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Abstract: The importance of small area estimation as a facet of survey sampling

cannot be over-emphasized. Of late, there has been an increasing demand for small

area statistics in both the public and private sectors. It is widely recognized that

direct survey estimates for small areas are likely to be unstable due to the small

sample sizes in the areas. This makes it necessary to “borrow strength” from related

areas to obtain more accurate estimates.

In this study, an empirical Bayes methodology for the estimation of small area

proportions is proposed, implemented, and evaluated. The basic idea consists of

incorporating into a logistic regression model, random effects that are nested in

such a way as to reflect the complex structure of a multistage sample design. This

yields both point estimates and associated naive measures of accuracy. The latter

do not incorporate the uncertainty that arises from estimating the prior distribution

of the random effects. We adjust these naively-estimated measures of uncertainty

using the bootstrap techniques developed by Laird and Louis (1987).

The proposed estimation approach is applied to data from a United States

Census to predict local labour force participation rates. Results are compared

with those obtained using unbiased and synthetic estimation, as well as a domain-

adjusted synthetic estimation approach which incorporates predictor variables at

both the individual and local area levels.

Key words and phrases: Bootstrap, complex survey design, labour force participa-

tion, logistic regression, random effects models.

1. Introduction

The importance of small area estimation as a facet of survey sampling cannot
be over-emphasized. Of late, there has been an increasing demand for small
area statistics in both the public and private sectors. In small area estimation,
estimates of small area parameters and associated measures of uncertainty are
required. However, estimates based on classical finite population sampling are
typically unstable due to the small sample sizes involved. This deficiency has
led to the development of model-based estimates which “borrow strength” from
related local areas to obtain estimates which are more accurate. One of the first
of these procedures was a synthetic model-based approach proposed by Gonzales
(1973), which was subsequently used by Gonzales and Hoza (1978). However,
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it is now recognized that such a methodology produces estimates which have a
tendency to be model-biased and associated measures of uncertainty which are
typically misleading.

Such deficiencies have led to the development of other model-based proce-
dures for estimating small area parameters which borrow strength from related
areas. Among these are techniques based on empirical and hierarchical Bayes
approaches. Ghosh and Rao (1994) reviewed the available techniques for small
area estimation and illustrated that small area estimates based on empirical and
hierarchical Bayes techniques do not have any of the aforementioned undesir-
able properties associated with estimates obtained using classical unbiased or
synthetic approaches.

One of the earliest uses of empirical Bayes methods based on linear models
for small area estimation was that of Fay and Herriot (1979). Using data from
the 1970 United States Cesus of Population and Housing, these authors obtained
estimates of income for small areas. Hierarchical Bayes estimators based on linear
models have also been proposed. Datta and Ghosh (1991) presented a unified
Bayesian theory for mixed linear models with particular emphasis on small area
estimation.

Several authors have considered the problem of estimating small area
rates and binomial parameters using empirical and hierarchical Bayes ap-
proaches. Dempster and Tomberlin (1980) proposed an empirical Bayes method
for estimating census undercount for local areas based on logistic regression mod-
els containing fixed and random effects. This proposal was further developed
by MacGibbon and Tomberlin (1989) and Farrell, MacGibbon, and Tomberlin
(1994). Similar models have been used by Wong and Mason (1985) to estimate
proportions using data from the World Fertility Survey and by Tomberlin (1988)
to estimate Poisson rates using automobile accident data. Others have consid-
ered hierarchical Bayes approaches. Stroud (1991) studied hierarchical Bayes
models for univariate natural exponential families with quadratic variance func-
tions. Malec, Sedransk, and Tompkins (1993) used a fully Bayes approach to
estimate proportions using data from the National Health Interview Survey.

