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Abstract: The Bayes estimator of a small area mean is shown to have strictly smaller

mean squared error (MSE) than that of the corresponding best linear unbiased pre-

dictor (BLUP) for the Kleffe-Rao model, an extended mixed model with random

sampling variances. The model is then extended to incorporate sampling weights,

covariances and unequal sample sizes. A hierarchical Bayesian procedure which

takes into account various sources of variabilities has been proposed. A specific

small area estimation problem using data from the U.S. Consumer Expenditure

Survey is considered. Based on a robust (i.e., model free) evaluation criterion, the

proposed hierarchical Bayes estimator turns out to be superior to both estimated

BLUP and the direct survey estimators. The posterior variances which measure

the accuracy of the hierarchical Bayes estimates are always smaller than the corre-

sponding variances of the direct survey estimates. The current state of estimated

BLUP theory is not rich enough to provide reliable estimates of the MSE of the

estimated BLUP for the example considered in this article.
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1. Introduction

The sampling design and the sample size of most of the large scale national
surveys are usually determined so as to produce a national estimate of a param-
eter of interest with a desired level of precision. Quite often there is a need to
produce similar estimates with the same level of precisions for certain subna-
tional regions (for example, state, counties, etc.). This task cannot be achieved
by the regular design-based procedures which use survey data only from the sub-
national region under consideration simply because of the availability of a smaller
sample (relative to the national sample). Similar situations arise when estimates
are needed for many domains obtained by classifying the population according
to various demographic characteristics (for example, age, sex, race, etc.). Such
problems in survey sampling literature are known as small area estimation prob-
lems.

Due to budgetary constraints, it is unrealistic to increase sample size for the
small areas. Thus, estimates which use implicit or explicit models to borrow
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strength from the related sources have been proposed. For a review of small area
estimation procedures and their applications the reader is referred to Ghosh and
Rao (1994) and Rao (1986).

The Bayes and the best linear unbiased prediction (BLUP) methods have
been widely used to produce small area statistics. For a very general mixed linear
model with fixed variance components, Theorem 4 of Datta and Ghosh (1991)
shows that the BLUP and the corresponding Bayes approaches produce identical
point predictors (estimators) of a small area characteristic. The BLUP method
is very popular among classical statisticians and has been extensively used in the
mixed linear model and small area literature. To the best of our knowledge there
is no situation cited in the literature where the Bayes procedure produces better
(in terms of the mean squared error) point estimators than the corresponding
BLUP. In Sections 2 of this paper, we cite a situation (an extended mixed model
with random variance components) where the Bayes estimator of a small area
mean has strictly smaller MSE than the corresponding BLUP (see Theorem 1).
However, unlike the BLUP, in order to calculate the Bayes estimator, one needs
to specify the parametric form of the hierarchical Bayes model and the Bayes
estimator is not linear.

In Section 3, the well known small area model due to Fay and Herriot (1979)
is revisited. All the previous classical and Bayesian estimation procedures, which
used the Fay-Herriot model or its extensions, assumed known sampling variances.
But, in practice, they are usually not known and are estimated from the general-
ized variance curves (see, for example, Wolter (1985), chap. 5). The effect of such
estimated sampling variances on the estimation of the MSE or posterior variance
has not been studied so far. This is a very important issue for the researchers
of various federal agencies in the U.S. and other countries. In this section we
consider an alternate modeling which addresses this issue. This model can be
viewed as an extension of the small area model due to Kleffe and Rao (1992)
to incorporate the sampling weights and relevant covariates which are generally
available from most sample surveys. Kleffe and Rao (1992) provided a second or-
der approximation to the MSE of the EBLUP (estimated BLUP). Their formula
relies on the assumption that n, the sample size in each small area, is bounded
but m, the number of small areas, tends to infinity. This assumption may not be
satisfied in certain situations (for example, the data set considered in Section 4).
The hierarchical Bayesian procedure proposed in Section 3 has a clear edge over
the EBLUP procedure in such a situation since it does not depend on any sample
size assumption in producing the exact measures of accuracy of the hierarchical
Bayes estimates.
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Generally, improper non-informative priors are put on the hyper parame-
ters in standard hierarchical Bayesian analysis (see Ghosh and Mukerjee (1992)).
However, the improper priors could lead to improper posterior distributions and
nonexistence of the first two moments of the posterior distributions of the pa-
rameters of interest. To circumvent the problem, we assume proper uniform
priors on finite subsets of the real lines or real spaces. Such choices of prior
distributions ensure that all the posterior distributions as well as their moments
exist. In our real data analysis, the model has been found to be non sensitive
within the class of uniform prior distributions we have considered. We propose
the Gibbs sampler (see Geman and Geman (1984), Gelfand and Smith (1990),
Gelman and Rubin (1992)) to carry out the Bayesian computations. The full
conditional distributions required to implement the Gibbs sampler are provided
in this section. In our case, one of the full conditional distributions is known only
up to a multiplicative constant. However, since this full conditional distribution
turns out to be log-concave, we have been able to use the adaptive rejection
sampling algorithm of Gilks and Wild (1992).

