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Abstract: Known results for the general linear mixed model and its special case, the

variance components model, are applied to inference in state space models. New

state and disturbance smoothing algorithms that accomodate fixed effects and dif-

fuse initial conditions are developed. The algorithms are based on an augmented

Kalman filter, and they avoid the backward recursions of standard smoothing al-

gorithms.

The disturbance smoother is used to develop an EM algorithm for REML es-

timation of variance components in state space models. The EM algorithm for

the structural time series model with polynomial trend and additive seasonality is

illustrated in detail.
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1. Introduction

In this paper we formulate the State Space Model (SSM) as a special case of
the general linear mixed model. The states, or the disturbances driving the state
transition equation, take the place of the random effects in the mixed model.
Diffuse initial conditions on the states are included as “fixed” effects and are
assigned a flat non-informative prior distribution.

A direct brute-force application of mixed-model theory to the state space
model would require the inversion of the covariance matrix of the observations,
which is of large dimension. The Kalman Filter (KF), which provides the Choleski
decomposition of the inverse of the covariance matrix, is used to overcome this
difficulty. In this paper we combine the Kalman Filter with results from mixed
model theory, and present a general unifying framework that ties together vari-
ous special algorithms that have been proposed for state space model inference.
Estimation of time-invariant effects, states, signals, disturbances and future ob-
servations, as well as their mean square errors, can all be determined from a
certain matrix that is obtained by applying the “sweep” operator to the end
result of an augmented Kalman filter recursion.



974 JOHN V. TSIMIKAS AND JOHANNES LEDOLTER

In Section 2 of this paper we review needed general linear mixed-model
results. In Section 3 these results are applied to the analysis of the general
state space model. In Section 4 we develop recursive EM algorithms for the
REML estimates of variance components in state space models. The estimation
of structural time series models with polynomial trend and indicator-variable
seasonality is discussed in detail. Two data sets illustrate the computations.

2. Review of General Linear Mixed Model Results

2.1. The general linear mixed model

Consider the general linear mixed model

y = Xβ + Zπ + e, (2.1)

where y is a T × 1 vector of observations, β is the p× 1 vector of unknown fixed
effects, X is the T × p design matrix for the fixed effects with rank p, π is a q× 1
vector of random effects with mean 0 and covariance matrix D, Z is the T × q

design matrix for the random effects, and e is the random error vector with mean
0 and covariance matrix R; in most applications R = σ2IT . The random effects
π and the errors e are assumed uncorrelated. Hence the covariance matrix of y
is given by V = ZDZ

′
+ R.

In variance components models Z is partitioned as Z = [Z1, . . . ,Zm] and
π is partitioned as π = [π

′
1, . . . ,π

′
m]

′
. Each qi × 1 vector πi has mean 0 and

covariance matrix Var(πi) = σ2
i Iqi , and Cov(πi,π

′
j) = 0 for all i �= j. Hence D

is a block diagonal matrix with σ2
i Iqi as its ith diagonal block. Then

y = Xβ + Zπ + e = Xβ +
m∑

i=1

Ziπi + e (2.2)

and V = ZDZ
′
+ R =

∑m
i=1 σ2

i ZiZ
′
i + σ2IT .

2.2. REML inference

REML estimation in the linear mixed model with normal random compo-
nents, where y|β,π,R ∼ N(Xβ + Zπ,R) and π|D ∼ N(0,D), assigns β an
improper flat prior distribution. Integrating the likelihood with respect to β and
taking the logarithm, one obtains the restricted loglikelihood

lR(R,D|y) = ln L(R,D|y) = −T − p

2
ln 2π− 1

2
ln |X′

V−1X|− 1
2

ln |V|− 1
2
y

′
Wy,

(2.3)
where

W = V−1 − V−1X(X
′
V−1X)−1X

′
V−1. (2.4)
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With a flat prior on β, and for known covariance matrices D and R, the
posterior distribution of the effects β and π, given the data y, is[

β

π

]
|y ∼ N

( [(X
′
V−1X)−1X

′
V−1y

DZ
′
Wy

]
,

[
(X

′
V−1X)−1 −(X

′
V−1X)−1X

′
V−1ZD

−DZ
′
V−1X(X

′
V−1X)−1 D− DZ

′
WZD

] )
(2.5)

(see Sallas and Harville (1981).) Under square error loss the Bayes estimates of
β, π, the signal s = E(y|π) = Xβ + Zπ and the noise vector e = y−Xβ −Zπ

are obtained from (2.5) as posterior expectations; their mean square errors are
obtained as posterior variances:

β̂ = (X
′
V−1X)−1X

′
V−1y and MSE(β̂) = (X

′
V−1X)−1 (2.6)

π̂ = DZ
′
Wy and MSE(π̂) = D − DZ

′
WZD (2.7)

ŝ = Xβ̂ + Zπ̂ = y − RWy and MSE(ŝ) = R − RWR (2.8)

ê = RWy and MSE(ê) = R− RWR. (2.9)

Without the normality assumption β̂ is the Best Linear Unbiased Estimator
(BLUE) of β, whereas π̂, ŝ and ê are Best Linear Unbiased Predictors (BLUP);
(see Searle et al. (1992), Chapter 7).

For the variance components model in (2.2) we have π̂i = σ2
i Z

′
iWy

and MSE(π̂i) = σ2
i Iqi − σ4

i Z
′
iWZi. The result

E(
π

′
iπi

qi
|y) = σ2

i +
σ4

i [y
′
WZiZ

′
iWy − tr(Z

′
iWZi)]

qi
. (2.10)

provides the basis for the EM algorithm for REML estimation of [σ2, σ2
1 , . . . , σ

2
m].