In this study, we want to gain the power of a Bayesian approach by borrowing
strength from an ensemble, while simultaneously obtaining desirable frequentist
operating characteristics. We have chosen an empirical Bayes methodology in
this context. More specifically, the work of MacGibbon and Tomberlin (1989),
in which the explicitly model-based approach of Dempster and Tomberlin (1980)
was employed to estimate small area proportions using a random effects, logistic
regression model and empirical Bayes techniques, is extended to accommodate a
general multistage sample design. The random effects model allows the data to
determine, by empirical Bayes techniques, an appropriate compromise between
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the classical design-unbiased estimates which depend only on data in the specific
local area, and the fixed effects estimates which pool information across local
areas.

This approach yields local area point estimates and associated naive mea-
sures of accuracy. These measures of accuracy are termed naive since they do
not incorporate the uncertainty that arises from estimating the prior distribution
of the random effects. This study incorporates the suggestion of Laird and Louis
(1987) to use bootstrap techniques for adjusting naive estimates of accuracy.

The proposed empirical Bayes methodology is employed to obtain point
and interval estimates of local area female labour force participation rates using
United States Census data. Comparisons are drawn with unbiased and synthetic
estimation techniques. For such an estimation problem, there are many issues
which require attention. They include the selection of predictor variables, model
diagnostics, the sample design, the application to be addressed, and the proper-
ties of the estimators employed. Here we focus on the properties of the estimators
over repeated realizations of the sample design. For many survey practitioners,
such properties are of prime importance.

The proposed empirical Bayes procedure for estimating small area propor-
tions is described in Section 2. A simulation study based on data taken from
a United States Census is described in Section 3. In this study, the proposed
empirical Bayes model-based estimation approach is compared with classical un-
biased estimation, as well as with two different model-based synthetic estimation
approaches. Finally, conclusions and discussion are presented in Section 4.

2. Estimation Procedures

The objective of this study is the estimation of small area proportions using
multistage designs. To achieve this objective, local areas will be treated as the
primary sampling units here, although the two need not coincide. In fact, it is
often the cased that small areas cut across primary sampling units.

Let pi represent the proportion of individuals in the ith local area who possess
a characteristic of interest. Then

pi =
∑

y
C
/Ni, (2.1)

where Ni is the population size of local area i, and the sum of yC is over all
individuals in local area i, where y

C
is an indicator variable associated with the

Cth individual for the characteristic of interest.
The subscript C refer to a set of nested sampling characteristics, indicating

local area or primary sampling unit (PSU), secondary sampling unit (SSU) within
PSU, tertiary sampling unit (TSU) within SSU, and so on. For example, if a
three stage sample design is considered, C would contain the components ijk,
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to indicate the kth individual belonging to the jth SSU within the ith PSU.
Generally speaking, let w be a subscript which references the final stage of the
sample design where individuals are to be selected, regardless of the number of
stages in the design. Then, for the three stage sample design considered above,
C would contain the components ij . . . w, with w = k.

We wish to estimate the parameters pi. The predictive model-based approach
proposed by Royall (1970) is used to obtain empirical Bayes estimates. Under
this approach, the estimator of pi in (2.1) is

p̂i = (
∑

C(i)

y
C

+
∑

C(i)′
π̂C)/Ni, (2.2)

where the sum over C(i) of y
C

is the sum of the values of the outcome variable
for sampled individuals from the ith local area, and the sum over C(i)′ of π̂C

is the sum of the estimated probabilities for nonsampled individuals in the ith
local area.

To obtain values for π̂C , we employ the explicitly model-based approach
proposed by Dempster and Tomberlin (1980). Under this approach, a model
which describes the probabilities πc associated with individuals in the population
is as follows:

y
C
|πC � i.i.d. Bernoulli(πC), logit(πC) = XT

Cβ + δ[C(w)]. (2.3)

The vector XC represents a vector of predictor variables associated with the
fixed effects, while β is the vector of fixed effects logistic regression parameters.
The vector of predictor variables may include covariates at both the individual
and aggregate levels. The quantity δ[C(w)] represents a sum of random effects
associated with local areas or PSU’s and smaller sampling units within local areas,
excluding the last sampling stage referenced by w, where individuals are selected.
For example, if the three stage sample design described above is considered, then
δ[C(w)] = δi + δij . There would be a random effect for the ith PSU or local area,
δi, as well as a random effect for the jth SSU within the ith PSU, δij . Note,
however, that there is no random effect to account for the final stage in the
sample design where individuals would be selected from SSU’s.