In Section 4, we apply the hierarchical Bayes method described in Section 3
to estimate the average weekly consumer expenditure of an item for 43 publica-
tion areas (small areas) throughout the U.S. The U.S. Bureau of Labor Statistics
(BLS) needs these estimates to compute the Consumer Price Index (CPI) num-
bers which are published every month. The CPI is published for various items,
goods and services, consumer units and geographical areas. The primary data is
collected through the U.S. Consumer Expenditure Survey. In order to compare
the hierarchical Bayes estimator with the EBLUP and direct survey estimator of
the average weekly consumer expenditure of an item (for example, fresh whole
milk) we follow a robust (i.e., model independent) method. Specifically, we view
the original sample for the year 1989 as a pseudo-population and compute the
direct survey, EBLUP and the hierarchical Bayes estimates based on several sam-
ples appropriately constructed from this pseudo-population. The estimates are
then compared with the direct survey estimates of the original samples, i.e., the
corresponding pseudo-population means. The proposed hierarchical Bayes esti-
mator outperforms the other rival estimators. We also note that the posterior
variances, the measures of accuracy of the hierarchical Bayes estimates, are al-
ways smaller than the corresponding variances of the direct survey estimates.
The EBLUP does not seem to have a natural measure of accuracy in our situ-
ation. Here we reiterate that the methods proposed by Prasad and Rao (1990)
and Kleffe and Rao (1992) cannot be extended to produce measures of accuracy
of the EBLUP’S since the number of samples available from a small area is not
small in comparison to the number of small areas, an assumption needed in their
paper.
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2. The BLUP vs. the Bayes Approach

Let Zil be the value of the characteristic of interest for the lth unit of the ith
small area (i = 1, . . . ,m; l = 1, . . . , ni), θ = (θ1, . . . , θm)′ and σ2 = (σ2

1 , . . . , σ
2
m)′.

We compare the Bayes approach with the BLUP approach to estimate the true
small area means θi (i = 1, . . . ,m) using the following hierarchical model.

Model 1. (i) Zil | θi, σ
2
i

ind∼N(θi, σ
2
i ), i = 1, . . . ,m; l = 1, . . . , ni;

(ii) θi
ind∼N(x′

iβ, τ2), i = 1, . . . ,m; (iii) σ2
i

ind∼ p(σ2
i ), i = 1, . . . ,m.

In the above model, β and τ2 are known constants and p(σ2
i ) represents an

arbitrary density function of σ2
i . Kleffe and Rao (1992) considered a special case

of the above model when x′
iβ = µ and ni = n (i = 1, . . . ,m). They argued that

it is more appropriate to assume different but random small area variances than
a constant variance across the small areas.

If β is known, the BLUP of θi is given by θ̃BLUP
i = x′

iβ + wBLUP
i (Zi. − x′

iβ),
where wBLUP

i = niτ
2/(niτ

2 + ξ), ξ = E(σ2
i ) and Zi. = n−1

i

∑ni
l=1 Zil.