The estimates of the ith variance component (i = 1, . . . ,m) and of σ2 at iteration
r + 1 are obtained from the equations

σ2
i (r + 1) = σ2

i (r) +
σ4

i (r)[y
′
W(r)ZiZ

′
iW(r)y − tr(Z

′
iW(r)Zi)]

qi

σ2(r + 1) = σ2(r) +
σ4(r)[y

′
W(r)W(r)y − tr(W(r))]

T − p
; (2.11)

our notation W(r) reflects the fact that W depends on the previous estimates
σ2

i (r).
Mixed-model inference depends heavily on the efficient calculation of W

in (2.4), as well as matrices of the form Z
′
Wy and Z

′
WZ. The very same

matrices also arise in the first and second derivatives of the restricted loglikelihood
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function, which play an important role in the Newton-Raphson, scoring, and
EM algorithms for REML estimates, as well as in the asymptotic covariance
matrix of the REML estimates. For the variance components model in (2.2)
the derivatives with respect to the parameters [σ2, σ2

1 , . . . , σ
2
m] include terms like

Z
′
iWy and Z

′
iWZj; (see Searle et al. (1992), page 252). These terms also arise

in the Parametric Empirical Bayes approach of Kass and Steffey (1989), which
improves the MSE approximation of the variance estimates when estimates are
used in place of unknown variance components.

3. Mixed Model Inference in the State Space Model

3.1. The state space model

Consider the univariate SSM with both fixed and random time–invariant
regressors

yt = x
′
tβ + z

′
tγ + h

′
tαt + νt

αt = Φtαt−1 + ξt, (3.1)

where t = 1, ..., T . The vector β is a p×1 vector of fixed effects, γ is a g×1 vector
of time–invariant random effects; x

′
t is the 1×p design vector for the fixed effects

and z
′
t is the 1× g design vector for the random effects γ; h

′
t is a 1× q vector and

αt is the q × 1 state vector at time t; νt is the observation noise, Φt is a q × q

transition matrix, and ξt is the disturbance term in the state transition equation.
The νt’s are uncorrelated and distributed with mean 0 and variance σ2, the ξt’s
are uncorrelated and distributed with mean 0 and covariance matrix Ξt, and
disturbance and observation noise terms are assumed uncorrelated. The vector
of time–invariant random effects has mean 0 and covariance matrix B11. The
initial state α0 may contain both a diffuse and a random part; let us partition
α0 = (α

′
10,α

′
20)

′
, where the q1 × 1 vector α10 has a diffuse prior and the q2 × 1

vector α20 has a proper prior distribution with mean 0 and q2 × q2 covariance
matrix B22. Our model also allows for correlation between the random part of the
initial state and the time–invariant random effects; assume that cov(γ,α20) =
B12.

The initial state conditions are moved into the observation equation. Defin-
ing α†

t = αt −∏t−1
i=0 Φt−iα0, we express the SSM as

yt = x
′
tβ + (h

′
t

t−1∏
i=0

Φt−i)α0 + z
′
tγ + h

′
tα

†
t + νt

α†
t = Φtα

†
t−1 + ξt. (3.2)
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The state transition equation retains its original form, but the new initial state
α†

0 is now fixed at the value 0. Harvey (1989), page 139, refers to this as the
Generalized Least Squares (GLS) transformation.

Partitioning b
′
t = h

′
t

∏t−1
i=0 Φt−i = (b

′
1t : b

′
2t), according to the partition of

the initial state α0 = (α
′
10,α

′
20)

′
, we can write the model as

yt = x∗′
t β∗ + z∗

′
t γ∗ + h

′
tα

†
t + νt

α†
t = Φtα

†
t−1 + ξt, (3.3)

where x∗′
t = (x

′
t : b

′
1t) is the 1×(p+q1) design vector at time t for the ( p+q1)×1

vector of “fixed” effects β∗ = (β
′
,α

′
10)

′
and z∗′t = (z

′
t : b

′
2t) is the 1 × (g + q2)

design vector at time t for the (g+q2)×1 vector of time–invariant random effects
γ∗ = (γ

′
,α

′
20)

′
. In vector form

y = Xβ∗ + Zγ∗ + Hα† + ν, (3.4)

where

y =




y1

y2
...

yT


 , X =



x∗′

1

x∗′
2
...

x∗′
T


 , Z =



z∗′1
z∗′2
...

z∗′T


 , H =



h

′
1 0 · · · 0

0 h
′
2 · · · 0

...
...

...
...

0 0 · · · h′
T


 ,

α† =




α†
1

α†
2
...

α†
T


 , ν =




ν1

ν2
...

νT


 .

The SSM is now expressed in terms of a linear mixed model. The “fixed”
effect vector β∗ is assigned a flat prior distribution. The vector of the time–
invariant random effects γ∗ has a N(0,B) prior distribution; the covariance
matrix B consists of B11 and B22 on its diagonal, and covariance component
B12. The Tq × 1 vector of modified states α† has mean 0 and covariance matrix
D, which can be obtained recursively from the state transition equation in (3.1).
Let Ds,t = cov(α†

s,α
†
t) and D0,0 = 0. Then

Ds,t =

{
ΦtDt−1,t−1Φ

′
t + Ξt, if s = t,

Ds,s
∏t

i=s+1 Φ
′
i, if s < t.