Here we are interested in obtaining point and interval estimates for local area
proportions, pi. We require estimates of πC , where

πC = [1 + exp{−(XT
Cβ + δ[C(w)])}]−1. (2.4)

Once empirical Bayes estimates β̂ and δ̂[C(w)] have been determined, πC is esti-
mated by

π̂C = [1 + exp{−(XT
C β̂ + δ̂[C(w)])}]−1. (2.5)
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2.1. Parameter estimates

Following previous empirical Bayes studies (See Laird (1987); Leonard
(1988); Tomberlin (1988); Wong and Mason (1985)), a joint multivariate normal
prior distribution is assumed for the random effects. For example, under a two
stage sample design where individuals are selected from a sample of local areas,
the model in (2.3) becomes:

logit(πij) = XT
ijβ + δi, δi � i.i.d. Normal(0, τ2), (2.6)

where πij represents the probability that the jth individual within the ith local
area possesses the characteristic of interest, β contains the constant term β0, and
δi represents a random effect associated with the ith local area. The random
effects are assumed to follow normal distributions, each with a mean of zero, and
unknown variance τ2. It should be noted that, in order to consider the situation
of unequal variances and correlated random effects for these prior distributions
the theoretical extension is trivial, but the computational implications are not.

To develop empirical Bayes estimates, the EM algorithm described by Demp-
ster, Laird and Rubin (1977) is used. Suppose that the δ[C(w)] in (2.3) follow a
joint multivariate normal prior. In addition, let δ and y be vectors containing
the random effects and the data y

C
. We begin by considering the distribution

of the data, f(y|β, δ,X)α ΠC π
y

C
C (1 − πC)1−y

C , where X is a matrix of pre-
dictor variables. If a flat prior is placed on the fixed effects parameters, then
the distribution of the parameters for the general model in (2.3) is given by
f(β, δ|Σp)α exp(−1

2δTΣp
−1δ) where Σp is the prior covariance matrix for the

random effects parameters. The product of the distribution of the data and the
distribution for the parameters is the joint distribution of the data and the pa-
rameters, f(y, β, δ|Σp,X). This joint distribution can be used to determine the
posterior distribution of the parameters:

f(β, δ|y,Σp,X) = f(y, β, δ|Σp,X)/f(y|Σp,X). (2.7)

It is not feasible to obtain a closed form expression for the posterior given in
(2.7) due to the intractable integration required to determine the marginal distri-
bution of y. A possible approach could be a stochastic integration method such
as Gibbs sampling to replace numerical integration. Here, following MacGibbon
and Tomberlin (1989), we prefer to approximate the posterior as a multivariate
normal distribution having its mean at the mode of (2.7) and covariance matrix
equal to the inverse of the information matrix evaluated at the mode. It should
be noted that neither the equations for the mode, nor the covariance matrix
involve the intractable denominator in (2.7). When values are specified for the
components of Σp the resulting mode and covariance matrix associated with (2.7)
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constitute Bayes estimates for the model parameters in (2.3). Empirical Bayes
estimates can be derived for this model by using the EM algorithm to determine
a maximum likelihood estimate for Σp. For details on how the empirical Bayes
estimates are obtained for the model based on a two stage sample design in (2.6),
see MacGibbon and Tomberlin (1989).

2.2. Estimates of small area proportions

Once the empirical Bayes model estimates have been obtained, (2.2) is used
to obtain empirical Bayes point estimates for small area proportions. In order
to obtain an expression for the variance of the estimator defined by (2.2), it
is convenient to adopt a more conventional notation for the linear part of the
model, using dummy variables to indicate classifications for the random effects
parameters. For each C, let ZC be a vector consisting of the fixed effects predictor
variables for the Cth individual augmented by a series of binary variables, each
indicating whether the individual belongs to a particular sampling unit. Let Γ̂
represent a vector of estimated fixed and random effects parameters such that
ZT

C Γ̂ = XT
C β̂ + δ̂[C(w)].

