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Abstract: In this paper we investigate semiparametric estimation methods in lo-

gistic regression models with measurement error in the continuous covariates. The

measurement error models under consideration have in general two data sets: the

validation and nonvalidation data sets. Some covariates are missing in the nonvali-

dation data set, but a surrogate variable may be available in both data sets. When

a covariate variable is missing at random, we consider two kernel assisted estimation

methods which extend the pseudo conditional likelihood (PCL) estimate of Breslow

and Cain (1988) and the mean-score method of Reilly and Pepe (1995) to contin-

uous covariates and surrogates. The asymptotic results of the two estimators for

prospective logistic regression are given. Furthermore, we discuss the asymptotic

theory of the PCL estimate in a two-stage case-control (retrospective sampling)

study when the covariates and the surrogate are continuous. A simulation study is

also given to demonstrate and compare their finite sample properties.

Key words and phrases: Case-control study, errors in variable, kernel smoother,

logistic regression, mean-score method, pseudo conditional likelihood.

1. Introduction

Logistic regression is a common tool to investigate factors related to disease
incidence. Due to certain reasons such as high cost, some covariate data can
only be collected for a small subsample. For example, LDL cholesterol may be
related to the risk of heart diseases. However, to reduce the cost, it may be a
plausible way to measure the total cholesterol of all study participants and then
select a subset to further measure the LDL level. Here the total cholesterol can
be treated as a surrogate for LDL. In general, let Y be the binary response, Z

be a covariate which is always observed and X be another covariate that may be
missing. Assume that W is a surrogate variable for X. We consider the logistic
regression model

pr(Y = 1|X,Z) = H(θ0 + θt
1X + θt

2Z), (1)

where H(u) = {1 + exp(−u)}−1 is the logistic distribution function and Θ =
(θ0, θ

t
1, θ

t
2)

t is a vector of parameters. Let δi be a random indicator of Xi being
observed. The nonvalidation data set (δi = 0) consists of (Yi, Zi,Wi) and the
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validation data set (δi = 1) consists of (Yi,Xi, Zi,Wi). In this paper we consider
the case where Xi is assumed to be missing at random (MAR, Rubin (1976))
such that the probability of Xi being observed (selection probability) pr(δi =
1|Yi,Xi, Zi,Wi) = π(Yi, Zi,Wi) depends on (Yi, Zi,Wi) but not on Xi. In some
cases, the data are obtained in two stages. At the first stage, (Yi, Zi,Wi), i =
1, . . . , n are obtained for all subjects, and at the second stage Xi are measured
in the validation data set.

Logistic regression with covariate measurement error models has been an
active research area in recent years. Breslow and Cain (1988) proposed a pseudo
conditional likelihood (PCL) method for a two-stage case-control study such that
at the second stage some X’s are observed on each stratum classified by (Y,W )
where W is a categorical surrogate. When the missingness of X does not depend
on both outcomes and the missing values, Carroll and Wand (1991) and Pepe
and Fleming (1991) proposed semiparametric estimators which approximate the
likelihood without modeling the distribution of X given (Z,W ). Little (1992)
reviewed related methods in this field. A mean-score method was proposed by
Reilly and Pepe (1995) for discrete covariates when X is MAR. Robins, Rot-
nitzky and Zhao (1994) proposed efficient estimation by computing an optimal
score function in semiparametric models. They showed that the optimal esti-
mator attains the semiparametric variance bound in the sense of Begun, Hall,
Huang and Wellner (1983). However, the efficient scores can be computationally
challenging, especially when data are continuous.

The methods we investigate in this paper are semiparametric because we do
not impose additional models for the nuisance components, such as the selection
probabilities of the validation data set or the probability density of X|(Y,Z,W ).
Therefore, this does not require either submodel assumptions or the use of the EM
algorithm (Dempster, Laird and Rubin (1977)). In this paper, we investigate two
estimation methods when (Z,W ) are continuous, extending the PCL estimator of
Breslow and Cain (1988) and the mean-score method of Reilly and Pepe (1995).
In Section 2, we extend the PCL estimator for continuous covariates for the
prospective sampling scheme such that the first stage sampling is simple random
sampling from the source population. Nonparametric kernel estimation is applied
to the estimation of selection probabilities and the resulting estimator of Θ is
presented. In Section 3, we investigate the mean-score method. The kernel
estimator is used to estimate the estimating score when X is not available and
the asymptotic distribution result is presented. In Section 4, we discuss two-
stage case-control studies and investigate the corresponding asymptotic theory
of the PCL estimator (Breslow and Cain (1988)). The result extends the work
of Prentice and Pyke (1979) to logistic measurement error models, and it fits
the general theory of Carroll, Wang and Wang (1995). A simulation study is
conducted in Section 5, and concluding remarks are given in Section 6. All the
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technical details for the asymptotic normal theory are provided in Wang and
Wang (1996).

To conclude this section, we first note that this paper extends two methods in
logistic regression for missing or mismeasured covariate problems to continuous
covariates or surrogates. Our estimates of Θ are root-n consistent although the
kernel smoothers are not. Note that an application of kernel assisted estimation
to partial means in economics was investigated by Newey (1994). Our problem,
our approaches and the asymptotic results are different from Newey (1994). In
particular, we use different technical linearization tools in the proofs of our main
results. In addition, finite sample performance is examined by a simulation study
in which we show situations where different estimators are preferred. We also in-
vestigate the empirical efficiency of the new methods compared with the efficient
parametric maximum likelihood estimator under the additional assumption that
the conditional distribution of X given (Y,Z) is perfectly specified.

