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Abstract: During the course of a fixed sample size clinical trial, differences in the

size of the treatment effect between strata may become pronounced. If rejecting the
null hypothesis of no treatment effect is of paramount concern, it may make sense

to increase representation of the more responsive stratum to increase power of the
trial. Additionally, strata in which treatment is harmful may need to be dropped

for ethical reasons. This paper provides conditions under which such adaptation

does not affect the type I error rate. The change in power resulting from adaptation
under various strategies is investigated. Frequentist and Bayesian approaches to

decision making are explored and a simulation is used to provide guidelines as to

whether stratum proportions should be altered. A clinical trial with an early and
substantial between stratum difference is reanalyzed under adaptation.
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1. Introduction

In clinical trials, there will sometimes be differential response to the treat-
ment for subgroups or strata of patients. Sicker patients may respond more than
healthier patients or certain prognostic variables may identify responders. Such
heterogeneity may be desirable in that the results of the trial will be generalizable
to a wide class of patients. At times, however, interest may focus on finding any
group for which treatment works. Trials that “screen” treatments or trials for
regulatory purposes, where the emphasis is on rejecting the null hypothesis for
some group of patients, are settings where wide generalizability of the study may
be of secondary interest.

If during the course of a fixed sample size trial substantial differences in
response between strata become apparent, it may be tempting to quit random-
izing patients from unresponsive strata and only randomize in the responsive
strata. Intuitively, if we can accurately identify responsive and unresponsive
strata midway through the trial, and subsequently randomize only from the “re-
sponsive” subgroups, then we should have a more powerful trial. Another reason
for dropping a stratum occurs when the treatment shows substantial harm (see
e.g. Coronary Drug Project Group (1981)).
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Our interest in this area was spawned by the Prevention and Treatment of
Hypertension Study (PATHS) study (Cushman et al. (1994)). Briefly, moderate
drinkers were randomized to a control group or were counseled to reduce alco-
hol consumption. Two strata, 80-89 mm Hg and 90-99 mm Hg diastolic blood
pressure, were specified during the design with a goal of at least 45% of the total
sample size coming from the upper stratum. Early on in the study, the goal
for the upper stratum was not being met and the screening criterion was mod-
ified with a net effect of reducing representation from the lower stratum. The
screen modification was made after stratum specific estimates of treatment ef-
fect were known to some members of the executive committee. We were worried
that changing the stratum proportions based on trial data held the potential for
inflating the type I error rate.

This paper explores adaptively changing stratum proportions during the
course of a clinical trial. We give two different conditions under which the type
I error rate is not affected by adaptation. One condition requires that, on the
null hypothesis, all the observations are i.i.d. (so that the stratum labels are sta-
tistically meaningless) and that we use an unstratified test. Another sufficient
condition holds if we use a stratified test statistic and assume that observations
are i.i.d. within each stratum on the null hypothesis. If we base our adaptation
solely on the between stratum difference in treatment effect, and this estimated
difference is independent of the final test statistic, the type I error is unaffected.
Such independence occurs when the difference and stratified test statistic have
normal distributions.

We also consider the power of the adaptive approach as a function of the stra-
tum specific treatment effects and the proportion allocated to the first stratum
and investigate when adaptation is more powerful than a static trial. Since the
true treatment effects will be unknown in practice, we also provide a Bayesian
formulation of the problem. We evaluate the distribution of the expected in-
crease in the test statistic following adaptation relative to no adaptation, using
a conjugate prior for the difference in stratum specific treatment effects. This
approach, under a noninformative prior, corresponds to the frequentist approach
of monitoring the test of interaction using Pocock’s (Pocock (1977)) boundary.
We evaluate the power of several decision rules based on this criterion, provide
an example and discuss practical issues concerning implementation.

2. Protection of the Type I Error

2.1. Homogeneity null hypothesis

Suppose that we have a two-armed clinical trial with two strata, and a fixed
total sample of size n. For each individual we obtain a normally distributed
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endpoint X, a treatment indicator Z which is 1 (0) for the “active” (“control”)
arm, and a stratum indicator S which is 1 or 0. At the conclusion of the study,
our data consists of X = (X1, . . . ,Xn), Z = (Z1, . . . , Zn), and S = (S1, . . . , Sn).