(3.5)

Furthermore, let

Λ = HDH
′
+ σ2I and V = var(y) = ZBZ

′
+ Λ. (3.6)
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Simple matrix algebra shows that

V−1 = Λ−1 − Λ−1Z(Z
′
Λ−1Z + B−1)−1Z

′
Λ−1

and |V| = |ZBZ
′
+ Λ| = (|Λ|/|B−1|)|B−1 + Z

′
Λ−1Z|, (3.7)

implying ln |V| = ln |Λ| + ln |B| + ln |B−1 + Z
′
Λ−1Z|. These results are needed

later when we evaluate the restricted maximum likelihood function.

3.2. The augmented Kalman filter

A brute-force application of the results in Section 2 to the analysis of the
SSM in (3.4) would require the inversion of the large T × T covariance matrix
V. We circumvent this by using the Kalman filter (KF) to perform the Cholesky
decomposition of Λ = HDH

′
+ σ2I. More specifically, Λ−1 = M

′
F−1M, where

M is the KF operator (a lower triangular matrix with ones in the diagonal)
that produces the innovations in the simple state space model yt = h

′
tα

†
t + νt.

F = diag(f1, . . . , fT ) is a diagonal matrix which contains the variances of these
innovations; it, too, is output of the KF recursions. The matrix M can be
obtained by running the KF recursions on the T columns of the T × T identity
matrix I.

For computational efficiency we expand the prediction and updating re-
cursions of the KF algorithm to matrix recursions; that is, we augment the
Kalman Filter (see De Jong (1991) and Jones (1993) for related discussion).
We apply the KF estimating and updating procedure that originates from the
model yt = h

′
tα

†
t + νt; α†

t = Φtα
†
t−1 + ξt; α†

0 = 0, to each column of the
T × ( p + g + q + 1 + T + qT ) matrix [X : Z : y : I : H] . The predictions and
updates that the KF produces at time t when applied to the columns of this
matrix are collected in “state” prediction and “state” update matrices, denoted
by At/t−1 and At/t respectively. Here

At/s =
[
α

x(1)

t/s , . . . ,α
x(p+q1)

t/s : α
z(1)

t/s , . . . ,α
z(g+q2)

t/s : α
(y)
t/s : αi1

t/s, . . . ,α
iT
t/s

: α
h(1)

t/s , . . . ,α
h(qT )

t/s

]
; s = t − 1, t, (3.8)

where x(j) is the jth column of X, z(j) is the jth column of Z, h(j) is the jth
column of H and ij is the indicator vector for time j. The KF implies the
following recursions:

(a) At/t−1 = ΦtAt−1/t−1; (b) Pt/t−1 = ΦtPt−1/t−1Φ
′
t + Ξt;

(c) At/t = At/t−1 +
1
ft

Pt/t−1htE
′
t; (d) Pt/t = Pt/t−1 −

1
ft

Pt/t−1hth
′
tPt/t−1;

(e) ft = h
′
tPt/t−1ht + σ2; (f) dett = dett−1 + ln ft, (3.9)



MIXED MODEL REPRESENTATION OF STATE SPACE MODELS 979

where E
′
t =

[
x∗′

t : z∗′t : yt : i
′
t : h(t)

′]−h
′
tAt/t−1 is the 1×(p+g+q+1+T +qT ) row

vector that collects the “innovations” at time t for the rows of [X : Z : y : I : H] .
The vector h(t)

′
is the tth row of the matrix H. Notice that only equations

(a) and (c) in (3.9) are augmented. The initial conditions for the recursions in
(3.9) are A0/0 = 0, P0/0 = 0 and det0 = 0. Recursion (f) is used to calculate
ln|Λ| = detT . Simplifications in the recursions occur because of the special nature
of the matrices I and H (that is, α

ij
t/t−1 = α

ij
t/t = 0 for j > t and α

h(j)

t/t−1 = α
h(j)

t/t =
0 for j > tq), and similarly for the corresponding elements in Et. They result in
considerable computational time savings in the algorithm.

The results of the augmented Kalman filter are used in the matrix recursion

Qt([X : Z : y : I : H]) = Qt−1([X : Z : y : I : H]) +
1
ft

EtE
′
t, (3.10)

with starting value Q0([X : Z : y : I : H]) = diag(0,B−1, 0,0,0). At the end of
the recursions we obtain the (p + g + q + 1 + T + qT ) crossproduct matrix

QT ([X :Z :y :I :H])=




X
′
Λ−1X X

′
Λ−1Z X

′
Λ−1y X

′
Λ−1 X

′
Λ−1H

Z
′
Λ−1X Z

′
Λ−1Z+B−1 Z

′
Λ−1y Z

′
Λ−1 Z

′
Λ−1H

y
′
Λ−1X y

′
Λ−1Z y

′
Λ−1y y

′
Λ−1 y

′
Λ−1H

Λ−1X Λ−1Z Λ−1y Λ−1 Λ−1H
H

′
Λ−1X H

′
Λ−1Z H

′
Λ−1y H

′
Λ−1 H

′
Λ−1H




.

