100, the re-
spondents were summarized by Y1 and Y2, respectively.

4.1. Calculations for the case of a two–point grid

Suppose that the grid 0 < d1 < d2 < ∞ is given. The primary concern
is to estimate the two values V = (F (d1), F (d2)). In this case, Theorem 3 is
not actually needed for efficiency, since everything can be reduced to the case
of a multinomial distribution for frequencies from (2), nj = nF̃ (dj), and their
analogues Y1 and Y2, calculated from the dichotomous data (3).

To estimate F (d1) and F (d2) we apply the general procedure. It is simplified
under the assumption r = 2, as the system of equations can be easily solved in this
case. With these simplifications, for t = d1, the asymptotically efficient estimate
of F (d1) from (6) is F̂a(d1) = F̃ (d1) − a1(d1)[F̃ (d1) − Y1

m1
] − a2(d1)[F̃ (d2) − Y2

m2
].

A similar expression works to estimate F (d2). More generally, for an arbitrary
t, not necessarily one of the grid values, the same idea is appropriate.

To find the coefficients a1 and a2, the linear system (7) must be solved.
Coefficients Cjl in this system are simply Cjj = ( 1

n + 1
mj

)F (dj)(1 − F (dj)) for
j = 1, 2, while the covariance coefficient is C12 = 1

nF (d1)(1 − F (d2)). The right
side term is a vector with components Dj(t) = 1

n(F (min(t, dj)) − F (t)F (dj)).
The exact solution a = a(F ) = (a1, a2) of the system can be explicitly written

as a vector–functional. Then replacing all the unknown values by their empirical
analogues, the estimates of the two coefficients are obtained. Hence the initial
estimate F̃ (d1) is adjusted up to F̂ã(d1). Similarly, the value F (t) at any t can
be estimated via the same procedure.

Numerical Illustration. Suppose that our study produced the following initial
estimates:

F̃ (d1) = .30; F̃ (d2) = .60; and
Y1

m1
= .35;

Y2

m2
= .70.

The coefficients Cij in (8) and (9) have the values

C11 = 0.0042, C12 = C21 = 0.0012, and C22 = 0.0048;
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while the Dj values from (10) for t = d1 and t = d2 are respectively D1(d1) =
0.0021,D2(d1) = 0.0009 and D1(d2) = 0.0012,D2(d2) = 0.0024. Solving the
system (7) twice, for d1 and d2, we obtain the following data adaptive values of
a1 and a2:

at d1: ã1 = 0.481 and ã2 = 0.067; at d2: ã1 = 0.154 and ã2 = 0.462.

Using these values, the improved estimate for F (d1) is F̂ã(d1)=0.30−0.481(0.30−
0.35) − 0.067(0.60 − 0.70) = 0.331 and similarly for F (d2), F̂ã(d2) = 0.60 −
0.154(0.3 − 0.35) − 0.462(0.6 − 0.7) = 0.654.

4.2. Some comments on singular asymptotics

We have assumed mostly that the subsample sizes m0, m1, and m2 are of
the same magnitude. If the two sizes corresponding to incomplete observations
substantially dominate the set of completely recorded data, then the problem
is asymptotically equivalent to the case with precisely known cell probabilities.
Indeed, using summaries drawn from incomplete data, say Y1 and Y2, we can
ignore the possible improvement to estimates of the cell probabilities made by
the data set X, since the fractions m0

m1
and m0

m2
both tend to zero.

Therefore, the incomplete data enable one to replace the initial estimation
problem with unknown cell probabilities by the one where these probabilities
are estimated with the higher accuracy level. Asymptotically, an expensive part
of the survey, which is represented by (2), can be simply ignored. With the
probabilities p̃1 and p̃2 estimated from the incomplete data, the estimate F̃ (t)
can be improved, using the same method that is described in Pfanzagl (1982)
with completely known cell probabilities p1 and p2.

This case appears to involve a singularity, since the significant improvement
can be guaranteed for estimation of F (t) only between the grid points, i.e. for
t < d1, d1 < t < d2, and t > d2. As far as efficient estimation of F (d1) and
F (d2) is concerned, this can be performed from the incomplete data (3) alone
and asymptotically nothing else can work better.

4.3. Further developments

Certainly, the model considered here relates to the area of censored data.
Connections between this case and more common censoring are investigated in
Koshevnik (1993). In a model under random right censoring, a pair of ran-
dom variables T = survival time and C = censoring time are replaced by
Y = min(T,C) and an indicator of the event (T ≤ C). The same approach
leads in this case to a modification of the well known Kaplan–Meier estimate for
F (t).
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Another extension is a biased sampling model, involving several constraints
(possibly infinite dimensional) imposed on the underlying distributions of dif-
ferent strata. In the present case, the constraints (4) are simple. A similar
procedure can be proposed in this case as well. However, the estimates for a
finite–dimensional vector a of unknown coefficients require, as an intermediate
step, estimation of an auxiliary infinite–dimensional parameter.
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