We want to look at our data midway through the trial, after a proportion
p = m/n patients have been randomized (phase 1), with an eye toward changing
the allocation proportions amongst strata for the remainder of the trial (phase
2). We define S̄1 =

∑m
i=1 Si/m and S̄2 =

∑n
i=m+1 Si/(n−m), S1 = (S1, . . . , Sm),

and S2 = (Sm+1, . . . , Sn). Under this setup, S̄1 should be close to the population
proportion of people from stratum 1, with S̄2 being quite different from S̄1 if
an adaptation is made. At times an experimenter may select S̄2 to be 0 or 1
for reasons of ethics or power. Throughout we will assume equal randomization
between arms at the end of each phase and will treat the Zs as fixed constants.

Under a homogeneity null hypothesis we assume that the stratum label is
statistically meaningless and that treatment has no effect. Thus the Xis are
i.i.d. normal and we have

Ho
0 : (δ0, δ1) = (0, 0) σ2

0 = σ2
1 = σ2,

where δs = E(Xi|Z = 1, Si = s) − E(Xi|Z = 0, Si = s) is the treatment effect in
stratum s, and σ2

s = Var(Xi|Si = s). Without loss, we assume that E(Xi|Zi =
0, Si = s) = 0, that σ2

s is known and define ∆ = δ1 − δ0.
The usual test for this setting is the difference in means:

Tu(X,Z) =
∑

[XiZi − Xi(1 − Zi)]√
nσ2

. (1)

Note that Tu(X,Z) is free of the stratum labels. Thus we can set S̄2 equal
to what we want for whatever reason we want based on the first phase data
without affect on the null distribution. Further note that this argument does not
make distributional assumptions about X so that any test statistic that is only
a function of Tu(X,Z) will be unaffected by choosing S̄2 based on any function
of the first phase data. Also note that the same argument applies to multiple
strata.

2.2. Heterogeneity null hypothesis

Suppose that the distributional assumptions of the previous section hold
except that the variance of the response depends on the stratum. This defines a
heterogeneity null hypothesis:

He
0 : (δ0, δ1) = (0, 0) σ2

0 �= σ2
1.
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Let Ds denote the estimate of treatment effect in stratum s at the end of the
study. In other words, Ds is the treatment less control difference in the sample
means of X for stratum s. Under He

0 , Ds is normally distributed with mean 0
and variance Vs = Var(Ds).

The stratified test statistic for this setting (see e.g. Fleiss (1986), Chap. 6)
is the weighted sum of the within stratum estimates of treatment effect:

Ts(X,Z, S) =
D0/V0 + D1/V1√

1/V0 + 1/V1
. (2)

Note that Ts depends on S, unlike Tu. If S can be treated as a vector of con-
stants, as is typically done, the distribution of Ts|S is standard normal. If S is
determined by some random mechanism which is independent of Ts then Ts|S
is still standard normal under He

0 . Thus we can change the distribution of S2

based on first phase data and use the usual null distribution as long as Ts and S

remain independent.
A natural function of the first phase data to consider is the difference in

the stratum specific estimates of the treatment effect or ∆̂ = D1(m) − D0(m),
where Ds(m) is the estimate for the sth stratum after m total subjects have been
evaluated. It can be shown that ∆̂ and Ts(X,Z, S) have covariance 0, under He

0 ,
and hence are independent since they are jointly normal. Note that ∆̂/σ(∆̂) is
also independent of Ts(X,Z, S), where σ(∆̂) is the standard deviation of ∆̂.

The following argument shows how using a function of the first phase data
not independent of the final test statistic can inflate the type I error. Suppose
that m << n, σ2

0 ≈ 0 and σ2
1/n ≈ ∞. If the test based on the first m patients

is “significant” (using a standard normal reference distribution) at level α, we
then choose S̄2 = 1 so that the remaining n − m patients are from stratum
1. Because these patients have such a large variance, the test statistic at the
end of the study is essentially the same as the test statistic at the end of the
first phase and thus significant. If the first phase test statistic is not significant
which happens with probabilitiy 1 − α, we choose S̄2 = 0, so that we obtain
n − m additional patients, each with a small variance. Since m << n the final
test statistic is virtually independent of the first phase test statistic and our
chance of rejection here is close to α. Thus our overall chance of rejection is
approximately α + α(1 − α).

If there are more than two strata, we can change strata proportions without
affecting the type I error if our decision to modify strata is based on data that is
independent of the final test statistic. As an example, suppose the final stratified
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test statistic involves K multiple strata,

Ts =
D1/V1 + · · · + DK/VK√

1/V1 + · · · + 1/VK
,

where Dj , Vj are the estimated treatment effect, and its variance in stratum j

based on all the data. It can be shown that, under a heterogeneity null hypothesis,
Ts has 0 covariance with Dk−D̄ and hence Ts is independent of D1−D̄, . . . ,DK−
D̄. It follows that if we choose the stratum with the largest mean based on m < n

patients, the type I error is not affected. Similarly, we could drop strata with the
lowest means.