Since a model-based approach to estimation is employed, the uncertainty in
p̂i arises from repeated realizations of the model in (2.3). Since the approach is
also predictive in nature, the

∑
y

C
term in (2.2) will have zero variance. Thus,

the mean square error of p̂i as a predictor for pi is estimated as

ˆMSE(p̂i) = V̂ar (
∑

C(i)′ π̂C

Ni
) +

∑
C(i)′ π̂C(1 − π̂C)

N2
i

. (2.8)

For sampled local areas, where ni is greater than zero, the first term of (2.8) is of
order 1/ni, while the second term is of order 1/Ni. We base our approximation of
the mean square error of p̂i on the first term only, yielding a useful approximation
so long as Ni is large compared to ni. For nonsampled local areas, the first term
in (2.8) is of order 1; therefore it always dominates the second term.

To develop an expression to approximate the uncertainty associated with p̂i,
a first order multivariate Taylor series expansion of (2.2) is taken with respect
to the realized values of the fixed and random effects estimates. The resulting
approximation for p̂i is a linear function of the estimators of the fixed and random
effects parameters. By deriving the variance of the linear function, we obtain

V̂ar (p̂i) =
∑

C(i)′
ZT

C π̂C(1 − π̂C)(
Σ̂
N2

i

)
∑

C(i)′
ZC π̂C(1 − π̂C), (2.9)

where Σ̂ represents the covariance matrix of Γ̂.
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2.3. Bootstrap adjustment of naive empirical Bayes interval estimates

When the previous naive approach to estimation is employed, empirical
Bayes interval estimates are typically too short. Measures of accuracy do not
account for the uncertainty which results from estimating the prior distribution
of the parameters. A number of authors have suggested methods for dealing with
this problem (See Carlin and Gelfand (1990), Deely and Lindley (1981), Laird
and Louis (1987), and Morris (1983)). Here, we use the parametric Type III
bootstrap proposed by Laird and Louis (1987). For a comparison of the use of
Type II and Type III bootstraps in a similar situation, see Farrell (1991).

The method requires the generation of a number of bootstrap samples, NB,
from a given set of data. The procedure for the generation of a single bootstrap
sample, say the bth, can described as follows:

(1) For a given set of sample data, the estimation procedures described in Section
2.1 are applied to the model in (2.3) to obtain empirical Bayes estimates of
the fixed and random effects, β̂ and δ̂[C(W )], along with an estimate for the
prior distribution.

(2) For each sampled sampling unit excluding those associated with the last stage
of the design, a random effect is generated using the estimated prior distribu-
tion of the random effects obtained in step (1).

(3) For each sample observation, a probability, π∗
bC , is computed by replacing β

and δC(w) in (2.4) with β̂ obtained in step (1) and δ∗b[C(w)], which is determined
by simply adding the appropriate random effects generated in step (2).

(4) For each sample observation, a value for y∗
bC

, is generated from a Bernoulli
random variable with parameter π∗

bC .
(5) The values obtained for y∗

bC
, along with the vectors ZC for sampled individuals

constitute the data for a bootstrap sample.
For the bth bootstrap sample, the estimation procedures described in Section

2.1 are applied to the model in (2.3) to obtain the estimate Σ̂∗
bp. These same

procedures are then applied to the original data y, the vectors ZC for sampled
individuals, and Σ̂∗

bp to obtain estimates of the fixed and random effects, β̂
∗
b

and δ̂∗b[C(w)], along with an associated covariance matrix, Σ̂∗
b. These estimates

are employed to produce an estimate, p̂∗bi, for the proportion of local area i by
replacing π̂C in (2.2) with π̂∗

bC , where π̂∗
bC is determined by substituting β̂

∗
b

and
δ∗b[C(w)] into (2.5) for β̂ and δ̂[C(w)], respectively. An estimate of the variability

of p̂∗bi, V̂ar (p̂∗bi), is obtained by replacing π̂C and Σ̂ in (2.9) by π̂∗
bC and Σ̂∗

b,
respectively. The quantities p̂∗bi and V̂ar (p̂∗bi) are determined for each of NB

bootstrap samples, and used to calculate

p̂∗i =
∑

b

p̂∗bi/NB , (2.10)
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and the bootstrap-adjusted estimate of variability associated with the empirical
Bayes estimator, p̂i:

