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Abstract: Consider a one-way layout in which independent observations Xi have

distributions F (x − µi) with µi unknown, 1 ≤ i ≤ k. The basic problem is to test

the family of subset hypotheses about µi. The step-up test scheme of Welsch (1977)

is studied in detail. A general result is given on how to determine the critical values

so that the type I familywise error rate is strongly controlled at a preassigned level

α, and a particular set of critical values is recommended. The interrelationship

between the step-up tests and the closed tests of Marcus, Peritz and Gabriel (1976)

is illuminated. This enables us to construct a closed test which is uniformly more

powerful than a step-up test. Monte Carlo simulation is carried out to compare

the power of the two new tests with that of Welsch’s (1977) test and several other

multiple tests. The two new tests turn out to be preferable. The one-way ANOVA

setting is given special attention, and the critical values of the new step-up test are

tabulated.
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1. Introduction

Suppose that Xi, 1 ≤ i ≤ k, are independent random observations with
distributions F (x − µi), where the µi are unknown parameters. Consider the
problem of testing the family of subset hypotheses {HP : ∀ P ⊆ K with |P | ≥ 2},
where K = {1, . . . , k}, |A| denotes the number of elements in set A, and HP is
the hypothesis that all the µi, i ∈ P are equal. There is only one step-up test for
this family of hypotheses in the literature, which is proposed by Welsch (1977)
and denoted as WELUP in the paper.

For m given numbers ai, i ∈ I ⊂ {1, 2, . . .} where |I| = m, let the ordered ai

values be denoted as a[1]I ≤ a[2]I ≤ · · · ≤ a[m]I . So X[1]K ≤ X[2]K ≤ · · · ≤ X[k]K

are the ordered random observations. Hochberg and Tamhane (1987, pp.124)
describe Welsch’s (1977) step-up test, based on the critical values ξ2 ≤ ξ3 ≤
· · · ≤ ξk, as follows:

Step 1. Begin by testing all the “gaps” or “2-ranges”, X[i+1]K − X[i]K (1 ≤
i ≤ k− 1), by comparing them with the critical value ξ2. If X[i+1]K −X[i]K > ξ2,
then declare that gap as significant and the corresponding pair of treatments as
different. Also declare all sets of treatments containing that pair as heterogeneous
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and all the p-ranges containing that gap as significant by implication without
further tests. Proceed to step 2 if at least two adjacent gaps are not declared
significant.

Step 2. In general, test a q-range X[i+q−1]K − X[i]K (1 ≤ i ≤ k − q + 1, 2 ≤
q ≤ k), using the critical value ξq, if that q-range is not declared significant
by implication at an earlier step. If X[i+q−1]K − X[i]K > ξq, then declare that
q-range significant and the pair of treatments corresponding to X[i+q−1]K and
X[i]K different. Also declare all sets of treatments containing that subset of
q treatments heterogeneous and all the p-ranges containing that q-range with
p > q significant by implication without further tests. Continue in this manner
until no ranges remain to be tested that are not already declared significant.

One important question is how to determine the values of ξi so that the type
I familywise error (FWE) rate is strongly controlled at a preassigned level α, i.e.
the probability of a false rejection of any HP is at most α, irrespective of which
and how many of the HP are true. WELUP uses a set of ξi values which is
based on the Bonferroni inequality. In this paper a general result is established
on how to determine the critical values ξi so that the type I FWE rate is strongly
controlled at level α. A particular set of critical values is recommended, and the
corresponding test turns out to be slightly more powerful than WELUP. These
results are contained in Section 2. In Section 3 the interrelationship between
the step-up tests and the closed tests of Marcus, Peritz and Gabriel (1976) is
investigated. It is shown that a step-up test is equivalent to a closed test. This
result enables us to construct a closed test that is uniformly more powerful than
a step-up test. The important setting of normal distributions with a common
unknown variance is dealt with in Section 4. To compare the power of the two
new tests proposed in this paper with that of WELUP and several other multiple
tests, a Monte Carlo simulation study is carried out. The results of this study
are reported in Section 5. Finally, Section 6 contains some closing remarks.