(3.11)
The necessary quantities for inference in the SSM (that is, for likelihood eval-
uation, signal extraction and smoothing) are obtained by sweeping the matrix
QT ([X : Z : y : I : H]) on its first p + g + q rows, which correspond to time–
invariant (fixed and random) effects. Sweeping a matrix C on its kth row results
in a matrix C∗ with elements: c∗kk = 1/ckk, c∗ik = −cik/ckk for i �= k, c∗kj = ckj/ckk

for j �= k, and c∗ij = cij − (cikckj/ckk) for i �= k, j �= k. The diagonal element
ckk is referred to as the pivot of the sweep. The sweep operator is reversible and
commutative. (See Goodnight (1979) for a tutorial on the sweep operator.) Let
us denote the resulting matrix by

Q∗
T ([X : Z : y : I : H]) = SWP[1, .., p + g + q]QT ([X : Z : y : I : H]). (3.12)

The successive sweep operations are easy to program. However, for the purpose
of showing that the resulting matrix Q∗

T contains all needed quantities, we carry
out the sweep in two stages. The first sweep is on the rows that correspond to
the time–invariant random effects; that is, on the second “row” of matrices in
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(3.11). This results in


X
′
V−1X − X

′
V−1ZB X

′
V−1y X

′
V−1 X

′
V−1H

BZ
′
V−1X B−BZ

′
V−1ZB BZ

′
V−1y BZ

′
V−1 BZ

′
V−1H

y
′
V−1X − y

′
V−1ZB y

′
V−1y y

′
V−1 y

′
V−1H

V−1X − V−1ZB V−1y V−1 V−1H
H

′
V−1X −H

′
V−1ZB H

′
V−1y H

′
V−1 H

′
V−1H




. (3.13)

The matrices in the second “row” and “column” are obtained after using the
identities

(Z
′
Λ−1Z + B−1)−1 = B− BZ

′
V−1ZB

(Z
′
Λ−1Z + B−1)−1Z

′
Λ−1 = (B − BZ

′
V−1ZB)Z

′
Λ−1 = BZ

′
V−1. (3.14)

A by-product of this first sweep is |Z′
Λ−1Z + B−1| =

∏p+q1+g+q2
i=p+q1+1 pvi, where pvi

denotes the ith pivot of the sweep. Next we sweep the matrix in (3.13) on the
rows that correspond to the “fixed” effects; that is the first “row” of matrices in
(3.13), and obtain

Q∗
T ([X :Z :y :I :H])=




(X
′
V−1X)−1 − UZB β̂

∗
U UH

−BZ
′
U

′
B−BZ

′
WZB γ̂∗ BZ

′
W BZ

′
WH

−β̂
∗′

γ̂∗′ y
′
Wy y

′
W y

′
WH

−U
′ − WZB Wy W WH

−H
′
U

′ −H
′
WZB H

′
Wy H

′
W H

′
WH




(3.15)
where W = V−1 −V−1X(X

′
V−1X)−1X

′
V−1 and U = (X

′
V−1X)−1X

′
V−1.

3.3. Inference in the SSM

The entries in the matrix (3.15) hold the key to all inference in the state
space model. Selected submatrices of Q∗

T , together with results from Section 2,
lead to the following results:
(1) Computation of the restricted loglikelihood follows immediately from equation
(2.3) and is achieved by using the elements in Q∗

T ([X : Z : y]) = SWP[1, .., p +
g + q]QT ([X : Z : y]), the identity |X′

V−1X| =
∏p+q1

i=1 pvi (a by–product of the
second sweep), the result in (3.7), and the recursion (f) in (3.9). The restricted
loglikelihood is calculated as

lR = const − 1
2
detT − 1

2

p+g+q∑
i=1

ln pvi −
1
2

ln |B| − 1
2
y

′
Wy (3.16)

(2) Estimation of effects and their mean square errors follows from equations
(2.6) and (2.7). The matrix Q∗

T ([X : Z : y]) contains the necessary quantities
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needed to obtain the BLUE of the fixed effects β∗ and the BLUP of the time-
invariant effects γ∗ in model (3.4), together with their mean square errors: β̂

∗
=

(X
′
V−1X)

−1
X

′
V−1y, γ̂∗ = BZ

′
Wy, MSE(β̂

∗
) = (X

′
V−1X)

−1
, MSE(γ̂∗) =

B− BZ
′
WZB.

(3) Signal extraction and noise estimation follows from the mixed-model results
in (2.8) and (2.9) and setting R = σ2I. The needed quantities are given in
Q∗

T ([X : Z : y : I]) = SWP[1, . . . , p + g + q]QT (X : Z : y : I). The signal and
noise vector estimates and their MSEs are given by

ŝ = y − σ2Wy;MSE(ŝ) = σ2I − σ4W

ν̂ = σ2Wy;MSE(ν̂) = σ2I − σ4W. (3.17)

Note that signal extraction is done directly, without first having to obtain the
smoothed states.
(4) State smoothing follows from (2.7). The BLUP of the vector of modified
states and its MSE are given by

α̂† = DH
′
Wy and MSE(α̂†) = D− DH

′
WHD. (3.18)

The required matrices H
′
Wy and H

′
WH are part of Q∗

T ([X : Z : y : I : H]) in
(3.15), and the matrix D is defined in (3.5). An estimate of the unmodified state
αt is easily obtained, as it is expressed as a linear combination of α†

t and the
initial condition α0.