The argument for non-inflation of the type I error is extended to a wide class
of test statistics in the appendix.

3. Adaptive Power by Monitoring the Test of Interaction

While one can adaptively modify the allocation proportions between strata
during the course of a clinical trial without inflating the type I error rate, static
trials also do not inflate the type I error rate. The results of the previous section
provide reassurance concerning the potential for subtle bias as in the PATHS
example. However they can also be used to justify adaptation chosen explicitly
to increase power. Intuitively, adaptation should result in increased power if
there is a large difference in response between strata, and if we are likely to
correctly identify the stratum with the larger response. In this section we evaluate
power under a few simple adaptive strategies where we allow ourselves a single
adaptation. Our strategies are based on monitoring the test of treatment by
strata interaction.

For simplicity, we evaluate a clinical trial under the distributional assump-
tions of the previous section with homogeneous variance σ2. At the end of the
study, we use the unstratified test statistic (1). The first phase between stra-
tum difference ∆̂ has a normal distribution with mean ∆ and variance σ2(∆̂) =
4σ2/[nps̄1(1− s̄1)]. The treatment by stratum test of interaction has test statistic
∆̂/σ(∆̂).

For illustration, we consider the adaptive procedure where we stop random-
izing to a stratum if the first phase interaction test is large enough. We will
call this extreme adaptation adaptive exclusion. If an adaptation is not made we
choose S̄2 = s̄1, a fixed constant. Our decision rule can thus be written as

S̄2 =




0, if ∆̂ < −c σ(∆̂),
s̄1, if |∆̂| ≤ c σ(∆̂),
1, if ∆̂ > c σ(∆̂).
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Given S̄2, (and the constant s̄1), the unstratified test statistic based on all
the data has a normal distribution with variance 1 and mean given below:

2
√

nE(Tu(X,Z)|S̄2) =




m[δ1s̄1 + δ0(1 − s̄1)] + (n − m)δ0, if S̄2 = 0,
n[δ1s̄1 + δ0(1 − s̄1)], if S̄2 = s̄1,
m[δ1s̄1 + δ0(1 − s̄1)] + (n − m)δ1, if S̄2 = 1.

Thus the overall power of a procedure that allows adaptation is

Pow(δ0, δ1,m, c) =
∑

S̄2

P (Tu(X,Z) > 1.96|S̄2)P (S̄2).

To evaluate power, we imagined planning a trial under the assumption that
δ0 = δ1 = δ and n was chosen to yield 80 percent power. We wanted to evaluate
the power if in fact (δ0, δ1) = (0, δ). While this is a fairly large departure from
δ0 = δ1 = δ, it is useful for illustration. Less dramatic departures should have
proportionally smaller effects. We consider three different first phase allocation
proportions of s̄1 = .2, .5, and .8, and let c = 0 or 2. Note that if δ0 = δ1 then no
matter when we look or what decision we make, power is unaffected, so changing
allocation proportions cannot compromise power here.

Figure 1 graphs the power for the three allocation proportions for c = 0
and 2 as a function of p = m/n. Thus the power at the extreme right of each
curve corresponds to an unadaptive design. First note that when the allocation
proportion is either .2 or .5 we substantially increase power with adaptation using
a c = 0 decision rule, with the best time to make a decision fairly early in the
study. A large gain is possible when s̄1 = .2 since with no adaptation, most
patients will come from the stratum with the smaller treatment effect.

With an allocation proportion of .8, however, the c = 0 decision rule loses
power. The reason is that with a static trial, 80% of the patients will end up
in the stratum with the largest treatment effect. Furthermore, if we make a
decision early, there is a larger chance that we will choose the stratum with no
effect and substantially reduce power. Thus there is relatively little improvement
and moderate harm possible with adaptive exclusion in this setting. For all s̄1,
the c = 2 decision rule is similar to no adaptation.