2. Pseudo Conditional Likelihood Estimate

2.1. Introduction

For notational convenience, let X = (1,Xt, Zt)t, V = (Zt,W t)t, pr(δ =
1|Y, V ) = π(Y, V ). Recall that the likelihood function (1) is correct when all
covariates are observed. As noted in Zhao and Lipsitz (1992), when X is MAR
the likelihood in the validation data set is

pr(Y = 1|V,X, δ = 1) =
pr(Y = 1|V,X)pr(δ = 1|Y = 1, V )∑

y=0,1 pr(Y = y|V,X)pr(δ = 1|Y = y, V )

= H{ΘtX + log
π(1, V )
π(0, V )

}.

Therefore, conditioning on δ = 1, the maximum likelihood estimator of Θ solves
the estimating equation

n∑
i=1

δiXi

[
Yi − H{ΘtXi + log

π(1, Vi)
π(0, Vi)

}
]

= 0. (2)

This is similar to the estimation method of Breslow and Cain (1988), but
they deal with two-stage case-control data, and with categorical V (see Section 4).
Note that (2) contains the selection probability π(Y, V ). In some cases, π(Y, V )
in (2) is a nuisance component which is unknown and it remains to be estimated.
The approaches of Breslow and Cain (1988) and Schill, Jockel, Drescher and
Timm (1993) estimated π(y, v) by

∑n
i=1 I[Yi = y, Vi = v, δi = 1]/

∑n
i=1 I[Yi =

y, Vi = v] since their V is categorical.
When V is continuous, natural estimates of π(y, v) for y = 0, 1 are non-

parametric kernel smoothers. Copas (1983) proposed kernel estimates to plot
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a binary response against continuous covariates. Here we suggest fitting kernel
smoothers of δ’s on V ’s for Y = 0, 1 respectively, as estimates of the selection
probabilities. Let d be the dimension of V and K be a kernel function of order
r. We apply the Nadaraya (1964) and the Watson (1964) estimator such that

π̂(y, v) =

∑
i∈N(y) δiKh(Vi − v)∑
i∈N(y) Kh(Vi − v)

, (3)

where N(y) = {i : Yi = y},Kh(·) = K(·/h) and h is the bandwidth. Optimal
bandwidth conditions for h are given next.

2.2. Preliminary properties

Define Hi = H(ΘtXi),H∗i = H[ΘtXi+log{π(1, Vi)/π(0, Vi)}], Ĥ∗i = H[ΘtXi

+log{π̂(1, Vi)/π̂(0, Vi)}]. The estimating score of the pseudo conditional likeli-
hood estimator Θ̂PCL is

Un(Θ, π̂) = n−1/2
n∑

i=1

δiXi(Yi − Ĥ∗i).

By direct calculations, we have the following lemma which is used frequently in
the proofs of the main results.

Lemma 1. Let H i = 1 − Hi and H∗i = 1 − H∗i. Then π(0, Vi)H∗iH i =
π(1, Vi)H∗iHi.

Define Si(y) = Xi(y − H∗i). When π is known, to see that Un(Θ, π) is an
unbiased estimating score, we note that if we denote the distribution of (X,V )
by F (X,V ) then

E{δiSi(Yi)} = E[E{δiXi(Yi − H∗i)|Yi, Vi,Xi}] = E{π(Yi, Vi)Xi(Yi − H∗i)}
=

∫
(1, zt, xt)t[π(1, v)H∗H + π(0, v){−H∗}H]dFX,V (x, v) = 0.

The last equation follows from Lemma 1. Note that the above expectations
hold at the true parameter Θ. For notational convenience, let ηn = {nh2r +
1/(nh2d)}1/2. We assume the following conditions.
(A1) For y = 0, 1 g(y, v) has the rth continuous derivative a.e., and for k =

1, . . . , r, | ∂k

∂vk
g(y, v)| is bounded a.e.

(A2) For any given compact set C in the domain of v, there exists c1 > 0 such
that the selection probabilities π(y, v) ≥ c1 for y = 0, 1 and all v ∈ C.

(A3) For y = 0, 1 π(y, v) has rth continuous derivative a.e., and for k = 1, . . . , r,

| ∂k

∂vk
π(y, v)| is bounded a.e.
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(A4) E(XX t) exists and E{XX tπ(0, V )HH∗} is positive definite.
First, we establish the consistency of Θ̂PCL.

Lemma 2. Under Conditions (A1)-(A4), if nh2r → 0 and nh2d → ∞, then
there exists a solution Θ̂PCL to Un(Θ, π̂) = 0 with probability converging to 1 as
n → ∞, and Θ̂PCL → Θ in probability.

The asymptotic theory is based mainly on the linear approximation

Un(Θ, π̂) = n−1/2
n∑

i=1

[
δiSi(Yi) + (−1)Yi{δi − π(Yi, Vi)}Li(Yi)

]
+ Op(ηn),

where L1(Y1) is defined in (5) below. Since the main terms have zero expecta-
tions, under conditions (A1)-(A4), the result follows. Next, we briefly illustrate
how we need the rate of order ηn. We note that a kernel smoother has the rate of
bias of order hr and that of Un(Θ, π̂)−Un(Θ, π) is n1/2hr. The error term in lin-
earizing Un(Θ, π̂) is of order Op{n1/2(π̂−π)2}, which is Op(n1/2h2r +n−1/2h−d).