Comments

Our algorithm provides a smoother that does not require backward recur-
sions. This is different from traditional smoothing approaches which require both
forward and backward recursions (see De Jong (1991)). Furthermore, our algo-
rithm provides the complete MSE matrices of the vector of smoothed states and
of the vector of signals (that is, variances as well as covariances of estimated
states and signals at different times). The only drawback of our approach is the
large storage requirement that depends on both the number of time points T

and the dimension of the state vector q. For example, in the local linear trend
model discussed in Section 4.2 the state vector is of dimension 2, and with 100
observations Q∗

T ([X : y : I : H]) is a 303 × 303 matrix. However, considerable
savings are obtained during the matrix recursions by utilizing the simplifications
that arise from the special structure of I and H. Also, if the goal is likelihood
evaluation and signal extraction (which implies that H does not have to be in-
cluded in the augmented recursions), the required Q∗

T ([X : y : I]) is a 103 × 103
matrix. While the number of pivots in the sweep is small (as p + g + q = 2
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is small), the number of elements that are changed during each sweep is of the
order T 2. However, if one’s interest is in MSE(ŝt) only and not in the covariances
among estimated signals, then the calculations simplify considerably, as it is not
necessary to sweep the off–diagonal elements of Λ−1. Finally, if all one needs is
the evaluation of the likelihood, I can be left out as well and Q∗

T ([X : y]) is a
3× 3 matrix. This discussion shows that while the dimension of the matrix may
be large, computational savings can be realized by processing only the relevant
components.

3.4. The disturbance smoother for direct estimation of disturbance
terms

Consider the state space model in (3.3), but now express this model in terms
of the disturbances ξ. That is

y = Xβ∗ + Zγ∗ + Kξ + ν, (3.19)

where

K =



h

′
1 0 · · · 0

h
′
2Φ2 h

′
2 · · · 0

...
...

. . .
...

h
′
T

∏T−2
i=0 ΦT−i h

′
T

∏T−3
i=0 ΦT−i · · · h

′
T


 and ξ =




ξ1

ξ2
...

ξT


 . (3.20)

The matrix K is of dimension T × qT . The disturbance vector ξ has mean 0 and
covariance matrix Ξ̃ = diag(Ξ1, . . . ,ΞT ). Equation (2.7) provides the BLUP of
the vector ξ and its associated MSE:

ξ̂ = Ξ̃K
′
Wy;MSE(ξ̂) = Ξ̃ − Ξ̃K

′
WKΞ̃. (3.21)

In particular,
MSE(ξ̂t) = Ξt −ΞtKtWK

′
tΞt, (3.22)

where Kt = [0, . . . ,0,ht,Φ
′
t+1ht+1, (Φ

′
t+1Φ

′
t+2)ht+2, . . . , (Φ

′
t+1 . . .Φ

′
T )hT ] is a

q × T matrix. The expressions that are needed for these calculations can be
obtained by replacing the matrix H in the augmented KF recursions in Section
3.2 by the matrix K. The resulting matrix

Q∗
T ([X : Z : y : I : K]) = SWP[1, .., p + g + q]QT ([X : Z : y : I : K]) (3.23)

contains the needed quantities K
′
Wy and K

′
WK. The disturbance smoother is

computationally simpler than the state smoother in the previous section, due to
the fact that Ξ̃ is a block diagonal matrix. Furthermore, if we are not interested
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in the covariances between disturbances, the sweep in (3.23) needs to be carried
out only on the Tq2 elements of the diagonal blocks in K

′
Λ−1K.

3.5. Forecasting and missing observations

Missing observations can be treated as parameters with a diffuse prior dis-
tribution. Suppose model (3.19) has T −T0 missing observations; without loss of
generality, assume that the missing observations are the last T −T0 observations.
Missing values are incorporated as

y∗ =

[
yobs

0

]
=

[
Xobs 0
Xmis I

] [
β∗

−ymis

]
+

[
Zobs

Zmis

]
γ∗ + Kξ + ν, (3.24)

where yobs is the T0 ×1 vector of observed responses, 0 is a (T −T0)×1 vector of
zeroes, Xobs and Zobs are the design matrices that correspond to the observed part
of the data, Xmis and Zmis are the (T −T0)×(p+q1) and (T −T0)×(g+q2) design
matrices that correspond to the missing data, and I is the (T − T0) × (T − T0)
identity matrix. The above model can be expressed as

y∗ =
[
X J

] [ β

−ymis

]
+ Zγ∗ + Kξ + ν. (3.25)

We impute zeroes for the missing observations, augment the design matrix by a
T × (T −T0) matrix of indicators for the missing values, and augment the vector
of “fixed” effects by parameters that represent the negative of the missing values.

The inference discussed in the previous sections applies directly. In fact, the
matrix J in (3.25) is processed through the KF as part of the IT×T matrix. This
implies that we run the augmented KF on the same matrices as before, except
that y is replaced by y∗. We then further sweep the matrix in (3.23) on the rows
that correspond to the missing observations in the fourth “row” of matrices.
Forecasts can be viewed as predictions of “missing” future observations. Hence
the same method can be used for forecasting a vector of future observations and
its MSE matrix.

4. Algorithms for REML Estimates in State Space Models

4.1 EM algorithm in the general state space model

In Section 3.3 we showed how to calculate the restricted loglikelihood func-
tion from the output of the augmented Kalman filter and the subsequent sweep
operation. Recursive numerical optimization approaches can then be employed
to calculate REML estimates.

In this section we develop an EM algorithm for obtaining the REML esti-
mates of the variance components in the state space model. The EM algorithm
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has the advantages of never decreasing the loglikelihood function during the
course of the iterations, and of converging to feasible (non-negative) variance
estimates. The disturbance smoother of Section 3.4 plays a central role in the
EM computations.

We formulate the EM algorithm for the state space model in terms of its
general mixed model representation in (3.19): y = Xβ∗ + Zγ∗ + Kξ + ν, with
independent random vectors ν ∼ N(0,R = σ2IT ) and ξ ∼ N(0, Ξ̃ = IT

⊗
Ξ).