Figure 2 graphs the power for a c = 0 decision rule where we show the effect
of four (δ0, δ1)s subject to δ0 + δ1 = .5 with s̄1 = .5. For these parameters, it is
apparent that looking too early may compromise power and that the best time
to look is about midway through the trial. With only moderate departures from
δ0 = δ1, there is relatively little benefit if we solely base our decision rule on
within trial data.
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Figure 1. Power of a single look adaptive procedure as a function of when we
look. We randomize only from the stratum with the larger observed mean
if the between stratum difference in treatment effects (∆̂) exceeds cσ(∆̂) in
absolute value, where c = 0 (solid curve) or c = 2 (dashed curve). The
standardized treatment effects in the two strata are (0, .28) for all three
figures with first phase allocation proportions s̄1 for the δ1 = .28 stratum
going from .2 to .5 to .8 (top to bottom).
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Figure 2. Power of a single look adaptive procedure as a function of when we
drop the stratum with the smaller observed treatment effect. Standardized
treatment effects in the two strata are (.50,.0), (.4,.1), (.3,.2), and (.25,.25),
going from the top curve to the bottom curve.

4. Bayesian Formulation

The approach of the previous section makes the decision to drop a stratum
solely on the trial data. If information concerning δ0, δ1 is available, incorpo-
rating it should give us more powerful decisions earlier. In particular, gains in
power larger than those presented in the figures are possible. Such considera-
tions lead naturally to a Bayesian approach to the problem. We choose a simple
formulation—we assume that we are conducting a trial, that a proportion p of
the patients have been randomized, and we are trying to decide whether or not
to adapt at this single point. We are interested in testing Ho

0 and will use the
unstratified test at the end of the study. We make the distributional assumptions
of the previous section and assume that σ2 is known and ∆ is unknown.

To describe the uncertainty about ∆, we use a conjugate prior. At the start
of the trial, we assume that knowledge about ∆ can be described by a normal
distribution with mean d and variance τ2. At the end of the first phase, ∆̂
summarizes the trial information about ∆. The posterior distribution of ∆ is
normal with mean and variance

d/τ2 + ∆̂/σ2(∆̂)
1/τ2 + 1/σ2(∆̂)

,
1

1/τ2 + 1/σ2(∆̂)
,
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respectively (DeGroot (1970), Chap. 9).
A natural way to quantify the potential gain following adaptation is to cal-

culate the difference in the expected values of the test statistics for adaptation
and a static trial. If we fail to adapt, we assume that the second phase stratum
proportions will be about the same as the first phase, thus the expected gain is

U∆(s̄1, S) = E(Tu(X,Z)|S̄1 = s̄1, S̄2 = S) − E(Tu(X,Z)|S̄1 = s̄1, S̄2 = s̄1)

which reduces to

U∆(s̄1, S) =
n[(1 − p)(S − s̄1)]

2σ
∆. (3)

To aid in deciding on whether or not to adapt, we suggest calculating the
posterior probability that choosing stratum S for the remainder of the study
results in a larger test statistic (in expectation) than a static trial:

P (U∆(θ, S) > 0) = P (a(S)∆ > 0) = Φ̄(−sgn[a(S)]E(∆)/σ(∆)), (4)

where a(S) = (n[(1 − p)(S − s̄1)])/(2σ) and E(∆), σ(∆) are the posterior mean
and standard deviation of ∆. If (4) is large, one would be inclined to drop the
inferior stratum.

Note that if a noninformative prior is used, monitoring based on (4) is equiv-
alent to monitoring with the test of interaction, because in this case E(∆)/σ(∆)
= ∆̂/σ(∆̂), and Φ̄(z) is a monotone function of z. Specifically, the inferior stra-
tum is dropped if |∆̂/σ(∆̂)| exceeds c = Φ̄−1(η). This can be viewed as applying
Pocock’s method (Pocock (1977)) for monitoring the test of efficacy to monitoring
the test of interaction. Of course, the purpose here is much different.

While a prior on ∆ may be difficult to specify, a noninformative prior on
∆ will tend to encourage early dropping of a stratum relative to a proper prior
with d = 0 and τ2 finite. Noninformative priors should be evaluated with this
in mind. In general, we recommend using a few priors that bracket the range of
plausibility for ∆ and only dropping a stratum if this decision is robust to prior
specification.