Let Z = (Z1, . . . , Zm), where Zi = (Zi1, . . . , Zini)
′. The Bayes estimator

of θi, under squared error loss, is given by θ̃B
i = x′

iβ + wB
i (Zi. − x′

iβ), where
wB

i = E
[
niτ

2(niτ
2 + σ2

i )
−1 | Z

]
, E being the expectation over the posterior

density of σ2
i , given by,

fi(σ2
i |Zi) ∝ σ

−(ni−1)
i (σ2

i + niτ
2)−

1
2 exp

[
− 1

2

{
σ−2

i S2
i + ni(niτ

2 + σ2
i )

−1

(Zi. − x′
iβ)2

}]
p(σ2

i ),

σ2
i > 0, where S2

i =
∑ni

l=1(Zil − Zi.)2.
Note that for the Kleffe-Rao model the Bayes estimator of θi, unlike the

BLUP, assigns different weights to different small area sample means Zi.’s.
The integrated Bayes risk of an estimator θ̂i of θi is defined as r(θ̂i) =

E(θ̂i − θi)2, where E is with respect to Model 1. Note that r(θ̂i) is also the MSE
of θ̂i as defined in Kleffe and Rao (1992). The following theorem demonstrates
the superiority of θ̃B

i over θ̃BLUP
i in terms of the MSE.

Theorem 1. Under the Model 1 and the condition that the density p(·) of σ2
i (i =

1, . . . ,m) is non degenerate,

(a) E(θ̃B
i ) = E(θ̃BLUP

i ) = E(θi),

(b) r(θ̃B
i ) < r(θ̃BLUP

i ),

where E is with respect to Model 1.
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Proof. (a) For i = 1, . . . ,m we observe that E(θ̃B
i ) = EE(θi | Z) = E(θi),

E(θ̃BLUP
i ) = x′

iβ + wBLUP
i E(Zi. − x′

iβ) = x′
iβ = E(θi).

(b) Note that

r(θ̃BLUP
i ) − r(θ̃B

i ) = E(θ̃BLUP
i − θ̃B

i )2

= E{(wBLUP
i − wB

i )2(Zi. − x′
iβ)2} ≥ 0. (1)

If possible, assume that the equality sign holds in (1), which in turn will imply

(wBLUP
i − wB

i )2(Zi. − x′
iβ)2 = 0 a.e.

⇐⇒ (wBLUP
i − wB

i )2 = 0 a.e., (since Zi. − x′
iβ is continuous)

⇐⇒ wBLUP
i = wB

i a.e. ⇐⇒ niτ2

niτ2+ξ = E( niτ2

niτ2+σ2
i
| Zi) a.e.

⇒ niτ2

niτ2+ξ = E( niτ2

niτ2+σ2
i
), (taking another expectation), which is not true, since

p(·) is non degenerate and Jensen’s inequality gives

E(
niτ

2

niτ2 + σ2
i

) >
niτ

2

niτ2 + E(σ2
i )

=
niτ

2

niτ2 + ξ
.

3. Hierarchical Bayesian Model and Gibbs Sampler

To estimate per capita income of small places (population less than 1000),
Fay and Herriot (1979) considered the empirical Bayes (EB) method to combine
information from various administrative records in conjunction with the sample
survey data available from the U.S. Current Population Survey. According to
the Fay-Herriot model Yi | θi

ind∼N(θi,Di), i = 1, . . . ,m, where the Yi’s are the
survey estimates of the true small area means θi, and the sampling variances Di

are assumed to be known. A priori θi
ind∼N(x′

ib,A), where x′
i = (xi1, . . . , xip) is

a vector of known benchmark available for the small areas. Many applications
of the Fay-Herriot model, its specific cases or its generalizations can be found
in the small area literature. Carter and Rolph (1974) used a special case when
x′

ib = µ to estimate fire alarm probabilities. Also, see Morris (1983), Cressie
(1992), Datta, Fay and Ghosh (1991), Ghosh, Nangia and Kim (1996), Prasad
and Rao (1990), among others.

In a typical survey situation, the direct survey estimates Yi are of the form∑ni
l=1 Wil Zil/

∑ni
l=1 Wil, where ni is the number of respondents for the ith area

and Zil (Wil) is the value of the characteristic of interest (sampling weight) for
the lth unit of the ith area (i = 1, . . . ,m; l = 1, . . . , ni). The sampling weights
Wil are usually determined by the reciprocal of the inclusion probabilities and are
adjusted for factors such as nonresponse, post stratification, etc. The sampling
weight attached to a respondent represents a certain number of population units.
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In practice, the Di’s are unknown and are estimated using a design-based
method (e.g., jackknife, balanced repeated replication, etc.) Thus, any procedure
which uses these estimates as the true sampling variances Di will not take into
account the variability in estimating Di. In order to incorporate this additional
variability, we consider an alternate modeling. The model can be viewed as a
Bayesian extension of the small area model due to Kleffe and Rao (1992). Unlike
theirs, this model can handle an unbalanced situation but requires a specific
form of density p(·). It also incorporates information on sampling weights and
relevant covariates. Define Yi =