2.3. The limit distribution

Let g(y, v) denote the probability density/mass function of (Y, V ). Under the
moment condition (A4), we define H

(1)
∗i = H∗iH∗i, Ωi(y) = E{XiH

(1)
∗i |Yi = y, Vi},

G(Θ, π) = E{X1X t
1π(0, V1)H1H∗1}, (4)

Li(y) = Ωi(y) +
π(1 − y, Vi)g(1 − y, Vi)

π(y, Vi)g(y, Vi)
Ωi(1 − y), (5)

M1(Θ, π) = E
[
(−1)Y1S1(Y1)π(Y1, V1){1 − π(Y1, V1)}Lt

1(Y1)
]
,

M2(Θ, π) = E
[
π(Y1, V1){1 − π(Y1, V1)}L1(Y1)Lt

1(Y1)
]
,

M(Θ, π) = M1(Θ, π) + M t
1(Θ, π) + M2(Θ, π). (6)

We now present the limit distribution for the PCL estimator.

Theorem 1. Let Θ̂PCL be the semiparametric estimate of Θ solving Un(Θ, π̂) =
0, where π̂ is a kernel smoother of π given in (3) assuming that the bandwidth
h satisfies nh2d → ∞ and nh2r → 0 and the boundary kernel is applied at the
boundary points. Then under Conditions (A1)-(A4), n1/2(Θ̂PCL − Θ) has an
asymptotic normal distribution with mean zero and asymptotic covariance matrix

G−1(Θ, π){G(Θ, π) + M(Θ, π)}G−t(Θ, π). (7)

A detailed proof of this theorem can be found in Wang and Wang
(1996). We now describe the covariance estimates. Define Gn(Θ̂PCL, π̂) =
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n−1 ∑n
i=1 δiXiX t

i Ĥ
(1)
∗i (Θ̂PCL),

Ĥ∗i(Θ̂PCL) = H
{
Θ̂t

PCLXi + log
π̂(1, Vi)
π̂(0, Vi)

}
, Ŝi(y) = Xi{y − Ĥ∗i(Θ̂PCL)},

Ω̂i(y) =

∑
k∈N(y)

δk

π̂(Yi, Vi)
XkĤ

(1)
∗k (Θ̂PCL)Kh(Vk − Vi)∑

k∈N(y) Kh(Vk − Vi)
,

L̂i(y) = Ω̂i(y) +
π̂(1 − y, Vi)ĝ(1 − y, Vi)

π̂(y, Vi)ĝ(y, Vi)
Ω̂i(1 − y),

ĝ(y, Vi) =
1

nhd

∑
j∈N(y)

Kh(Vj − Vi),

M̂1(Θ̂PCL, π̂) = n−1
n∑

i=1

[
(−1)Yi Ŝi(Yi)π̂(Yi, Vi){1 − π̂(Yi, Vi)}L̂t

i(Yi)
]
,

M̂2(Θ̂PCL, π̂) = n−1
n∑

i=1

[
π̂(Yi, Vi){1 − π̂(Yi, Vi)}L̂i(Yi)L̂t

i(Yi)
]
,

M̂(Θ̂PCL, π̂) = M̂1(Θ̂PCL, π̂) + M̂ t
1(Θ̂PCL, π̂) + M̂2(Θ̂PCL, π̂).

Then a consistent estimator of the covariance matrix of n1/2(Θ̂PCL − Θ) is

G−1
n (Θ̂PCL, π̂){Gn(Θ̂PCL, π̂) + M̂(Θ̂PCL, π̂)}G−t

n (Θ̂PCL, π̂).

3. Mean-Score Method

3.1. Introduction

When the missingness process does not depend on outcome, Carroll and
Wand (1991) and Pepe and Fleming (1991) proposed semiparametric estimates
of Θ which estimate the likelihood function without modeling the conditional
distribution of X given V . Their estimates may be inconsistent when the se-
lection of X depends on the response Y . When V is discrete, Reilly and Pepe
(1995) generalized Pepe and Fleming’s (1991) method and proposed a mean-score
method for the case that the probability of δi = 1 depends on both Yi and Vi,
i.e., X is MAR. To see their method, first assume that the conditional density of
X given (Y, V ) in the validation is known, then an unbiased estimating equation
is

Φn(Θ) = n−1/2
n∑

i=1

[
δiφ(Yi,Xi, Zi) + (1 − δi)E{φ(Yi,Xi, Zi)|Yi, Vi, δi = 1}

]
= 0,

where φ is the estimating score when all data are observed. In this paper, we
concentrate on the case of logistic regression and hence φ(Yi,Xi, Vi) = Xi{Yi −
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H(ΘtXi)}. The method can be easily extended to other situations. The unbiased-
ness of Φn(Θ) follows because E{δiφ(Yi,Xi, Zi)} = E[π(Yi, Vi)E{φ(Yi,Xi, Zi)
|Yi, Vi, δi =1}] and E[E{φ(Yi,Xi, Zi)|Yi, Vi, δi =1}]=0. Note that E{φ(Yi,Xi, Zi)
|Yi, Vi, δi = 1} = E{φ(Yi,Xi, Zi)|Yi, Vi} since Xi is independent of δi given (Yi, Vi)
for Xi is MAR. Because the conditional density of X given (Y, V ) is unknown in
general, when V is discrete, Reilly and Pepe suggested using Ê{φ(Yi,Xi, Zi)|Yi,
Vi, δi = 1} which takes averages of φ(Yk,Xk, Zk) on the validation data such that
Yk = Yi and Vk = Vi.