V̂ar
∗
(p̂i) =

∑
b V̂ar (p̂∗bi)

NB
+

∑
b(p̂

∗
bi − p̂∗i )

2

NB − 1
. (2.11)

3. The Simulation Study

In order to compare local area estimates obtained using the proposed em-
pirical Bayes technique with those based on other commonly used methods, a
simulation study was performed. In particular, estimates based on the empirical
Bayes technique were contrasted with those obtained using a classical unbiased
estimation approach, a synthetic model-based procedure proposed by Gonzales
and Hoza (1978), and a domain-adjusted synthetic model-based approach which,
unlike the ordinary synthetic estimation procedure, includes local area level pre-
dictor variables.

These methods were employed to estimate local labour force characteristics
using data from a 1% sample of the 1950 United States Census (United States
Bureau of the Census 1984). Here we focus our attention on local area female
labour force participation rates, where local areas are more or less confined to
states. Each method was used to develop point and interval estimates for 52
local areas. Some of these local areas were sampled, while others were not.

Since the empirical Bayes and synthetic estimation approaches are model-
based procedures, predictor variables must be selected. Typically, in a real-life
situation, historical data would be available for survey planning purposes. For
example, variable selection for purposes of model predictions could be based on
previous census data. In order to emulate this situation, we selected a simple
random sample of size 2,000 from the 1% sample. Variables for model predic-
tion were obtained using stepwise logistic regression. Random effects were not
considered in the model at this stage. The predictor variables selected were age,
marital status, and whether the individual had children. The data for estimating
local area female labour force participation rates were then obtained from the
1% sample using multistage sample designs, emulating an actual sample survey.

Two different sets of point and interval estimates were obtained using each
estimation method; one set was based on data obtained using a two stage sam-
ple design, the other set on data drawn using a three stage design. In the two
stage design, twenty of the fifty-two local areas were first selected without re-
placement using probabilities proportional to size (PPS). Then, 50 individuals
were randomly selected from each chosen local area, for a total sample size of
1,000. In the three stage design, twenty local areas were once again selected
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without replacement using PPS. Following this, two state economic areas (SEA)
were selected without replacement using PPS from each local area, and then 25
individuals were randomly selected from each chosen SEA, again yielding a total
sample size of 1,000.

For each design, two hundred replicates were drawn producing two hundred
point and interval estimates for a given local area using each method; thus making
it possible to analyze results over repeated realizations of the appropriate sample
design. Note that since inference is based conditionally on a particular set of local
areas being sampled, resampling was not performed at the local area selection
stage when the two hundred replicates for a particular design were drawn. Thus,
for a given design, the same twenty local areas were sampled in each of the two
hundred replicates.

For both sample designs, the classical design-unbiased estimates are the ob-
served local area sample proportions. Thus, such estimates would not be available
for small areas which were not sampled. Variance estimates for the unbiased es-
timator are based on repeated realizations of the sample design and can readily
be obtained (See equations (3.8) and (11.44) in Cochran (1977)).

The two synthetic estimators were based on models similar to that used to il-
lustrate the empirical Bayes estimation approach in Section 2. The only difference
is that no random effects are included. For example, in the two stage sample de-
sign, both synthetic estimators were based on the model, logit(πij) = XT

ijβ. The
models used in synthetic estimation included individual level predictor variables
for age, marital status, and the presence of children, while the domain-adjusted
synthetic estimator is based on models containing not only these individual level
covariates, but also local area variables representing average age, the propor-
tions of individuals in various marital status categories, and the proportion of
individuals having children.