Before ending this section, we define some notation which is used throughout
this paper. A multiple subset hypothesis HP is of the form HP = ∩r

i=1HPi where
P = (P1, . . . , Pr) is a “partition” of the set K = {1, . . . , k}, that is, the Pi are
disjoint subsets of K with |Pi| = pi ≥ 2 such that

∑r
i=1 pi ≤ k; here r, the

number of homogeneous subsets, is between 1 and k/2. In order to discuss the
strong control of type I FWE rate and closed tests, it is necessary to consider
multiple subset hypotheses.

For P ⊆ K with |P | = p ≥ 2 and 2 ≤ q ≤ p, define

Rq(Xi : i ∈ P ) = max
1≤j≤p−q+1

(X[ j+q−1 ]P − X[ j]P ) and

{M(Xi : i ∈ P ) ≤ (c2, . . . , cp)} = ∩p
q=2{Rq(Xi : i ∈ P ) ≤ cq},
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where the ci are given constants.

2. Determination of the Critical Values

The choice of the critical values ξi(2 ≤ i ≤ k) can be made in terms of the
probabilities

αp = 1 − P0{M(Xi : 1 ≤ i ≤ p) ≤ (ξ2, . . . , ξp)}, p = 2, . . . , k, (2.1)

where the subscript 0 indicates that the probability is evaluated under µ1 =
· · · = µp = 0. The following lemma is fundamental in determining the values of
αp (2 ≤ p ≤ k) so that the type I FWE rate is strongly controlled at level α.

Lemma 2.1. Suppose that ξ2 ≤ · · · ≤ ξk. Then under HP = ∩r
i=1HPi we have

supPHP
{at least one HPi is rejected} = 1 −

r∏
i=1

(1 − αpi), (2.2)

where the sup is taken over all the possible values of the µi under HP, and
pi = |Pi|.
Proof. The key is to observe that under the assumption ξ2 ≤ · · · ≤ ξk

{M(Xj : j ∈ Pi) ≤ (ξ2, . . . , ξpi)} ⊆ {HPi is accepted}.
It follows therefore that

PHP
{at least one HPi is rejected}

= 1 − PHP
{∩r

i=1(HPi is accepted)}

≤ 1 − PHP
{∩r

i=1(M(Xj : j ∈ Pi) ≤ (ξ2, . . . , ξpi))} = 1 −
r∏

i=1

(1 − αpi), (2.3)

where the equality in (2.3) follows from the independence of the Xi, and the
last equality follows from the definition of αp in (2.1). Also note that the only
inequality above becomes equality when all the µj not in the same Pi spread
infinitely apart from each other. The proof is thus completed.

The monotonicity assumption of the ξi in the lemma is noteworthy. It can
be shown that ξ2 ≤ ξ3 is necessary for (2.2), though it is unknown whether
ξ3 ≤ · · · ≤ ξk are also necessary for (2.2). Lehmann and Shaffer (1977) show
that for the step-down tests the monotonicity of the critical values is not only
sufficient but also necessary for a result similar to (2.2).

From lemma 2.1, in order to control strongly the type I FWE rate at level
α, the critical values ξi should be chosen so that

max
p1,...,pr

[
1 −

r∏
i=1

(1 − αpi)
]
≤ α, (2.4)
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where the max is taken over all sets of integers p1, . . . , pr satisfying pi ≥ 2,
∑r

i=1 pi

≤ k and 1 ≤ r ≤ k/2. We can therefore determine, firstly, a set of αp (2 ≤ p ≤ k)
from (2.4) and, then, the ξi (2 ≤ i ≤ k) from (2.1).

The specification of αp from (2.4) is discussed by several authors when
studying the step-down tests. Ryan (1960) suggests αp = αp/k (2 ≤ p ≤ k).
Tukey (1953) proposes αp = αp/k (2 ≤ p ≤ k − 2) and αk−1 = αk = α.
The Tukey-Welsch specification (Hochberg and Tamhane (1987), pp.69) uses
αp = 1 − (1 − α)p/k (2 ≤ p ≤ k − 2) and αk−1 = αk = α. Lehmann and
Shaffer (1979) suggest another specification of αp which is optimal under a cer-
tain criterion.