When V is continuous, we suggest estimating the conditionally expected
estimating score E{φ(Yi,Xi, Zi)|Yi, Vi} in the nonvalidation data set by using
a kernel smoother based on the validation data. Therefore, the corresponding
estimating equation of the mean-score method is

Φ̂n(Θ)

= n−1/2
n∑

i=1

[
δiφ(Yi,Xi, Zi) + (1 − δi)

∑
k∈N(Yi) δkφ(Yk,Xk, Zk)Kh(Vk − Vi)∑

k∈N(Yi) δkKh(Vk − Vi)

]
= 0 (8)

with the solution Θ̂MS as the mean-score estimate. The basic idea of the method
is to use the score φ(Yi,Xi, Zi) when the data are complete, and use the estimated
score when Xi is missing or mismeasured. Similar idea and calculations may be
extended to surrogate endpoint problems (Pepe, Reilly and Fleming (1994)). The
limit distribution of Θ̂MS is given next.

3.2. The limit distribution

We assume the following conditions.
(B1) For y = 0, 1 and δ = 0, 1, fV |Y =y,δ(v) has the rth continuous derivative a.e.,

and for k = 1, . . . , r, | ∂k

∂vk
fV |Y =y,δ(v)| is bounded a.e.

(B2) E(X1X t
1H

(1)
1 ) exists and is positive definite.

(B3) Let A(Y, V ) = E{X1X t
1H

(1)
1 |(Y, V )}. For y = 0, 1, A(y, v) has the rth

continuous derivative a.e., and for k=1, . . . , r, | ∂k

∂vk
A(y, v)| is bounded a.e.

The following lemma shows the consistency of Θ̂MS.

Lemma 3. Under Conditions (B1)-(B3), if nh2r → 0 and nh2d → ∞, then there
exists a solution Θ̂MS to Φ̂n(Θ) = 0 with probability converging to 1 as n → ∞,
and Θ̂MS → Θ in probability.

Similar to Lemma 2, the asymptotic distribution is based on the linearization

Φ̂n(Θ) = n−1/2
n∑

i=1

[
δiφi + (1 − δi){E(φi|Yi, Vi) + Tni}

]
+ Op(ηn),
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where Tni = {nV Yih
dfV |Y =Yi,δ=1(Vi)}−1 ∑

k∈N(Yi) δkRkiKh(Vk − Vi). For j = 0, 1
define nV j =

∑
k∈N(j) δk as the total number of observations in the valida-

tion data set such that Yk = j, nPj =
∑

k∈N(j)(1 − δk) as the total number
of observations in the nonvalidation data set such that Yk = j. Assume that
for j = 0, 1, nPj/nV j → τj with τj < ∞. Let Rki = φk − E(φi|Yi, Vi) and
R∗

kk = Rkk{fV |Y =Yk,δ=0(Vk)}{fV |Y =Yk,δ=1(Vk)}−1. Under the moment condition

(B2), we define Ψ(Θ) = E[X1X t
1H

(1)
1 ], J1(Θ) = E{π(Y1, V1)(φ1 + τY1R

∗
11)(φ1 +

τY1R
∗
11)

t}, J2(Θ) = E[{1 − π(Y1, V1)}E(φ1|Y1, V1) Et(φ1|Y1, V1)], and J(Θ) =
J1(Θ) + J2(Θ). We now present the asymptotic distribution of the mean-score
estimate for continuous covariates.

Theorem 2. Let the mean-score estimate Θ̂MS be the semiparametric estimate
of Θ solving Φ̂n(Θ) = 0 with the bandwidth h satisfying nh2d → ∞ and nh2r → 0
and the boundary kernel is applied at the boundary points. Then under Conditions
(B1)-(B3), n1/2(Θ̂MS −Θ) has an asymptotic normal distribution with mean zero
and asymptotic covariance matrix Ψ−1(Θ)J(Θ)Ψ−t(Θ).

A detailed proof of this theorem can be found in Wang and Wang (1996).

3.3. Covariance estimation

By some direct calculations, one can show that Ψn(Θ) → Ψ(Θ) in prob.,
where

Ψn(Θ) = n−1
n∑

i=1

[
δiXiX t

i H
(1)
i + (1 − δi)

∑
k∈N(Yi) δkXiX t

i H
(1)
i Kh(Vk − Vi)∑

k∈N(Yi) δkKh(Vk − Vi)

]
.