∑ni
l=1 WilZil/

∑ni
l=1 Wil, S2

i =
∑ni

l=1(Zil − Zi.)2,
Ki =

∑ni
l=1 W 2

il/(
∑ni

l=1 Wil)2, (i = 1, . . . ,m) and r = (r1, . . . , rm)′. Note that
Yi is the direct survey estimator of θi. We shall use the following hierarchical
model.

Model 2. I Conditional on θi and ri, Yi and S2
i (i = 1, . . . ,m) are independent

with Yi | θi, ri
ind∼N(θi, ri

−1Ki), and Si
2 | ri, θi

ind∼ ri
−1χ2

ni−1, i = 1,
. . . ,m;

II Conditional on b and v, θi
ind∼N(x′

ib, v
−1), i = 1, . . . ,m, where xi is

a p × 1 column vector of known constants;
III Conditional on α and β, ri

ind∼Gamma(α, β); i.e. f(ri) ∝ e−αrirβ−1
i ,

i = 1, . . . ,m;
IV Marginally, α ∼ U+

1 , β ∼ U+
1 , v ∼ U+

1 , and b ∼ Up,

where U1
+ denotes a uniform distribution over a subset of R+ with large but finite

length and Up denotes a uniform distribution over a p-dimensional rectangle Qp

whose sides are large but of finite length.
It is important to note that in Step IV of Model 2, we have put proper but

vague priors on the hyper parameters α, β, v and b. We have observed that Model
2 is not sensitive towards the choice of length of the uniform proper distributions.
With the choice of proper priors on all the hyper parameters, all the posterior
distributions are proper. Hence we do not face any problem of some posteriors
being improper.

Our objective is to obtain the posterior distributions of the θi’s, i = 1, . . . ,m.
Due to the high dimensionality of the problem we recommend Gibbs sampling
(see Geman and Geman (1984), and Gelfand and Smith (1990)). We choose the
method given in Gelman and Rubin (1992) since it provides a measure, known as
potential scale reduction factor, to check the convergence of the Gibbs sampler.
Thus, we generate t = 2d sets of random variables in each of l paths. The first
d iterations from each path are deleted. We then use the S-program developed
by Gelman and Rubin (1992) to obtain the potential scale reduction factors and
various posterior densities.
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From Model 2 we get the following full conditional distributions for Gibbs
sampling, TNs and TG representing an s-variate truncated normal distribution
(truncated outside the s-dimensional rectangle Qs) and a truncated Gamma dis-
tribution:

(i) For i = 1, . . . ,m:
[θi | Y, r, S, b, α, β, v]ind∼N((riK

−1
i + v)−1{riK

−1
i Yi + v x′

ib}, (riK
−1
i + v)−1)

(ii) For i = 1, . . . ,m:
[ri | Y, θ, S, b, α, β, v]ind∼Gamma(1

2{K−1
i (Yi − θi)

2 + Si
2} + α, ni

2 + β)
(iii) For i = 1, . . . ,m:

[b | Y, θ, r, S, α, β, v] ∼ TNp([
∑m

i=1 xix
′
i]
−1 ∑m

i=1 xiθi, v
−1[

∑m
i=1 xix

′
i]
−1)

(iv) For nT =
∑m

i=1 ni :
[α | Y, θ, r, S, b, β, v] ∼ TG(

∑m
i=1 ri, mβ + 1)

(v) [v | Y, θ, S, b, α, β] ∼ TG(1
2

∑m
i=1 (θi − xi

′b)2, 1
2nT + 1)

(vi) [β | Y, θ, S, b, α, v] ∝ {Γ(β)}−mαmβ∏m
i=1 ri

β.