For step-up tests, an intuitively promising specification of αp is the one that
minimizes ξ2, then for fixed ξ2 minimizes ξ3, etc. This is because step-up tests
conclude significance by implication, starting from the 2-ranges to the k-range.
To find this specification of αp, we proceed sequentially: first determine the
maximum α2 from (2.4), then for this α2 determine the maximum α3 from (2.4),
etc.

The maximum α2, denoted as α∗
2, can be determined from those constraints

in (2.4) that involve α2 only and are given by 1−(1−α2)r ≤ α for all 1 ≤ r ≤ k/2.
So α∗

2 = 1 − (1 − α)1/[k/2], where [x] denotes the integer part of x.
After fixing α2 = α∗

2, the maximum α3, denoted as α∗
3, can be determined

from those constraints in (2.4) that involve α2 and α3 only and are given by

1 − (1 − α2)r2(1 − α3)r3 ≤ α for all r2 ≥ 0, r3 ≥ 1, 2r2 + 3r3 ≤ k.

Replacing α2 by α∗
2, we find that α3 should satisfy

α3 ≤ 1 − (1 − α)(1−r2/[k/2])r−1
3 for all r2 ≥ 0, r3 ≥ 1, 2r2 + 3r3 ≤ k,

from which α∗
3 can be determined.

Continuing in this manner, we see that the maximum αp (4 ≤ p ≤ k),
denoted as α∗

p, after fixing αi = α∗
i , 2 ≤ i ≤ p − 1, can be determined. In fact,

when k is even, then α∗
p is the same as the Tukey-Welsch specification, which is

given by α∗
p = 1− (1−α)p/k (2 ≤ p ≤ k−2) and α∗

k−1 = α∗
k = α. When k is odd,

α∗
p is the same as the optimal specification of Lehmann and Shaffer (1979), which

is given by α∗
p = 1 − (1 − α)[p/2]/[k/2]. Welsch (1977) suggests the specification

α′
p = αp/k (2 ≤ p ≤ k−2) and α′

k−1 = α′
k = α, which is based on the Bonferroni

inequality and hence does not need the independence of the Xi.
For a given specification of αp, either α∗

p or α′
p, the corresponding critical

values ξi can be solved sequentially from (2.1): first ξ2, then ξ3, etc. The ξi found
in this way may not satisfy the monotonicity assumption in Lemma 2.1 however.
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To overcome this problem, we replace ξi by ξi−1 if ξi < ξi−1, and then go on to
solve for ξi+1. It is clear that a step-up test using this set of “modified” critical
values still strongly controls the type I FWE rate at level α. The step-up test
based on α∗

p is denoted as NEWUP hereafter. WELUP uses the specification α′
p.

Table 1 in Section 4 contains the critical values ξi of NEWUP when F (·)
is the standard normal distribution. To calculate these ξi, it is necessary to
evaluate the probability P0{M(Xj : 1 ≤ j ≤ p) ≤ (ξ2, . . . , ξp)}. This probability
is calculated using the expressions given in Liu (1996a) when p = 3 and estimated
by simulation based on 1,000,000 experiments when p ≥ 4.

3. Closed Tests

To compare tests of the family of subset hypotheses, the following two def-
initions, which are similar to those in Liu (1996b), are useful. Two tests are
called equivalent if they always reach the same decisions, either rejections or ac-
ceptances, on all the subset hypotheses HP . Test A is said to dominate test B
if test A always rejects at least those HP rejected by test B. Dominance implies
at least as powerful. In this section, we first show that a step-up test, which
uses critical values ξ2 ≤ · · · ≤ ξk and strongly controls the type I FWE rate at
level α, is equivalent to a closed test. By using this result we demonstrate how
to construct a closed test which not only dominates but also is uniformly more
powerful than the step-up test.