Hence, by Lemma 3, we have Ψn(Θ̂MS) → Ψ(Θ) in prob. Furthermore,

Ĵ1(Θ̂MS) = n−1
n∑

i=1

δi{φi(Θ̂MS) +
nPYi

nV Yi

R̂∗
ii}{φi(Θ̂MS) +

nPYi

nV Yi

R̂∗
ii}t

→ J1(Θ) in prob.,

where R̂∗
ii = [φi(Θ̂MS) − Ê{φi(Θ̂MS)|Yi, Vi}] f̂V |Y =Yi,δ=0 (Vi)f̂−1

V |Y =Yi,δ=1(Vi),

φi(Θ̂MS) = Xi{Yi − H(Θ̂t
MSXi)}, Ê{φi(Θ̂MS)|Yi, Vi} = {∑k∈N(Yi) δkφk(Θ̂MS)

Kh(Vk − Vi)}{∑k∈N(Yi) δkKh(Vk − Vi)}−1, and f̂V |Y =Yi,δ=0 and f̂V |Y =Yi,δ=1 are
the kernel density estimators of V given the response Yi in the validation and
nonvalidation data, respectively. Finally,

Ĵ2(Θ̂MS) = n−1
n∑

i=1

(1 − δi)Ê{φi(Θ̂MS)|Yi, Vi}[Ê{φi(Θ̂MS)|Yi, Vi}]t

→ J2(Θ) in prob.,
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leading to a consistent estimator Ψ−1
n (Θ̂MS)Ĵ(Θ̂MS)Ψ−t

n (Θ̂MS) for the asymp-
totic covariance matrix cov{n1/2(Θ̂MS − Θ)}, where Ĵ(Θ̂MS) = Ĵ1(Θ̂MS) +
Ĵ2(Θ̂MS).

4. Two-Stage Case-Control Studies

In this section, we investigate the PCL estimator in a two-stage case-control
study.

4.1. Introduction

A case-control (retrospective) study is different from a cohort (prospective)
study in the sampling design. Breslow and Cain (1988) investigated a two-
stage case-control study when V is categorical. They considered the case where
V = W , and the results in their paper may be extended to the setting such that
V = (Zt,W t)t. At the first stage all V ’s are observed for n0 controls and n1 cases,
and at the second stage partial X’s are selected and observed from each stratum
(V = 1, . . . , LV for some LV ). Their approach is similar to the maximum pseudo
conditional likelihood of Hsieh, Manski and McFadden (1985). Schill, Jockel,
Drescher and Timm (1993) generalized the method of Prentice and Pyke (1979)
to the sampling scheme considered by Breslow and Cain (1988). They maximized
two likelihood components jointly, whereas Breslow and Cain maximized a like-
lihood which contains estimated nuisance parameters. We consider continuous
V and therefore the second stage data are based on the selection probabilities
π(y, v). The major difference between this section and previous sections in this
paper is that the first stage sampling is retrospective and hence fixed n0 controls
and n1 cases are obtained in each subpopulation.

4.2. Estimation equations

When there is no measurement error, Prentice and Pyke (1979) showed that
the retrospective likelihood of (Z,X) given Y is

pr∗(z, x|Y = y) = Hy(θ∗0 + θt
1x + θt

2z)(1 − H(θ∗0 + θt
1x + θt

2z))1−ydP ∗
X,Z(x, z)

n

ny
,

where P ∗
X,Z(x, z) is the joint distribution function of (X,Z) under case–control

sampling and θ∗0 is a new intercept. Note that θ0 is not identifiable (Prentice and
Pyke (1979)).

The estimating equation (2) in the two-stage case-control sampling is the
same except for the intercept. Therefore we define Θ = (θ∗0, θt

1, θ
t
2)

t in this section
and Si(y) = Xi(y−H∗i), where H∗i = H[ΘtXi +log{π(1, Vi)/π(0, Vi)}] as before.
Recall that we defined Un(Θ, π) = n−1/2 ∑n

i=1 δiSi(Yi). For the retrospective
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sampling, the unbiasedness holds since

E
{ n∑

i=1

δiSi(Yi)|Ỹ
}

= E
[
E[

n∑
i=1

δiXi{Yi − H∗i}|Ỹ , Ṽ ]|Ỹ
]

= E
[
E[

n∑
i=1

π(Yi, Vi)Xi{Yi − H∗i}|Ỹ , Ṽ ]|Ỹ
]

=
∫ 1∑

y=0

nyπ(y, v)(1, xt, zt)t(y−H∗)
n

ny
Hy(θ∗0+θt

1x+θt
2z){H(θ∗0 + θt

1x + θt
2z)}1−y

dP ∗
X,V (x, v)

= n

∫
(1, xt, zt)t[π(0, v){−H∗}H(θ∗0+θ1x+θ2z) + π(1, v){H∗}H(θ∗0+θ1x+θ2z)]

dP ∗
X,V (x, v) = 0,

where Ỹ = (Y1, . . . , Yn)t, Ṽ = (V1, . . . , Vn)t, P ∗
X,V (x, v) is the marginal distribu-

tion of (X,V ) under the retrospective sampling scheme, H∗ in the above calcula-
tions is defined as H∗i with intercept θ∗0 and (Xi, Vi) = (x, v). The last equation
holds by Lemma 1.

4.3. Covariance estimation

The derivation of the asymptotic covariances is slightly different from that of
the usual prospective sampling. Denote [· · ·] as a repeat of the terms in brackets
immediately proceeding. First we note that

n−1cov{
n∑

i=1

δiSi(Yi)|Ỹ }

=
n0

n
cov[δ1X1{−H∗1}|Y1 = 0] +

n1

n
cov[δ1X1{1 − H∗1}|Y1 = 1]

=
n0

n
E[π(0, V1)X1X t

1H
2
∗1|Y1 = 0] +

n1

n
E[π(1, V1)X1X t

1{1 − H∗1}2|Y1 = 1]

−n0

n
[E{π(0, V1)X1H∗1|Y1=0}][· · ·]t−n1

n
[E{π(1, V1)X1(1−H∗1)|Y1=1}][· · ·]t

= G(Θ, π) − (
n

n0
+

n

n1
)C1C

t
1 + o(1),

where G(Θ, π) is defined in (4) with intercept θ∗0 and C1 =
∫
(1, xt, zt)tπ(0, v)

H∗HdP ∗
X,V (x, v). The last equation follows from Lemma 1.