For the synthetic and fixed effects model-based methods, parameters are
estimated using pseudo-maximum likelihood as described by Roberts, Rao, and
Kumar (1987). Once estimated, these models are used to produce local area
estimates in a fashion similar to that of Section 2.2.

For the two stage sample design, the empirical Bayes estimator was based on
the model in (2.6). For the three stage design, the model is given by logit(πijk) =
XT

ijkβ + δi + δij , δi ∼ i.i.d. Nomal(0, τ2
1 ), δij ∼ i.i.d. Normal(0, τ2

2 ), where δi

is the random effect associated with the ith local area and δij is the random
effect for the jth state economic area within the ith small domain. The models
used for empirical Bayes estimation included predictor variables at both the
individual and local area levels that were identical to those specified for the
models associated with the domain-adjusted synthetic estimator.
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Variance estimates for model-based estimators such as synthetic and empir-
ical Bayes are based on repeated realizations of an appropriate model. How-
ever, for many survey practitioners, the properties of estimators over repeated
realizations of the sample design are considered of prime importance. In or-
der to address this concern, our comparison of the three estimators is based on
repeated realizations of the sample design. For a discussion of the differences be-
tween design-based and model-based inference, see Hansen, Madow, and Tepping
(1978), Royall (1970) and Scott and Smith (1969).
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Local Area Numerical Code

Figure 1. Average point estimates for the proportions of sampled local areas

As indicated earlier, two hundred samples were drawn from the Census data
set using each of the two and three stage sample designs previously described.
The results for the two stage design will now be presented. For this design, unbi-
ased, empirical Bayes, synthetic, and domain-adjusted synthetic point estimates
of female participation rates for each of the twenty sampled local areas along with
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associated measures of uncertainty were determined for each replicate. For the
remaining thirty-two local areas which were not sampled, analogous estimates for
only the empirical Bayes and the two synthetic estimators can be obtained, since
the unbiased estimates are based on observed local area sample proportions.

For each estimation method, average estimated rates (over all 200 replicates)
for each of the twenty sampled local areas are presented in Figure 1, arranged in
ascending order according to the population rates. The population rates are also
plotted. Note that there is little difference between the average of the unbiased
estimates and the population rates, empirically confirming their unbiasedness.
When the population proportions are relatively small or large, the synthetic esti-
mator does not perform well with respect to design bias (See the local areas near
the two extremes of the horizontal axis). As the expected value of the synthetic
estimator increases, the bias associated with the estimator increases from large
negative to large positive values. This correlation can occur if the outcome vari-
able is correlated with covariates at the local area level. This is demonstrated
by the point estimates associated with the domain-adjusted synthetic approach,
where this correlation has been removed by including covariates at the local area
level in the model. To evaluate the design bias of the estimators across all sam-
pled local areas, the mean absolute difference between the small area proportions
and the average estimated rates was determined for each estimator. The bias as-
sociated with the domain-adjusted synthetic estimator over all sampled local
areas (0.0153) is somewhat smaller than that of the synthetic estimator (0.0203).
Across all sampled local areas, the design bias of the empirical Bayes estimator
is quite small (0.0058), matching that of the unbiased estimator (0.0021), while
being dramatically better than that of the two synthetic estimators. The graph
reflects the fact that the empirical Bayes estimation methodology is a compromise
between the unbiased and domain-adjusted synthetic procedures.