A closed test (Marcus, Peritz and Gabriel (1976)) has two essential ingredi-
ents. The first is a size α test of each multiple subset hypothesis HP. The second
is a systematic way of making a decision on each subset hypothesis HP : reject
HP if and only if all the HP that imply HP are rejected by the corresponding
tests; HP = ∩r

i=1HPi implies HP if P ⊆ Pi for some 1 ≤ i ≤ r. It is known that
a closed test strongly controls the type I FWE rate at α.

Define a closed test which tests each HP = ∩r
i=1HPi in the following way

Accept HP ⇐⇒ M(Xj : j ∈ Pi) ≤ (ξ2, . . . , ξpi) ∀ 1 ≤ i ≤ r, (3.1)

where pi = |Pi|. This test of HP is clearly of size α from (2.4), and so the closed
test strongly controls the type I FWE rate at level α. Now we have

Theorem 3.1. The closed test defined above is equivalent to the step-up test
using critical values ξ2 ≤ · · · ≤ ξk.

Proof. Let (i) denote the index of the population associated with X[i]K , so
that µ(i) is the population mean associated with X[i]K , 1 ≤ i ≤ k. Suppose HP

is accepted by the step-up test. We shall construct an HQ which implies HP

and is accepted by the corresponding test used in the closed test, and so HP
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itself is accepted by the closed test. Note that HP can be expressed in the form
HP : µ(i1) = µ(i2) = · · · = µ(ip), where X[i1]K ≤ X[i2]K ≤ · · · ≤ X[ip]K are the
ordered values of those Xi with i ∈ P , and so 1 ≤ i1 < i2 < · · · < ip ≤ k. Note
that, if HP : µ(i1) = µ(i2) = · · · = µ(ip) is accepted by the step-up test, then
HQ : µ(i1) = µ(i1+1) = · · · = µ(i2) = µ(i2+1) = · · · = µ(ip) must also be accepted
by the step-up test, and so

M(Xj : j ∈ Q) ≤ (ξ2, . . . , ξip−i1+1). (3.2)

Now it is clear that HQ implies HP , and that HQ is accepted by the corresponding
test used in the closed test because of (3.2). Consequently, HP itself is accepted
by the closed test.

Next, we show that, if HP is rejected by the step-up test, then it is also
rejected by the closed test. For this it is sufficient to show that all the HQ that
imply HP are rejected by the corresponding tests used in the closed test. As
before, HP can be written as HP : µ(i1) = µ(i2) = · · · = µ(ip). Since HP is
rejected by the step-up test, the following must be false for all the Q′ satisfying
P ⊆ Q′ ⊆ P̄ = {(j) : i1 ≤ j ≤ ip}:

M(Xj : j ∈ Q′) ≤ (ξ2, . . . , ξq′), (3.3)

where q′ = |Q′|, otherwise we would have M(Xj : j ∈ P̄ ) ≤ (ξ2, . . . , ξip−i1+1).
Consequently HP̄ , and hence HP , would be accepted by the step-up test, which
contradicts the assumption that HP is rejected by the step-up test. Since (3.3)
is false, HQ′ is rejected by the corresponding test used in the closed test.

Now suppose that Q′′ ⊇ P and that Q′′ ∩ (P̄ )c is not empty, where (P̄ )c

denotes the complement of P̄ in K. Then the following must be false:

M(Xj : j ∈ Q′′) ≤ (ξ2, . . . , ξq′′),

where q′′ = |Q′′|, since (3.3) is false for Q′ = Q′′ ∩ P̄ . Hence, HQ′′ is rejected by
the corresponding test used in the closed test. Combining the two cases above,
we have therefore proved that all the HQ satisfying Q ⊇ P are rejected by the
corresponding tests in the closed test. The proof is thus completed.