With some algebra, it can be shown that the retrospective covariance of
n1/2(Θ̂PCL − Θ) is

G−1(Θ, π){G(Θ, π) + M(Θ, π) − (
n

n0
+

n

n1
)C1C

t
1}G−t(Θ, π), (9)

where M(Θ, π) is defined in (6).
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Comparing the retrospective formula (9) and the prospective formula (7) and
using the fact that C1 is the first column of G(Θ, π), we therefore have shown
that the prospective asymptotic covariance is asymptotically correct for θ̂1 and
θ̂2 for the two-stage case-control sampling design. This extends the results of
Prentice and Pyke (1979). As a final remark of this section, we note that the
result fits the general theory of Carroll, Wang and Wang (1995) because the
second stage samples are not stratified on V . This is different from the case
with discrete V , where inference is conditioned on (Ỹ , Ṽ ). Nevertheless, from
the result for continuous V , it appears that the prospective covariance formula is
slightly conservative for the biased sampling design of Breslow and Cain (1988)
when V is discrete.

5. A Simulation Study

In this section, we demonstrate numerical performance of the two estimators
developed in this paper. The first one is a semiparametric PCL estimator which
extends the method of Breslow and Cain since π is estimated by smoothers.
The second is the smoothing mean-score method, which extends the estimate of
Reilly and Pepe (1995) to continuous covariates. We also list the complete-case
analysis and the conditional likelihood estimator of Θ when true π is applied.
The complete-case analysis (Θ̂CC) applies the usual logistic regression to the
validation data {(Yi,Xi) : δi = 1, for i ∈ {1, . . . , n}} only. The conditional
likelihood estimator (Θ̂CL) is the same as the PCL estimator except for using
true π.

In this simulation study, we consider the cases where n = 200 and n =
500, respectively. The covariates X’s were generated from a uniform [−1, 1]
distribution and W = X + σU , where U is from a uniform [−1, 1] distribution
which is independent of X, and σ = .2, σ = 1 were used in Tables 1 and 2,
respectively. The binary response Y was generated by the model pr(Y = 1|X) =
H(θ0 + θ1X), where θ0 = .5 and θ1 = 1. In this study, W is the surrogate for X.
The validation data indicator δi in Tables 1 and 2 was generated by ths selection
probability such that pr(δi = 1|Yi,Wi) = {1 + exp(−Yi − Wi)}−1. On average,
about 63% of the observations are validation data in which X was observed.
The PCL estimator was obtained by applying the uniform kernel function and
the bandwidth h = 2σ̂y,W n−1/3 and h = 4σ̂y,W n−1/3, respectively, to estimate
π(y, v) for y = 0 and y = 1, where σ̂y,W is the sample standard deviation of
W for y = 0 and y = 1. The mean-score estimate was obtained by solving
(8). The bandwidth selection satisfies the conditions in Theorems 1 and 2 and
is a convenient choice. In analyzing real data, it may be helpful to apply some
bandwidth criteria such as the generalized cross validation or the approximate
asymptotic mean integrated square error. We used the local linear smoother
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(Fan (1993)) since it seems to have better finite sample performance. Also, we
set π̂ bounded above a small positive number, say .01. The estimated means
and standard errors were obtained from 500 independent runs. In our experience
this selection works reasonably well numerically. Note that the complete-case
analysis which uses only the validation data has large bias since the selection
probabilities depend on (Y,W ). In the tables “s.e. of θ̂ ” denotes the actual s.e.
approximation using the repeated runs while “mean(s.e.)” is the average value
of repeated estimated s.e. from the derived formulas.

Table 1. Simulation study: X is MAR and the measurement error is small.

h = 2σ̂y,W n−1/3 h = 4σ̂y,W n−1/3

Θ̂CC Θ̂CL Θ̂PCL Θ̂MS Θ̂PCL Θ̂MS

n=200 θ̂0 − θ0 .417 .030 .022 .020 .022 .016
(s.e. of θ̂0’s) (.206) (.206) (.163) (.157) (.161) (.156)
(mean(s.e.)) (.208) (.208) (.164) (.153) (.161) (.151)

95% cov. prob. .472 .946 .952 .942 .956 .944

θ̂1 − θ1 −.204 .017 −.011 −.011 .003 −.057
(s.e. of θ̂1’s) (.387) (.388) (.294) (.286) (.303) (.262)
(mean(s.e.)) (.374) (.378) (.318) (.267) (.314) (.248)

95% cov. prob. .902 .954 .976 .948 .966 .934

n=500 θ̂0 − θ0 .399 .012 .005 .002 .007 .000
(s.e. of θ̂0’s) (.132) (.132) (.098) (.096) (.098) (.096)
(mean(s.e.)) (.130) (.130) (.101) (.096) (.100) (.095)

95% cov. prob. .136 .958 .966 .956 .954 .956

θ̂1 − θ1 −.212 .009 −.003 −.005 −.002 −.004
(s.e. of θ̂1’s) (.227) (.228) (.179) (.167) (.181) (.160)
(mean(s.e.)) (.233) (.234) (.193) (.166) (.192) (.159)