We assume that the transition matrices are known, and we let θ be the vector of
parameters, not including the p-dimensional vector of fixed effects.

Assigning a flat prior to the fixed effects β∗ and integrating over β∗ leads to
the complete data marginal likelihood L(θ|y,γ∗, ξ), which is equal to

const × 1

|Ξ̃| 12 |B| 12
e−

1
2
ξ
′
Ξ̃−1ξ− 1

2
γ∗′B−1γ∗

∫ 1

|R| 12
e−

1
2
[y−Xβ∗−Zγ∗−Kξ]

′
R−1[y−Xβ∗−Zγ∗−Kξ]dβ∗. (4.1)

Let G = I − X(X
′
X)−1X

′
, the “hat” matrix in linear regression. By taking

the logarithm of the above equation and substituting R = σ2I, we obtain the
complete data restricted loglikelihood (up to a constant)

l(θ|y,γ∗, ξ) = − T − p

2
ln σ2− 1

2
ln |X′

X|− 1
2σ2

[y−Zγ∗−Kξ]
′
G[y−Zγ∗−Kξ]

− 1
2

ln |Ξ̃| − 1
2
ξ
′
Ξ̃−1ξ − 1

2
ln |B| − 1

2
γ∗′B−1γ∗. (4.2)

The (r+1)th iteration of the EM algorithm involves the following two steps.
In the expectation step we obtain E[l(θ|y,γ∗, ξ)|y,θ(r)], where θ(r) is the rth
iterate of the parameter vector. In the maximization step we maximize this
conditional expectation with respect to θ; the maximizer is the (r + 1)th iter-
ate θ(r + 1). These steps are repeated until a suitable convergence criterion is
satisfied.

The E–step of the EM algorithm results in

E[l(θ|y,γ∗, ξ)|y,θ(r)]

=−T − p

2
ln σ2− 1

2
ln |X′

X|− 1
2σ2

E{[y−Zγ∗−Kξ]
′
G[y−Zγ∗ − Kξ]|y,θ(r)}

−1
2

ln |Ξ̃|− 1
2
E{ξ′

Ξ̃−1ξ|y,θ(r)}− 1
2

ln |B|− 1
2
E{γ∗′B−1γ∗|y,θ(r)}. (4.3)

The (r + 1)th iterate for the noise variance becomes

σ2(r + 1) =
[ν̂(r)]

′
G[ν̂(r)] + tr[GMSE(ν̂(r))]

T − p
. (4.4)
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The quantities ν̂(r) = y − Zγ̂∗(r) − Kξ̂(r) = σ2(r)W(r)y and MSE(ν̂(r)) =
σ2(r)I−σ4(r)W(r), where W(r) = V−1(r)−V−1(r)X(X

′
V−1(r)X)−1X

′
V−1(r)

and V(r) = KΞ̃(r)K
′
+ ZBZ

′
+ σ2(r)I, can be obtained from the disturbance

smoother in Section 3.4. Simple algebra shows that

[ν̂(r)]
′
G[ν̂(r)] = σ4(r)y

′
W(r)W(r)y and

tr[GMSE(ν̂(r))] = (T − p)σ2(r) − σ4(r)trW(r)

and hence

σ2(r + 1) = σ2(r) + σ4(r)
[(W(r)y)

′
(W(r)y) − trW(r)]

T − p
. (4.5)

The result E{ξ′
Ξ̃−1ξ|y,θ(r)} =

∑T
t=1 ξ̂

′
t(r) Ξ−1 ξ̂t(r) + T tr(Ξ−1Ξ(r))

−∑T
t=1 tr(Ξ−1Ξ(r)KtW(r)K

′
tΞ(r)), which follows from properties of the normal

distribution and the mean square error result in (3.22), is used in the derivation
of the EM iterates for the covariance matrix Ξ. Taking the derivative with
respect to Ξ of the expectation of the restricted complete loglikelihood in (4.3)
conditional on the observed data, evaluating the derivative at θ(r), and setting
it to 0, results in

− T

2
Ξ−1 +

1
2
Ξ−1

(
T∑

t=1

ξ̂t(r)ξ̂
′
t(r)

)
Ξ−1 +

T

2
Ξ−1Ξ(r)Ξ−1

−1
2
Ξ−1

( T∑
t=1

Ξ(r)KtW(r)K
′
tΞ(r)

)
Ξ−1 = 0. (4.6)

This leads to the updating equation

Ξ(r + 1) = Ξ(r) +
∑T

t=1 ξ̂t(r)ξ̂
′
t(r) − Ξ(r)(

∑T
t=1 KtW(r)K

′
t)Ξ(r)

T
. (4.7)

All quantities needed for computation are stored in the matrix Q∗
T ([X : Z : y :

I : K]) (see Section 3.4).