Now, assuming that k ≥ 4 and that the Xi are continuous random variables,
we construct a closed test which not only dominates but is uniformly more pow-
erful than the step-up test. For this it suffices to construct a closed test which
dominates and is uniformly more powerful than the closed test defined in (3.1).
This can be easily achieved by noting that some tests in (3.1) have size strictly
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less than α. We define a closed test that tests HP = ∩r
i=1HPi in the following

way,

if r > 1 : accept HP ⇐⇒ M(Xj : j ∈ Pi) ≤ (ξ2, . . . , ξpi) ∀1 ≤ i ≤ r;

if r = 1 : accept HP ⇐⇒ M(Xj : j ∈ P1) ≤ λp1(ξ2, . . . , ξp1),

where λp1 is a constant satisfying

P0{M(Xj : 1 ≤ j ≤ p1) ≤ λp1(ξ2, . . . , ξp1)} = 1 − α. (3.4)

By noting from (2.4) that

P0{M(Xj : 1 ≤ j ≤ p) ≤ (ξ2, . . . , ξp)} = 1 − αp ≥ 1 − α, 2 ≤ p ≤ k,

the value of λp1 satisfying (3.4) must be no larger than one. In particular, the
value of λ2 must be strictly less than one since k ≥ 4 and so

P0{M(Xj : 1 ≤ j ≤ 2) ≤ ξ2} = 1 − α2

≥ 1 − α∗
2 = (1 − α)1/[k/2] ≥ (1 − α)1/2 > 1 − α.

It is clear that this closed test strongly controls the type I FWE rate at level
α since each individual test is of size α. It always rejects those HP rejected by
the closed test defined in (3.1) and, with a positive probability, it rejects some
HP (with |P | = 2) accepted by the closed test in (3.1) since λ2 < 1 and the
Xi are continuous. This closed test is therefore uniformly more powerful than
the step-up test, which is equivalent to the closed test in (3.1). The closed test
derived from NEWUP in this way is denoted as NEWCL hereafter. NEWCL is
uniformly more powerful than NEWUP when k ≥ 4 and the Xi are continuous.

When k ≥ 5, even more powerful closed tests can be constructed by exploring
all those tests in (3.1) that have size strictly less than α. The practical usefulness
of these closed tests might be limited however, since they need more critical values
and are much more difficult to perform than the corresponding step-up test.

For testing the family of subset hypotheses, the first step-down test was
proposed independently by Newman (1939) and Keuls (1952) and known as the
Newman-Keuls (NK) test. While the NK test does not strongly control the type I
FWE rate for k ≥ 4, various suggestions on modifying the critical values are made
so that the resulting tests – NK type tests – strongly control the type I FWE
rate (Hochberg and Tamhane (1987), pp.66-71). For instance, Welsch (1977)
suggests basing the critical values on the Tukey-Welsch specification; the resulting
test is denoted as NKDOWN in this paper. NKDOWN can be regarded as
corresponding to NEWUP. It can be shown that a NK type test is also equivalent
to a closed test. Peritz (1970) suggests a closed test that dominates and is
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uniformly more powerful than a given NK type test. This test is studied in
detail by Begun and Gabriel (1981). A slightly revised version, which is based
on the Tukey-Welsch specification and denoted as PERCL hereafter, is studied
by Ramsey (1978). PERCL can be regarded as corresponding to NEWCL. It
can be shown that there exist closed tests that dominate and are uniformly more
powerful than PERCL when k ≥ 5 and Xi are continuous.

4. Normal Distribution

In this section we assume that F (x) is the normal distribution function with
mean zero and variance σ2/n, where σ2 is an unknown parameter and n is a
known constant which is usually the sample size. Suppose that an estimate of
σ2, S2, is available which is independent of the Xi and distributed as a σ2χ2

ν/ν

random variable. In this situation, a step-up test using critical values ξ2 ≤ · · · ≤
ξk follows the same steps 1 and 2 as before, except that a q-range X[i+q−1]K−X[i]K

(2 ≤ q ≤ k, 1 ≤ i ≤ k − q + 1) is compared with ξqS/
√

n.
To determine the critical values ξi so that the step-up test strongly controls

the type I FWE rate at level α, let

αp = 1 − P0{M(Xj : 1 ≤ j ≤ p) ≤ (ξ2, . . . , ξp)S/
√

n}, 2 ≤ p ≤ k. (4.1)

Then, for HP = ∩r
i=1HP , we have

PHP
{at least one HPi is rejected} ≤ 1 −

r∏
i=1

(1 − αpi).