95% cov. prob. .842 .964 .964 .942 .956 .940

Note. Simulation study when Θ = (.5, 1)t. The true π = {1 + exp(−Y −
W )}−1, and on average there are 63% subjects in the validation set. The
surrogates follow the model W = X + σU , where X and U are independent
and uniformly distributed in [−1, 1], and σ = .2. The notation Θ̂CC is for
the estimate of the complete-case analysis, Θ̂PCL for the pseudo conditional
likelihood estimate (using estimated π̂), Θ̂CL for the conditional likelihood
estimate (using true π), and Θ̂MS for the mean-score estimate. There were
500 replications.
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Table 2. Simulation study: X is MAR and the measurement error is large.

h = 2σ̂y,W n−1/3 h = 4σ̂y,W n−1/3

Θ̂CC Θ̂CL Θ̂PCL Θ̂MS Θ̂PCL Θ̂MS

n=200 θ̂0 − θ0 .394 .027 .010 .043 .025 .030
(s.e. of θ̂0’s) (.209) (.208) (.167) (.180) (.164) (.178)
(mean(s.e.)) (.208) (.208) (.169) (.175) (.166) (.171)

95% cov. prob. .506 .946 .956 .940 .958 .946

θ̂1 − θ1 −.174 .018 −.019 .000 .003 −.006
(s.e. of θ̂1’s) (.384) (.385) (.352) (.392) (.348) (.375)
(mean(s.e.)) (.375) (.378) (.361) (.395) (.357) (.376)

95% cov. prob. .910 .952 .958 .966 .964 .956

n=500 θ̂0 − θ0 .379 .013 .004 .012 .010 .005
(s.e. of θ̂0’s) (.133) (.133) (.109) (.114) (.107) (.104)
(mean(s.e.)) (.130) (.130) (.104) (.106) (.103) (.102)

95% cov. prob. .162 .940 .948 .952 .946 .956

θ̂1 − θ1 −.191 .001 −.013 .003 −.007 −.013
(s.e. of θ̂1’s) (.240) (.241) (.220) (.248) (.220) (.219)
(mean(s.e.)) (.233) (.234) (.220) (.272) (.219) (.247)

95% cov. prob. .852 .944 .950 .976 .944 .972

Note. Simulation study when Θ = (.5, 1)t. The true π = {1 + exp(−Y −
W )}−1, and on average there are 63% subjects in the validation set. The
surrogates follow the model W = X + σU , where X and U are independent
and uniformly distributed in [−1, 1], and σ = 1. The notation Θ̂CC is for
the estimate of the complete-case analysis, Θ̂PCL for the pseudo conditional
likelihood estimate (using estimated π̂), Θ̂CL for the conditional likelihood
estimate (using true π), and Θ̂MS for the mean-score estimate. There were
500 replications.

The data in Table 3 were generated similarly to that of Table 1 except
that the validation set was selected by pr(δi = 1|Yi,Wi) = {1 + exp(−Wi)}−1.
There were about 50% subjects with X available. The complete-case analysis in
this case is still valid because the missingness does not depend on the outcome.
However, it is not as efficient as the other two semiparametric methods. Note
that Θ̂CC = Θ̂CL in this case because the “offset” log(π(1, V )/π(0, V )) = 0.
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Table 3. Simulation study: X is MAR and not depending on Y .

h = 2σ̂y,W n−1/3 h = 4σ̂y,W n−1/3

Θ̂CC Θ̂CL Θ̂PCL Θ̂MS Θ̂PCL Θ̂MS

n=200 θ̂0 − θ0 .003 .003 −.011 −.012 .015 .015
(s.e. of θ̂0’s) (.242) (.242) (.162) (.170) (.172) (.163)
(mean(s.e.)) (.224) (.224) (.166) (.159) (.163) (.153)

95% cov. prob. .940 .944 .960 .946 .930 .934

θ̂1 − θ1 .013 .013 −.019 .009 .018 −.043
(s.e. of θ̂1’s) (.412) (.412) (.309) (.349) (.332) (.271)
(mean(s.e.)) (.408) (.408) (.319) (.295) (.313) (.259)

95% cov. prob. .946 .946 .962 .940 .950 .934

n=500 θ̂0 − θ0 .010 .010 .005 .003 .001 −.002
(s.e. of θ̂0’s) (.144) (.144) (.096) (.094) (.103) (.098)
(mean(s.e.)) (.140) (.140) (.103) (.097) (.101) (.096)

95% cov. prob. .952 .952 .966 .958 .944 .942

θ̂1 − θ1 .011 .011 .000 −.003 −.012 −.040
(s.e. of θ̂1’s) (.264) (.264) (.194) (.187) (.187) (.162)
(mean(s.e.)) (.253) (.253) (.194) (.179) (.190) (.167)

95% cov. prob. .952 .952 .956 .940 .962 .946

Note. Simulation study when Θ = (.5, 1)t. The true π = {1 + exp(−W )}−1,
and on average there are 50% subjects in the validation set. The surrogates
follow the model W = X+σU , where X and U are independent and uniformly
distributed in [−1, 1], and σ = .2. The notation Θ̂CC is for the estimate of the
complete-case analysis, Θ̂PCL for the pseudo conditional likelihood estimate
(using estimated π̂), Θ̂CL for the conditional likelihood estimate (using true
π), and Θ̂MS for the mean-score estimate. There were 500 replications.