Using Gibbs sampling, the joint posterior pdf of θ = (θ1, . . . , θm)′ is approx-
imated by

E[θ | Y, r, S, b, α, β, v] ≈ (l d)−1
l∑

s=1

2d∑
j=d+1

E[θ | Y, r(js), S, b(js), α(js), β(js), v(js)].

To estimate the posterior mean and variance, we use Rao-Blackwellized estimates
as in Gelfand and Smith (1990).

For implementing the Gibbs sampler, we need to draw samples from the full
conditional densities (i) - (vi). Simulations from the full conditional densities (i) -
(v) can be done by using standard methods. However, the full conditional density
of [β | Y, θ, S, b, α, v] is known only up to a multiplicative constant. In order to
draw samples from this density a general approach is to use the Metropolis-
Hastings accept-reject algorithm. Fortunately, the task becomes simpler since
log [β | Y, θ, S, b, α, v] is a concave function of β (see Arora (1994)).

4. An Example

The U.S. Bureau of Labor Statistics needs estimates of the true average
weekly consumer expenditures of various items, goods and services, for m = 43
publication areas (small areas) throughout the U.S. We concentrate on estimat-
ing the true average expenditure of the item fresh whole milk for the year 1989
for the ith publication area (i.e., θi, i = 1, . . . , 43) and use data from the Diary
Survey component of the Consumer Expenditure Survey conducted by the U.S.
Bureau of the Census for the BLS. Samples are drawn independently for each
quarter. Each respondent of the sample receives a sampling weight (i.e., Wil)
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which is determined by the reciprocal of the inclusion probability of the respon-
dent and adjusted for various factors such as post stratification, nonresponse,
etc. The sampling weight for a respondent represents a number of population
units and the sum of the sampling weights for all the respondents in the sam-
ple is approximately equal to the total number of households in the U.S. Each
respondent keeps a record of expenditures on various items for two consecutive
weeks. Thus, average weekly expenditure on fresh whole milk (Zil) is available
for each respondent. Using Wil and Zil, we produce the survey estimates Yi and
their variance (ni − 1)−1S2

i Ki for the ith (i = 1, . . . , 43) publication area. The
sampling variance of Yi is obtained under the assumption that Zil’s are i.i.d. and
can be improved if certain information regarding the sampling design is available.

In Model 2, we used x′
ib = bj if i ∈ jth major area, a collection of similar

publication areas. There are eight major areas in the U.S. For the Gibbs sampler
we used 2d = 1000 iterations and l = 8 independent paths to draw samples
from the full conditional densities (i)-(vi) given in Section 3. In each path, the
first d = 500 generated values were deleted. Starting with initial values of the
parameters, we draw samples from the full conditional densities of r, b, α, β, v and
θ. For drawing samples from the full conditional density of β, which is known
only upto a multiplicative constant, we used the adaptive rejection sampling
technique of Gilks and Wild (1992). We have observed that the model is not
sensitive towards the initial values of the parameters. To study the convergence of
the Gibbs sampler we used the S-program written by Gelmen and Rubin (1992).
This program computes a potential scale reduction factor R which provides a
way to quantitatively monitor the convergence of the Gibbs sampler. For all the
situations, the measure R seems to converge to unity after the first 500 iterations.

Table 1 exhibits the direct survey estimates and the hierarchical Bayes es-
timates along with their measures of accuracy for all the 43 publication areas
of the U.S. for the year 1989. We note that the the posterior variances are al-
ways smaller than the corresponding variances of the direct survey estimates. In
order to derive the BLUP of θi, we use steps (I)-(III) of Model 2. The BLUP
turns out to be aiYi + (1 − ai)x′

ib̃, where ai = v−1/(v−1 + ξKi), ξ = E(r−1
i ) and

b̃ =
[∑m

i=1(v
−1 + ξKi)−1xix

′
i

]−1 ∑m
i=1(v

−1+ξKi)−1xiYi. We then use an ANOVA
method to estimate ξ and v−1 for obtaining the EBLUP from the BLUP. The
EBLUP for all the 43 publication areas of the U.S. is also reported in Table 1.
The EBLUP does not seem to have a natural measure of accuracy in this situa-
tion. Note that Kleffe-Rao technique cannot be extended to this case since the
sample sizes available from the small areas are much larger than the number of
small areas.
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Table 1. Direct survey estimates, EBLUP and the proposed HB estimates
for consumer expenditure on item fresh whole milk : Year 1989. The number
in the paranthesis represents the corresponding standard error.