The empirical root mean square errors (RMSE) over the two hundred repli-
cates for the twenty sampled local areas are presented in Figure 2. This figure
demonstrates graphically where the synthetic estimator performs well and where
it performs poorly. When the expected value of the synthetic estimator is very
close to the population proportion, the synthetic estimator has by far the small-
est empirical RMSE. By pooling data from the whole sample, it obtains a small
sampling variance. On the other hand, for the local areas near the two extremes
of the horizontal axis, the empirical RMSE for the synthetic estimator is large.
This can be explained by the large model bias of the synthetic estimator in these
local areas. Results obtained for the domain-adjusted synthetic estimator can be
explained similarly.
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The empirical Bayes estimator obtains some of the reduction in empirical
RMSE that results from pooling the data across local areas, without suffering
from the sometimes large model bias associated with the two synthetic estima-
tors. Figure 2 indicates that the empirical Bayes estimator has a smaller empirical
RMSE than the synthetic estimators for most local areas. In addition, the em-
pirical Bayes estimator always has a smaller empirical RMSE than the unbiased
estimator. In this case, the empirical Bayes estimator gives more weight to the
unbiased estimator than to the domain adjusted synthetic estimator. Averaging
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Figure 2. Empirical root mean square errors for sampled local areas

over the twenty sampled local areas, the empirical Bayes estimator obtains the
smallest average empirical RMSE (0.0472), the unbiased estimator obtains the
largest (0.0622), while the synthetic and domain-adjusted synthetic estimators
obtain averages between these two (0.0521 and 0.0481). Thus, the average empir-
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ical RMSE for the empirical Bayes estimator is very close to that of the domain-
adjusted synthetic estimator. On the other hand, it should be noted that the
RMSE’s associated with individual local areas are relatively constant for the em-
pirical Bayes estimator, but highly variable for the domain-adjusted synthetic
estimator. This characteristic makes the empirical Bayes estimator easier to jus-
tify to users who are concerned to a greater extent about estimation for individual
local areas than about the average performance over the ensemble.
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Each of the estimators have associated measures of uncertainty. For the un-
biased estimates, these are simply the classical sampling standard errors. For
the two synthetic estimates, these are the usual estimates of standard errors as-
sociated with maximum likelihood estimates. For the empirical Bayes estimates,
these are the square roots of the naive estimates given in (2.9). The usefulness
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Figure 3. Empirical RMSE versus average reported RMSE for sampled local areas
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of these computed measures of uncertainty, called “reported RMSE” here, are
compared graphically for all three estimators in Figure 3. The vertical axis
corresponds to the empirical RMSE while the horizontal axis corresponds to the
average reported RMSE over the two hundred replicates.
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For the unbiased estimates, the average reported and empirical RMSE’s are
almost equal. In contrast, the points corresponding to the two sets of synthetic
estimates are in a cluster above 0.015 to 0.035 on the horizontal axis of Figure
3. For these estimates, the average reported RMSE’s are quite small, while the
empirical RMSE’s are much larger, ranging from 0.03 to 0.07. This indicates that
the reported RMSE’s are not useful for describing the uncertainty associated with
the synthetic estimators.
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Figure 4. Coverage rates for sampled local areas

For the empirical Bayes estimator, the reported RMSE’s slightly underesti-
mate the true variability since they do not incorporate the uncertainty that arises
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from having to estimate the prior distribution of the random effects. Bootstrap-
corrected measures of reported RMSE have also been determined using (2.10)
and (2.11). From each of the 200 samples, 100 bootstrap samples were generated
using the procedure described in Section 2.3. The average of the bootstrap-
corrected measures of reported RMSE (this average being taken over the 200
replicates) is also plotted in Figure 3. When compared to the naive estimates,
these adjusted measures of uncertainty appear to be more representative of the
accuracy of the empirical Bayes local area estimates.

Symmetric 95% confidence intervals were obtained using the point estimates
and reported RMSE’s for each estimator. To investigate the coverage properties
of the intervals, confidence intervals for each of the twenty sampled local areas
were determined for each of the 200 replicates. The coverage rates for each local
area are presented in Figure 4. For the unbiased estimates, the coverage rates
range from 90.5% to 97.5% with an average of 95.20%, extremely close to the
nominal rate of 95%. On the other hand, the coverage rates for the synthetic
estimator range from 40.5% to 93.0% with an average of 61.23%, a value that is far
below the 95% nominal rate. Coverage rates for the domain-adjusted synthetic
estimator are only slightly better, ranging from 45.0% to 93.5%, with an average
of 68.55%. The coverage rates for the naive empirical Bayes confidence intervals
are close to but consistently below the corresponding unbiased estimate coverage
rates. They range from 89.0% to 95.0% with an average of 92.43%, slightly below
the 95% nominal rate. The bootstrap-adjusted coverage rates are very close to
the 95% nominal rate with an average of 94.88%. Thus, the bootstrap-corrected
measures of accuracy seem capable of incorporating most of the uncertainty that
arises from having to estimate the prior distribution for sampled local areas.