One might be interested to see the relative efficiency (RE) of the proposed
estimators compared to the information bound under the semiparametric models
(Bickel, Klaassen, Ritov and Wellner (1993), Chapter 4; Robins, Rotnitzky and
Zhao (1994)). One difficulty is that the computations seem to be challenging
given that the covariate data are continuous. Alternatively, we have compared
the maximum likelihood (ML) estimator under an additional model assumption.
As in Blackhurst and Schluchter (1989), we firstly generated Z from uniform
[−1, 1], then generated Y such that pr(Y = 1|Z) = .5. We finally generated
X from normal distribution with mean λ2Y + Z − (1 + .5λ2) and variance λ2.
Note that under this data generating device Y given (X,Z) follows (1) with Θ =
(1, 1,−1). We considered the missing data problem here and no surrogate (W )
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was available. The validation data set was determined by the selection probability
that pr(δi = 1|Yi, Zi) = {1 + exp(−Yi − Zi)}−1. It has about 60% of all the
subjects. The ML estimator based on the above model can be obtained without
intensive numerical calculations such as the EM algorithm. By convention we
define the RE of the PCL estimator with respect to the ML estimator by the
ratio of the variance of the ML estimator over that of the PCL estimator. The
bandwidth h = 4σ̂y,W n−1/3 was used. Figure 1 shows the curves of the RE of
the PCL estimator with respect to the ML estimator over the range of λ from
.2 to 2 for n = 500 based on 500 replications. The curves are for θ0, θ1 and θ2

respectively. We did the RE for 10 equal spaced λ’s first and then estimated
the RE curves by using kernel smoothers. When λ is small, the RE is close to 1
since X values are almost determined by given (Y,Z) values. The RE generally
decreases as λ increases as we would expect. Nevertheless, the RE of the PCL
estimator remains higher than 80% except for λ = 2. When λ = 2, it stands
for the situation where X given Z is the mixture of two quite separated normals
and that is probably the situation in which the semiparametric methods need to
pay a high price for not using the information in the strong additional submodel
assumption of X given Z or X given (Y,Z). In addition, we have also studied
the empirical RE of Θ̂MS , which is very similar to that of Θ̂PCL. Note that since
the ML estimator is efficient in a subclass of the semiparametric models (as in
Robins, Rotnitzky and Zhao (1994)), the RE would be expected to be higher
when the comparison is made with the semiparametric information bound.
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Figure 1. The efficiency of Θ̂PCL relative to the parametric MLE
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From the empirical results, we have the following summary:
(i) Both bandwidth selections h = 2σ̂y,W n−1/3 and h = 4σ̂y,W n−1/3 perform

equally well for Θ̂PCL. However, for Θ̂MS, using h = 4σ̂y,W n−1/3 seems to
yield slightly higher efficiency.

(ii) Θ̂PCL is more efficient than Θ̂CL. This phenomenon is quite usual, namely,
plugging in estimated selection probabilities is better than using the true
values even if we know the true values.

(iii) When measurement error is small (σ = .2), Θ̂MS has higher efficiency; while
Θ̂PCL is superior when the measurement error is large (σ = 1) and n = 200.
They have about the same efficiency when n = 500 and σ = 1.

(iv) When X given (Y,Z) is modeled perfectly, the semiparametric estimator
Θ̂PCL still remains competitive with reasonable RE with respect to the ML
estimator.

6. Concluding Remarks

We have proposed two methods for both prospective and retrospective lo-
gistic regression when covariates are continuous. They are not restricted to two-
stage design. For example, they are useful for missing covariates problems also.
The PCL method is useful only for logistic regression, while the MS estimator
can be applied to general semiparametric models. The bandwidth conditions
require that the order r of the kernel function K is greater than the dimension d

of (Z,W ). For the pseudo conditional likelihood estimator, one solution to this
problem is to assume that the selection probability π depends only on a linear
combination B = γ1Y + γt

2V for some (γ1, γ
t
2). For the mean-score method, we

may consider the extension of the dimension reduction methodology of Carroll,
Knickerbocker and Wang (1995). More generally, we may consider the general-
ized additive model (Hastie and Tibshirani (1986)), or the generalized partially
linear single-index models (Carroll, Fan, Gijbels and Wand (1995)) to estimate
the selection probabilities (πi) and the mean scores (E{φ|Yi, Vi}). Nevertheless,
parametric modeling of the unknown conditional distributions may also be a sen-
sible approach when there is a large number of potentially relevant covariates.

In addition to the methods we described, simple imputation in logistic re-
gression has been proposed in the literature. For example, Rosner, Willett and
Spiegelman (1989) and Sepanski, Knickerbocker and Carroll (1994) considered
the case when the validation data set is random. When X is MAR, in addi-
tion to the methods described in the previous sections, we may apply weighted
estimating equations (see, for example, Flanders and Greenland (1991), Zhao
and Lipsitz (1992)). Wang, Wang, Zhao and Ou (1997) extend it to continuous
covariates. To gain efficiency, the smoothing techniques of this paper may be ex-
tended to Robins, Rotnitzky and Zhao (1994) in principle, but the calculations



LOGISTIC MEASUREMENT ERROR REGRESSION 1119

and computations may be very intensive. On the other hand, the findings from
our simulations show that the relative efficiency of the PCL or MS estimator is
reasonably high compared to the ML estimator given the data are perfectly mod-
eled. In summary, the proposed semiparametric methods appear to be versatile,
likely to be of use in practice.
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