If we use a stratified test statistic to test He
0 with normal data (3) can still be

used, say with σ being some combination of σ0, σ1. Since (3) depends only on the
unknown parameter ∆, we can update our prior for ∆ using the first phase data
only through ∆̂. Thus we need not worry about type I error inflation here either.
Unfortunately, (3) does not equal E(Ts(X,Z, S)|s̄1, S) − E(Ts(X,Z, S)|s̄1, s̄1)
and cannot be interpreted as an expected increase in the test statistic. The
difference E(Ts(X,Z, S)|s̄1, S) − E(Ts(X,Z, S)|s̄1, s̄1) involves both δ0 and δ1.
If priors for both δ0 and δ1 are updated using first phase data from the study,
there is the potential for type I error inflation.
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While, strictly speaking, our formulation has been for a single examination
of the data, it can be readily generalized to multiple examinations. At any point,
no matter how many times we have updated before, we can calculate an updated
posterior and apply (4) to decide whether to adapt. The timing of the multiple
examinations, however, needs to be considered. Most large clinical trials are
formally monitored, primarily for safety and efficacy, on a few discrete occasions
roughly evenly spaced during followup. We would recommend that adaptation
decisions be made at these times as well. In particular, we would generally
recommend that a decision to drop a stratum be made by the time the study is
halfway through, that we should not modify stratum accrual until a decision to
drop is made, and that only a few looks should be made. In most applications,
examining the data on a few occasions (say after n/4 and n/2 subjects) should be
adequate, and adaptation after more than half the patients have been randomized
would not be worth the bother. This recommendation also ensures that losses
in power based on very early adaptation, as illustrated in the figures, will be
avoided.

5. Simulation of Adaptive Power

To evaluate the performance of a clinical trial that allows for adaptation,
we conducted a small simulation. We imagined a clincal trial where analysis
occurs after each quarter of the sample has been evaluated. We make the homo-
geneity distributional assumptions of the previous section, and only record the
treatment less control difference in means for each strata over the four phases of
the study. We have two strata, 0 and 1, which occur with probability (1 − θ)
and θ, respectively. We imagine a large study and take 8σ2/N = 1 for simplic-
ity. We thus generate Ys� from a normal distribution with mean δs and variance
2/[sθ + (1− s)(1− θ)] where s = 0, 1, and � = 1, 2, 3, 4. These correspond to the
means over the four phases for a study with no adaptation where s̄1 = s̄2 = θ.

We allow for adaptation after 1/4 or 1/2 of the data are evaluated so we also
generate Y ∗

s�, from a normal distribution with mean δs and variance 2 for s = 0, 1
and � = 2, 3, 4. Thus if we adapt to stratum s at look 1, the data for our clinical
trial consists of Y01, Y11, Y

∗
s2, Y

∗
s3, Y

∗
s4.

Our decision rule is to choose stratum S for the remainder of the study if

P (U∆(θ, S) > 0) = Φ̄(−sgn[a(S)]E(∆)/σ(∆)) > η

for η ≥ .5, where E(∆), σ(∆) are the current posterior mean and standard devia-
tion. This allows for a rich class of possible decision rules. For example, if η = .5,
we adapt to the stratum with the larger mean at look 1. Increasing values of η

specify greater assurance that the adaptation will be beneficial.
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We considered various combinations of δ0, δ1 and θ and evaluated different
decision rules as specified by η. For each scenario 10,000 clinical trials were
evaluated. We specified a true ∆ and chose δ1, δ0 so that a static trial with the
stratum 1 proportion fixed at θ would have power = .50. We specified the prior
variance as a fraction f of the sampling variance of ∆̂ we would obtain in a study
without adaptation, thus τ2 = fσ2(∆̂). We assumed the prior mean to be 0 and
took f large so that the prior is essentially noninformative. A noninformative
prior is interesting because the performance of adaptation would likely be better
with an informative prior not centered at 0. Additionally, a noninformative prior
corresponds to the frequentist strategy of monitoring the test of interaction.

Table 1. Evaluation of a Bayesian strategy for adaptive exclusion under
a noninformative prior. Strategy is equivalent to frequentist monitoring of
the test of interaction with a Pocock-type boundary. The inferior stratum is
dropped if the probability that adaptation will result in a larger test statistic
is larger than η. Adaptation is allowed to occur after 1/4 or 1/2 of the
patients have been evaluated. A static trial has power .50 for all settings.