This can be proved in a way similar to Lemma 2.1, except that the equality in
(2.3) in the proof of Lemma 2.1 should be replaced by “≤”, this following from
Kimball’s (1951) inequality. Consequently, the specifications of αp discussed
in Section 2 can still be used to ensure that the type I FWE rate is strongly
controlled at level α, e.g. Welsch’s (1977) specification is α′

p as before, and our
recommendation is again α∗

p. For a given specification of αp, the critical values
ξp can be solved sequentially from (4.1) with the same treatment as before to
enforce the monotonicity of the ξi. It is also clear that the results of Section 3
can be generalized to the current setting.

For the specification α∗
p, Table 1 presents the critical values ξi for α = 0.05,

k = 3(1)10 and selected values of ν. As before, the probability P0{M(Xj :
1 ≤ j ≤ p) ≤ (ξ2, . . . , ξp)S/

√
n} is calculated using the expressions given in Liu

(1996a) when p = 3 and estimated by simulation based on 1,000,000 experiments
when p ≥ 4. The standard error of the estimate of the probability is less than
0.0005, and the critical values given in Table 1 are expected to be accurate to
the digits given.
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Table 1. Critical values ξi (2 ≤ i ≤ k) of the step-up test NEWUP for α = 0.05

i k = 10 k = 9 k = 8 k = 7 k = 6 k = 5 k = 4 k = 3

ν = 5 2 5.67 5.36 5.36 4.98 4.98 4.46 4.46 3.63
3 6.35 6.96 6.01 6.51 5.59 5.93 4.61 5.04
4 6.60 6.96 6.25 6.51 5.81 5.93 5.38
5 6.76 6.96 6.39 6.51 5.81 5.93
6 6.86 6.96 6.50 6.51 6.05
7 6.91 6.96 6.50 6.51
8 6.95 6.96 6.58
9 6.95 6.96
10 6.99

ν = 7 2 4.93 4.70 4.70 4.41 4.41 4.01 4.01 3.34
3 5.48 5.87 5.23 5.55 4.92 5.13 4.17 4.47
4 5.71 5.87 5.45 5.55 5.13 5.13 4.79
5 5.85 5.87 5.59 5.55 5.13 5.13
6 5.96 5.87 5.70 5.55 5.38
7 6.02 5.94 5.70 5.59
8 6.09 5.94 5.82
9 6.09 6.00
10 6.16

ν = 10 2 4.46 4.28 4.28 4.04 4.04 3.71 3.71 3.15
3 4.93 5.21 4.74 4.97 4.50 4.64 3.88 4.11
4 5.14 5.21 4.95 4.97 4.70 4.64 4.42
5 5.28 5.28 5.08 5.03 4.70 4.66
6 5.38 5.28 5.18 5.03 4.93
7 5.45 5.39 5.18 5.12
8 5.52 5.39 5.32
9 5.52 5.46
10 5.61

ν = 15 2 4.15 4.00 4.00 3.80 3.80 3.51 3.51 3.01
3 4.56 4.77 4.40 4.58 4.20 4.31 3.68 3.86
4 4.75 4.77 4.59 4.58 4.39 4.31 4.15
5 4.89 4.89 4.72 4.67 4.39 4.37
6 4.98 4.89 4.81 4.67 4.62
7 5.05 5.00 4.81 4.79
8 5.11 5.00 4.95
9 5.11 5.08
10 5.21

ν = 20 2 4.01 3.87 3.87 3.68 3.68 3.42 3.42 2.95
3 4.39 4.57 4.25 4.40 4.06 4.16 3.58 3.75
4 4.56 4.57 4.42 4.40 4.23 4.16 4.01
5 4.70 4.70 4.55 4.51 4.23 4.24
6 4.78 4.70 4.63 4.51 4.46
7 4.85 4.81 4.63 4.62
8 4.92 4.81 4.78
9 4.92 4.90
10 5.01