Thirty-two of the fifty-two local areas were not sampled. It is possible to
estimate female labour force participation rates in these nonsampled local areas
using the empirical Bayes and synthetic estimation approaches; however, unbi-
ased estimates are not available. Empirical Bayes point estimates and associated
measures of uncertainty can be developed for nonsampled local areas using (2.2)
and (2.9) by basing the estimate of the local area effect and its associated mea-
sure of uncertainty on the estimated prior distribution, and assuming that the
effect is independent of all other local area effects and the fixed effects parame-
ters. Synthetic and domain-adjusted synthetic estimates are obtained in exactly
the same fashion as they were for sampled local areas, since no local area effects
are included in the model upon which the estimates are based.

Average point estimates for each of the 32 nonsampled local areas, for each
available method, are presented in Figure 5 along with the population propor-
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tions, while the associated coverage rates appear in Figure 6. Over all nonsam-
pled local areas, the mean absolute difference between the small area proportions
and the average estimated rates associated with the empirical Bayes estimator
(0.0180) was extremely close to that of the domain-adjusted synthetic estimator
(0.0184), and was substantially better than that of the synthetic estimator
(0.0324). The coverage rates for the synthetic estimates range from 35.0% to
71.5% with an average of 51.36%, which is far below the 95% nominal rate. Re-
sults for the domain-adjusted synthetic estimator are only slightly better, ranging
from 44.5% to 74.0%, with an average of 60.78%. On the other hand, the cov-
erage rates for the naive empirical Bayes confidence intervals are much better.
They range from 78.5% to 95.0% with an average of 89.31%. Bootstrap-corrected
coverage rates are even closer to the 95% nominal rate with an average of 94.73%.
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Figure 5. Average point estimates for the proportions of nonsampled local areas



EMPIRICAL BAYES SMALL AREA ESTIMATION 1081

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31

E BAYES (NVE)DOMAIN ADJUSTED

E BAYES (BTS)SYNTHETIC

The simulation study for the three stage design gave analogous results (See
Farrell (1991)). However, the performance of the three various estimators deteri-
orated somewhat. This can be attributed to the additional variability associated
with the more complex design.
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Figure 6. Coverage rates for nonsampled local areas

4. Conclusion

Unbiased, synthetic and empirical Bayes methods have been used to estimate
local area female labour force participation rates using data taken from the 1950
United States Census. The models used for classical synthetic estimation con-
tained only individual level predictor variables, while the models specified for the
empirical Bayes and domain-adjusted synthetic estimators contained covariates
at both the individual and local area levels. The models upon which the synthetic
estimator is based were found to be mis-specified, as the bias of the estimator is
correlated with its expected value. By including local area level covariates, the
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domain-adjusted synthetic estimator does not suffer from this mis-specification.
As a compromise between the unbiased and domain-adjusted synthetic es-

timators, the empirical Bayes estimator performed well in terms of design bias,
empirical RMSE, and coverage rates. Finally, bootstrap techniques were shown
to be useful for improving naive empirical Bayes estimates of uncertainty. Boot-
strapped interval estimates based on an empirical Bayes approach were found
on average to attain the desired level of coverage. These interval estimates per-
formed much better than counterparts based on the domain-adjusted synthetic
estimator for both sampled and nonsampled local areas, even though the point
estimates for the empirical Bayes and domain-adjusted synthetic estimation ap-
proaches were very similar in the case of nonsampled local areas.
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