True Power
∆ θ η Overall Given Adaptation P(adapt)
1 .2 .5 .65 .65 1.00

.8 .61 .67 .60

.9 .50 .71 .04

1 .5 .5 .56 .56 1.00
.8 .55 .59 .61
.9 .50 .66 .05

1 .8 .5 .43 .43 1.00
.8 .48 .46 .59
.9 .51 .55 .04

3 .2 .5 .85 .85 1.00
.8 .82 .93 .76
.9 .57 .96 .15

3 .5 .5 .82 .82 1.00
.8 .81 .89 .82
.9 .58 .86 .24

3 .8 .5 .60 .60 1.00
.8 .63 .67 .77
.9 .53 .66 .15

Table 1 presents the results. For each pair (∆, θ), three adaptation strategies
(η = .5, .8, and .9) are presented. Recall that for a static trial, power would be



1096 DEAN FOLLMANN

.50. Another benchmark corresponds to η = .5 where we always adapt to the
stratum with the larger mean at the first look. The power decreases as θ goes
from .2 to .5 to .8, i.e. the stratum with the larger mean goes from rare to
common. The probability of adaptation is larger for larger ∆ and smaller for
larger η.

The use of η = .5, which makes it easy to adapt, results in larger gains in
overall power when θ = .2 than other strategies, but larger losses in overall power
when θ = .8. In particular, for ∆ = 1, use of η = .5 gives power of .43. Since
no adaptation gives power of .50, this strategy can result in a nontrivial loss of
power. For η = .8 or .9, the overall power is essentially unchanged. The use of
η = .9 results in power which is closest to .5 for all scenarios, thus η = .9 is best
if one is risk averse.

We imagine that adaptation will often not be planned at the start of a clini-
cal trial, but might be considered if there were strong evidence that there was a
difference between the two strata. It seems that typically one would only want
to adapt if one were quite certain that adaptation would result in substantially
greater power. If so, the power given that an adaptation occured is particularly
interesting. The conditional power increases with η while the frequency of adap-
tation decreases. If one wanted to adapt rarely and only if one were quite sure
it would be beneficial, use of η = .9 is best.

In passing, we note that if ∆ is zero, power is .50 for all strategies. The
probability of switching was simulated at 1.00, .17, and .03 for η = .5, .8, .9
respectively. Thus η = .9 would result in quite infrequent adaptations if in fact
∆ were 0.

We also evaluated power based on an informative prior centered at 0 with
f = 1. For η = .5 and η = .9 the results was, respectively, identical and very
similar. For η = .8 the informative prior resulted in adaptation about half as
often, similar conditional power, and thus overall powers closer to .50 than with
the uninformative prior. Presumably, for informative priors centered away from
0, the power under an adaptive strategy should be larger than that of Table 1.

6. Example

A recent 2 period crossover clinical trial was undertaken to test the efficacy
of a new drug in reducing epileptic seizures. Patients needed to have a history
of simple partial or complex partial seizures to be enrolled. An initial baseline
period of 8 weeks was followed by active and control periods, each lasting 11
weeks. To allow for the drug to reach its full effect, in our analysis seizures are
counted only during the last 8 weeks of each period. Randomization was stratified
by whether (s = 1) or not (s = 0) patients had a history of secondarily generalized
tonic-clinic (GTC) seizures. There was felt to be a possibility of differential
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treatment effect between strata. A total of 56 patients were randomized and
finished the study, 22 of whom were from stratum 1.

As primary endpoint we take truncated relative change:

R =
# Seizures during control phase − # Seizures during active phase

# Seizures during baseline phase
.

We truncate R at +1 or −1 if |R| exceeds 1 and denote the truncated endpoint
by X. We treat the X’s as being i.i.d. from some distribution and use the
standardized unstratified mean of X as our test statistic: Tu(X) = X̄/σ(X̄).
Tu(X) is a one sample paired difference test with known variance. For simplicity,
we treat the final sample variance .1895 as the known value for σ2 = Var(X).
We treat X̄ as being approximately normal throughout our illustration. We are
interested in testing the homogeneity null hypothesis:

H0
0 : (δ0, δ1) = (0, 0) σ2

0 = σ2
1 = σ2,

where δs = E(X|S = s), and σ2
s = Var(X|S = s).

After 1/4 of the patients had been evaluated (7 from each stratum), the
estimates of treatment effect were .205 for patients with a history of GTC seizures
and -.236 for patients without a history of GTC seizures. Thus there was a
substantial difference between the two strata. The test of interaction gives a
value of 1.90. Based on frequentist criteria, adaptation to S = 1 seems worth
considering.

To apply the Bayesian method, we specify a prior distribution for ∆ that
is normal with mean zero and consider three prior variances equal to .1,1, and
10 times the variance of the estimate of ∆ that will be obtained at the end of
the study. That is, τ2 = .1895(1/34 + 1/22)f , with f = .1, 1, 10. Thus f = 10
can be loosely interpreted that what we know about ∆ before the study is 1/10
of what we will know about ∆ following the experiment. To aid in deciding on
whether or not to adapt, we form U∆(s̄1, S) = E(Tu(X)|s̄1, S)−E(Tu(X)|s̄1, s̄1),
and calculate P (U∆(s̄1, S) > 0) using the current posterior distribution for ∆.
This reduces to the RHS of (4).