4.2. Estimation of variances in structural time series models

The EM iterations in Section 4.1 assume an arbitrary covariance matrix for
the disturbances ξt. In structural time series model this covariance matrix is
diagonal, and the discussion in this section shows how to handle this situation.
Structural time series models represent a flexible class for modeling and forecast-
ing time series observations, and these models are described in detail by Harvey
(1989). The structural time series model with local polynomial trend of order g
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and indicator variable seasonality of order s can be written in state space form
as follows. The observation equation is yt = h

′
αt + νt, where the vector h is a

(g + 1) + (s − 1) = g + s vector of zeros, except for ones in rows 1 and g + 2
and αt = [µ1

t , µ
2
t , . . . , µ

g+1
t , τt, τt−1, . . . , τt−s+2]

′
is a state vector of dimension

(g +1)+(s−1); the first g +1 components represent the trend coefficients, while
the remaining (s − 1) components correspond to seasonal indicators. The state
transition equation is given by αt = Φαt−1 + ξt, where the (g + s) × (g + s)
transition matrix is

Φ =

[
Ψ 0
0 Ω

]
. (4.8)

The nonzero elements of Ψ are given by Ψij = 1/(j− i)!, for j = i, . . . , g+1 ; i =
1, . . . , g + 1. The nonzero elements of Ω are given by Ωij = −1, for i = 1 ; j =
1, . . . , s − 1 and Ωi,i−1 = 1 for i = 2, . . . , s − 1. The g + 2 nonzero random
components in the disturbance vector ξt =

[
ξ1
t , ξ

2
t , . . . , ξg+1

t , ξg+2
t , 0, . . . , 0

]
are

mutually independent with zero means and variances σ2
1 , σ

2
2 , . . . , σ

2
g+1, σ

2
g+2; in

addition, they are independent across time. (See Harvey (1989) and Abraham
and Ledolter (1986) for further discussion.)

The variance components σ2, σ2
1 , σ

2
2 , . . . , σ

2
g+1, σ

2
g+2 need to be estimated from

the data. Without prior information for the initial values of the trend and seasonal

coefficients, we assign a diffuse prior to α0 =
[
µ1

0, µ
2
0, . . . , µ

g
0, µ

g+1
0 ; τ0, . . . , τ−s+2

]′
.

We incorporate the initial conditions into the vector of fixed effects (β = α0)
and write the structural time series model in the following state space form:

yt = h
′
Φtα0 + h

′
α†

t + νt = x
′
tβ + h

′
α†

t + νt

α†
t = Φα†

t + ξt, (4.9)

with the modified initial condition α†
t fixed at 0. Equation (4.8) implies Φt =

diag(Ψt,Ωt). After some tedious algebra we can express the model in (4.9) as a
variance components model

y = Xβ + L1ξ
1 + L2ξ

2 + · · · + Lg+1ξ
g+1 + Lg+2ξ

g+2 + ν. (4.10)

The rows of the T × (g + s) matrix X are given by x
′
t =

[
1, t, t2

2! , . . . ,
tg

g! ; l
′
t

]
,

where l
′
t is a row vector of length s − 1, with l

′
t = (−1,−1, . . . ,−1,−1) for

t = ks+1; l
′
t = (0, 0, . . . , 0, 1) for t = ks+2; l

′
t = (0, 0, . . . , 1, 0) for t = ks+3;. . .;

l
′
t = (1, 0, . . . , 0, 0) for t = ks + s. The matrices Li are lower triangular and
are obtained by expressing the state vector in terms of the disturbance vectors
ξi = (ξi

1, ξ
i
2, . . . , ξ

i
T )

′
, i = 1, . . . , g + 2; this is achieved by repeated substitution
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in the state transition equation (4.9). The lower triangular parts of the matrices
Lj+1, j = 0, . . . , g, are given by

Lj+1(t, k) =
(t − k)j

j!
; t = 1, . . . , T ; k = 1, . . . , t. (4.11)

The nonzero elements of the lower triangular incidence matrix for the seasonal
disturbances Lg+2 are

Lg+2(t, t − ks) = +1 ; k = 0, . . . ,
[ t − 1

s

]
and Lg+2(t, t − ks − 1) = −1; k = 0, . . . ,

[ t − 2
s

]
. (4.12)

The model in (4.10) is expressed as a variance components model of the form
(2.2) with m = g + 2, Zi = Li, πi = ξi, and e = ν. Hence we can apply the
result in (2.11) to obtain the EM iterates for the REML estimates of the variance
components:

σ2(r + 1) = σ2(r) + σ4(r)
[W(r)y]

′
[W(r)y] − tr[W(r)]
T − g − s

σ2
i (r + 1) = σ2

i (r) + σ4
i (r)

[L
′
iW(r)y]

′
[L

′
iW(r)y] − tr[L

′
iW(r)Li]

T
;

i = 1, . . . , g + 2, (4.13)

where W(r) = V−1(r)−V−1(r)X(X
′
V−1(r)X)−1X

′
V−1(r) with V(r)=σ2(r)I+∑g+2

i=1 σ2
i (r)LiL

′
i.

The EM algorithm requires the calculation of the matrices Wy, L
′
iWy and

the diagonal elements of L
′
iWLi (i = 1, . . . , g + 2). These quantities are output

of the augmented KF and sweep algorithm in Section 3.2. The KF recursions
are applied to the columns of the matrix [X : y : I : L1 : L2 : . . . : Lg+2] and
the resulting cross–product matrix is swept on its first g + s rows. The result is
stored in Q∗

T (X : y : I : L1 : L2 : . . . : Lg+2). The fact that the Li matrices are
lower triangular simplifies the computational burden.