Pub. n Survey EBLUP HB Pub. n Survey E BLUP HB
Area Est. Est. Area Est. Est.

1 191 1.099(.163) 1.095 1.093(.118) 23 195 1.044(.140) 1.108 1.102(.117)
2 633 1.075(.080) 1.079 1.079(.073) 24 187 1.267(.171) 1.212 1.200(.131)
3 597 1.105(.083) 1.101 1.100(.075) 25 497 1.193(.106) 1.088 1.054(.095)
4 221 .628(.109) .822 .763(.096) 26 230 .791(.121) .822 .810(.095)
5 195 .753(.119) .891 .844(.097) 27 186 .795(.121) .828 .813(.096)
6 191 .981(.141) 1.000 .967(.104) 28 199 .759(.259) .809 .816(.132)
7 183 1.257(.202) 1.127 1.055(.127) 29 238 .796(.106) .825 .811(.088)

8 188 1.095(.127) 1.053 1.028(.100) 30 207 .565(.089) .714 .657(.085)
9 204 1.405(.168) 1.204 1.136(.126) 31 165 .886(.225) .869 .849(.126)
10 188 1.356(.178) 1.178 1.108(.125) 32 153 .952(.205) .897 .872(.123)
11 149 .615(.100) .860 .755(.097) 33 210 .807(.119) .743 .749(.101)
12 290 1.460(.201) 1.365 1.280(.142) 34 383 .582(.067) .617 .603(.065)
13 250 1.338(.148) 1.291 1.258(.120) 35 255 .684(.106) .682 .681(.091)
14 194 .854(.142) 1.053 1.032(.121) 36 226 .787(.126) .757 .756(.097)

15 184 1.176(.149) 1.203 1.193(.108) 37 224 .440(.092) .579 .537(.086)
16 193 1.111(.145) 1.170 1.162(.106) 38 212 .759(.132) .743 .741(.099)
17 218 1.257(.135) 1.242 1.232(.102) 39 211 .770(.100) .748 .751(.085)
18 266 1.430(.172) 1.339 1.296(.118) 40 179 .800(.113) .759 .765(.093)
19 214 1.278(.137) 1.252 1.242(.103) 41 312 .756(.083) .744 .746(.074)
20 213 1.292(.163) 1.260 1.243(.112) 42 241 .865(.121) .799 .800(.096)
21 196 1.002(.125) 1.118 1.098(.100) 43 205 .640(.129) .685 .679(.098)
22 95 1.183(.247) 1.169 1.163(.151)

Next we compare the HB (Hierarchal Bayes) estimates with the direct survey
estimates and the EBLUP using a robust procedure. We view the data for the
year 1989 as a pseudo-population and consider eight 12.5% samples from this
pseudo-population. These subsamples are available in the data set and were
originally constructed by the U.S. Census Bureau in order to provide variance
estimates of the survey estimates at the national level. Thus, this evaluation
criterion is quite objective and is not model dependent. In Table 2, we report
averaged squared relative deviation (ASRD) defined as follows:

ASRD =
1
43

43∑
i=1

(ei − θi)2

θ2
i

,

where ei is an estimator of the pseudo true small area mean θi (i.e., the direct
survey estimate based on the entire 1989 data). The HB estimator is better than



1062 VIPIN ARORA AND P. LAHIRI

the direct survey estimator for all the eight samples considered (improvement
ranges from 46% to 80%). The HB estimator is better than the EBLUP for six
out of eight samples.

Table 2. Comparison of direct survey estimates, EBLUP and the proposed
HB for consumer expenditure on item fresh whole milk: 1989. The number
in the parenthesis represents percent improvement over the survey estimator.

Sample Average Squared Relative Deviation
Survey Est. EBLUP HB

1 .3416 .1920(44%) .1579(54%)
2 .2902 .1474(49%) .0963(67%)
3 .2515 .0641(75%) .0719(71%)
4 .1591 .0815(49%) .0798(50%)
5 .3012 .1333(56%) .1174(61%)
6 .3144 .1602(49%) .1188(62%)
7 .2473 .0518(79%) .1333(46%)
8 .1683 .0617(63%) .0339(80%)
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