Table 2 reports the expected increase in the test statistic under the three
different priors. For f = .1, the probablity of a larger mean under adaptation
is only slightly larger than .5. Note that the probability of a larger mean after
choosing the inferior stratum is .48. Thus if we are fairly certain that the true
∆ is zero it does not matter which stratum we choose and thus we would want
to continue randomizing to both arms. If we are less certain that the true ∆ is
zero (e.g. f = 1 or 10) adapation seems attractive. In passing, we note that for
a noninformative prior, the probability of a larger mean after adaptation is .84.
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Table 2. The posterior probability that the final test statistic will have a
larger mean under adaptation relative to a static trial, The posterior distri-
bution is based on 1/4 of the data. The prior variance is f times the variance
of the estimate of ∆ based solely on trial data at the end of the study.

Prior Moments Posterior Moments Posterior
d f E(∆) σ2(∆) P (U∆(s̄1, S = 1) > 0)
0 .1 .011 .037 .52
0 1 .092 .106 .61
0 10 .320 .193 .77

Based on these probabilities, one might have decided to only randomize
patients without a history of GTCs after 1/4 of the trial patients had been
evaluated. How would the study have turned out with this adaptation? Because
no adaptation was undertaken, we pretend that the second phase estimate of the
treatment effect in the GTC stratum of .286 was based on 49 patients rather
than 15 patients. Our guess as to the test statistic in an adaptive trial is thus
((.205− .236)×7+ .286×49)/

√
56(.1859) = 4.27. The actual test statistic based

on no adaptation was 3.22. Thus, in this trial adaptation could have resulted in
a substantially stronger conclusion being drawn, albeit for a different population
of patients.

7. Discussion

At the simplest level, this paper has given conditions under which we need
not worry about inflating the type I error when we adaptively change stratum
proportions. The PATHS study discussed in the introduction could vigorously
attempt to achieve a stratum goal without fear of type I error inflation even
though the extent of vigor might have been influenced by early knowledge of
stratum-specific treatment effects. Hypothetically, one might discover that a
treatment was harmful to patients in one stratum and helpful to patients in the
other stratum. While ethically bound to discontinue the trial in the inferior
stratum, one could finish the trial in the other stratum without afffecting the
type I error rate.

More ambitiously, this paper has provided a framework to evaluate where an
underpowered study may be modified to increase power. Such adaptation should
be appealing in the early stages of treatment evaluation when relatively little is
known about which groups of patients would benefit. The adavantages should
be most pronouced if one observes a substantial difference between strata and
the trial has poor power unless the trial is changed. At times, it may offer a
way to salvage trials that would otherwise be compromised due to heterogenous
response across strata.
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While our discussion has focused on the setting with two strata, the basic
idea remains the same for multiple strata. Of course, looking at the treatment
effects from many strata midway through the trial makes it more likely that one
stratum will seem to be substantially better than the others. This could affect
the power of the procedure.

Our Bayesian approach to dynamically changing allocation probablities to
increase power is quite similar to the Bayesian approach to adaptively chang-
ing randomization probabilities to the treatment and control arms so that most
patients get randomized to the superior arm. Papers that have explored chang-
ing randomization probabilties include Anscombe (1963), Colton (1963), Zelen
(1969), and Cornfield, Halperin and Greenhouse (1969). More generally, adap-
tive exclusion can be viewed as a type of two-armed bandit problem (see e.g.
Berry and Fristedt (1985)). The more elaborate approach of Cornfield et al can
be readily applied to our setting. Under their formulation one is allowed a single
look at any time during the trial. The expectation of the final test statistic is
then maximized as a function of p, and s̄1, s̄2.

In practice, changing the stratum proportions may cause logisitical or ad-
ministrative difficulties. In such settings the most that may be possible is to
aggressively pursue patients from the apparently superior stratum to enroll in
the study. Patients from the apparently inferior stratum would not be so vig-
orously recruited. Such an adaptation should improve power, though not as
substantially as when one drops the stratum with the poorer observed response.