The first and second derivatives of the restricted loglikelihood are given by

(i)
dlR
dσ2

i

= −1
2
tr(L

′
iWLi) +

1
2
y

′
WLiL

′
iWy,

(ii)
d2lR

dσ2
i dσ2

j

=
1
2
ssq(L

′
iWLj) − y

′
WLjL

′
jWLiL

′
iWy,

(iii) −E(
d2lR

dσ2
i dσ2

j

) =
1
2
ssq(L

′
iWLj), (4.14)
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where i = 0, . . . , g + 2 , j = 0, . . . , g + 2 . In the above expression L0 = I, σ2
0 =

σ2 and ssq(A) denotes the sum of squares of the elements of the matrix A
(see Searle at al. (1992), page 252). Expression (iii) in (4.14) provides the
ijth element of the information matrix I(θ) and expression (ii) gives the ijth
element of the Hessian H(θ). These matrices, together with the vector of first
derivatives whose elements are given in (i) above, define the Newton–Raphson
and the scoring algorithm for obtaining REML estimates:

Newton–Raphson : θ(r + 1) = θ(r) − H−1(θ(r))
dlR
dθ

|θ(r)

Scoring : θ(r + 1) = θ(r) + I−1(θ(r))
dlR
dθ

|θ(r). (4.15)

The asymptotic variance covariance matrix of the REML estimates θ̂ =
[σ̂2, σ̂2

1 , . . . , σ̂
2
g+2]

′
is estimated as I−1(θ̂).

The EM algorithm in (4.13) requires neither the off-diagonal elements of
the L

′
iWLi matrices nor matrices of the form L

′
iWLj with i �= j, as do the

scoring and Newton–Raphson algorithms in (4.15). Hence each EM iteration
requires considerably fewer computations (sweeping operations) than the other
two algorithms. The EM algorithm has two other advantages: it increases the
likelihood at each iteration, and the iterates it produces are always nonnegative.
On the other hand, the EM algorithm exhibits only linear convergence and is
especially slow when one or more of the variance components are close to 0.

All quantities needed to implement the Newton–Raphson, the scoring and
the EM algorithms are stored in Q∗

T (X : y : I : L1 : L2 : . . . : Lg+2). Hence, it is
straightforward to alternate between the three algorithms whenever convergence
problems occur.

4.3. Examples

We illustrate our results by applying our algorithms to (1) the Chicago purse
snatching data, taken from Harvey (1989), and to (2) the monthly housing starts
of privately owned single–family structures, taken from Abraham and Ledolter
(1983). We assume convergence if from one iteration to the next the maximum
relative change over all parameter estimates is smaller than .001%.

Harvey (1989), page 218 fits a local linear trend (that is, the model in (4.9)
without the seasonal components) to the Chicago purse snatching data. This
data set consists of the reported purse snatchings in the Hyde park neighbor-
hood of Chicago from January 1968 through September 1973 (the observations
are 28 days apart, T = 71). We notice slow convergence of the parameter es-
timates in the local linear trend model, as the slope variance is close to zero.
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Following Harvey’s suggestion, we set σ2
2 equal to zero and fit a model with a de-

terministic slope and a level that follows a random walk. For this model the EM
algorithm converges without difficulties. The final estimates are almost identical
to those obtained by Harvey. Our estimates of the noise variance and the level
variance are 23.9368 and 6.1738, versus 23.93 and 6.174 found by Harvey. It
took 114 iterations for our algorithm to converge, although reasonable estimates
were obtained long before that point. The starting values for the iterations were
naively set to 10.0 for both variance components. Our estimated asymptotic
standard errors of the parameter estimates (s.e.) are close to those obtained by
Harvey’s frequency domain methods. A summary of the convergence history for
this data set is given in Table 1.

Table 1. EM for purse snatching data

Iter σ2 σ2
1 σ2

2 loglike
1 14.6468 11.4637 0 -166.409
2 17.5013 11.5317 0 -165.525
...

...
...

...
...

22 23.2408 7.0072 0 -164.671
...

...
...

...
...

100 23.9356 6.1751 0 -164.648
...

...
...

...
...

113 23.9367 6.1738 0 -164.648
114 23.9368 6.1738 0 -164.648
s.e. 5.613 3.47 n.a.

We fit a basic structural model with monthly seasonality to the housing
starts of privately owned single–family structures from January 1965 to Decem-
ber 1975 (T = 132). We use a combination of the scoring and EM algorithm
to obtain REML estimates of the four variance components. Since the scoring
iterations can yield negative estimates, we simply replace a negative iterate by
an estimate that we obtain by dividing the previous iterate by 10. We turn to
the EM algorithm once we are unable to further increase the restricted loglike-
lihood through scoring. The starting values were set at 10000 for each variance
component. Table 2 shows the history of convergence for this data set.

The variance components for the slope and the seasonal coefficients are es-
sentially zero. This implies a deterministic slope and a deterministic seasonal
pattern. Figure 1 shows the observations and the estimated signal, as well as the
forecasts and their associated upper and lower 95% forecast limits for the next
year (using the results in Section 3.5).
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Table 2. Convergence for housing starts data

Algo Iter σ2 σ2
1 σ2

2 σ2
3 loglike

SCO 1 13990809.735 11224596.074 930728.738 1000 -1121.0089554012
SCO 2 11986772.993 17079492.173 186802.785 100 -1118.8007195076

...
...

...
...

...
SCO 9 10548086.619 21591514.717 1.7964531 1E-05 -1117.6430397670
EM 10 10221795.294 20911861.022 1.7964499 1E-07 -1117.5907009885
...

...
...

...
...

EM 61 9942260.949 20884456.366 1.7963800 1E-07 -1117.5849238671
EM 62 9942167.686 20884584.483 1.7963784 1E-07 -1117.5849238578

s.e. 4070165.312 6004292.148 17331.296 242871.962
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Figure 1. Housing starts: Data (+), signal estimates and monthly forecasts (–)
and 95% prediction limits (- -)
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