The issue of generalizability of the study is of some concern. The stratum
proportions have been chosen adaptively and some may find it unappealing to
condition on the stratum proportions and pretend that no adaptation took place.
However, in any clinical trial with a significant result, it would be hard to argue
that there is no evidence of effect in the subgroup with the largest observed
effect. Thus at the worst, the results of the study should be generalizable to the
adaptively chosen subgroup. Under this view, our formulation can be viewed as
a simple way to correct for the type I error inflation that would result if we only
included the chosen subgroup.

Adaptive exclusion trials are similar in spirit to enrichment designs, where
prior to randomization, patients who are likely to show a response are identified
and then randomzied. Temple (1994) argues that enrichment designs can be
useful in the initial stages of drug development when the “first task is to find any
group in which the drug can be shown to work”. He also feels that concern over
generalizability of such “early” studies may be overstated.

Additionally, adaptive exclusion trials can be viewed as consistent with the
“uncertainty principle” approach to randomization (Byar et al. (1990)). Under
the uncertainty principle, if a clinician or patient feels that one of the arms would
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be definitely inferior, the patient is not randomized. In slightly different terms,
one can imagine that each clinician is adaptively modifying inclusion criteria to
exclude strata for which randomization is felt to be unethical. Adaptive exclusion
dynamically modifies inclusion criteria, but the decision is made for the entire
trial and on the basis of within trial data. Proponents of the uncertainty principle
can ensure that the type I error rate will not be affected by judiciously choosing
what interim data to release to clinicians.

It is important to recognize that dropping a stratum need not imply that
there is convincing evidence of a true difference between strata. An analogy
should make the point. Suppose that one had to make bets on whether a coin
would turn up heads based on the sequence HHHTHTHTHHT and no other
information. A test of whether the coin was biased would not reject. Nonetheless,
a good strategy is to bet on the historical winner. One does not need to infer
at the end whether there is significant evidence that the coin is biased. One
merely collects one’s winnings. In our setting we are not trying to say subgroups
differ. We are trying to determine if treatment is beneficial to some subgroup of
patients.

8. Appendix:Protection of the Type I Error in General

In general, we can write a global homogeneity hypothesis as

Ho
0 : F (x|Z = 1, S = s) = F (x|Z = 0, S = s) = F (x) for all s,

where an individual’s response Xi, given Z,S has distribution F (x|Z,S) and may
be vector valued. As long as we use a test statistic of the form Tu(X,Z) that
is constant as a function of S, then under Ho

0 the marginal distribution of Tu is
unaffected by choice of S for the reasons given previously.

In general, we can write a heterogeneity null hypothesis as

He
0 : F (x|Z = 1, S = s) = F (x|Z = 0, S = s) = F (x|S = s).

As before, if our stratified test statistic at the end of the study (Ts) is independent
of S, then the null distribution for Ts|S which treats the stratum labels as fixed
constants can be used. As before, we can choose a distribution for S2 on the
basis of functions of the first phase data that are independent of Ts.

The first phase between stratum difference is independent of the final test
statistic for a wide variety of settings, at least asymptotically. Let t denote
the calendar time of the study with t = 0 being the time of first randomiza-
tion and τ being the end of followup. Denote the estimate of treatment effect
within the sth stratum at calendar time t by Ds(t). For a wide variety of end-
points, Ds(t) converges to a Gaussian Process D∗

s() with mean δs for all t and
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Cov[D∗
s(t),D∗

s(t′)] = Vs(t′), with t ≤ t′. Examples here include the one and
two sample t-tests, the log-rank statistic, and tests based on a linear random
effects model for each subject in a trial with repeated measurements (see Lan
and Zucker (1993)). In general, however, tests based on repeated measurements
from each subject do not have the above covariance structure. Other cases for
survival endpoints include weighted log-rank statistics (Tsiatis (1982)), the Pepe-
Fleming statistics (Murray and Tsiatis (1996)), and the two-sample difference in
Kaplan-Meier proportion (Lin, Shen, Ying and Breslow (1996)). In the parlance
of Lan and Zucker (1993), D∗

s( ) is known as an E − process.
The stratified test at the end of the study can be written as

Ts(τ) =
D0(τ)/V0(τ) + D1(τ)/V1(τ)√

1/V0(τ) + 1/V1(τ)
.

Using the fact that D∗
0(),D∗

1() are independent Gaussian processes with co-
variances as above, one can show that Ts(τ) is asymptotically independent of
D1(t)−D0(t) under the null hypothesis He

0 . It follows that the type I error rate
is unaffected even if S̄2 depends on D1(t) −D0(t).
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