ν = 25 2 3.93 3.79 3.79 3.62 3.62 3.36 3.36 2.91
3 4.29 4.46 4.16 4.30 3.98 4.07 3.53 3.68
4 4.47 4.46 4.33 4.30 4.16 4.07 3.95
5 4.59 4.59 4.45 4.41 4.16 4.16
6 4.68 4.59 4.54 4.41 4.38
7 4.75 4.71 4.54 4.53
8 4.81 4.71 4.68
9 4.81 4.79
10 4.90
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Table 1. (Continued)

i k = 10 k = 9 k = 8 k = 7 k = 6 k = 5 k = 4 k = 3

ν = 30 2 3.88 3.75 3.75 3.58 3.58 3.33 3.33 2.89
3 4.23 4.39 4.10 4.24 3.93 4.01 3.49 3.64
4 4.40 4.39 4.27 4.24 4.10 4.01 3.90
5 4.51 4.52 4.39 4.35 4.10 4.11
6 4.61 4.52 4.48 4.35 4.32
7 4.68 4.64 4.48 4.47
8 4.74 4.64 4.61
9 4.74 4.72
10 4.83

ν = 35 2 3.84 3.71 3.71 3.55 3.55 3.30 3.30 2.87
3 4.19 4.34 4.06 4.19 3.90 3.98 3.47 3.61
4 4.35 4.34 4.23 4.19 4.07 3.98 3.87
5 4.47 4.47 4.34 4.30 4.07 4.07
6 4.55 4.47 4.43 4.30 4.28
7 4.62 4.59 4.43 4.42
8 4.69 4.59 4.56
9 4.69 4.67
10 4.78

ν = 40 2 3.81 3.69 3.69 3.52 3.52 3.29 3.29 2.86
3 4.15 4.30 4.03 4.16 3.87 3.95 3.45 3.59
4 4.33 4.30 4.20 4.16 4.04 3.95 3.85
5 4.43 4.43 4.31 4.27 4.04 4.04
6 4.52 4.43 4.39 4.27 4.24
7 4.59 4.55 4.39 4.39
8 4.65 4.55 4.53
9 4.65 4.64
10 4.73

ν = 50 2 3.77 3.65 3.65 3.49 3.49 3.26 3.26 2.84
3 4.11 4.25 3.99 4.11 3.83 3.91 3.42 3.55
4 4.27 4.25 4.15 4.11 3.99 3.91 3.81
5 4.39 4.39 4.27 4.24 4.00 4.01
6 4.47 4.39 4.35 4.24 4.21
7 4.54 4.51 4.35 4.35
8 4.59 4.51 4.48
9 4.59 4.59
10 4.68

ν = 60 2 3.75 3.63 3.63 3.47 3.47 3.24 3.24 2.83
3 4.08 4.22 3.96 4.08 3.81 3.88 3.40 3.53
4 4.24 4.22 4.12 4.08 3.97 3.88 3.79
5 4.35 4.36 4.24 4.20 3.98 3.98
6 4.44 4.36 4.32 4.20 4.18
7 4.51 4.48 4.32 4.32
8 4.56 4.48 4.45
9 4.56 4.55
10 4.65

ν = 120 2 3.69 3.58 3.58 3.42 3.42 3.20 3.20 2.80
3 4.01 4.14 3.90 4.01 3.75 3.82 3.36 3.48
4 4.17 4.14 4.05 4.01 3.91 3.82 3.73
5 4.27 4.28 4.16 4.13 3.91 3.92
6 4.35 4.28 4.24 4.13 4.11
7 4.42 4.39 4.24 4.25
8 4.48 4.39 4.37
9 4.48 4.47
10 4.57

ν = ∞ 2 3.63 3.52 3.52 3.38 3.38 3.16 3.16 2.77
3 3.94 4.06 3.83 3.94 3.69 3.75 3.32 3.44
4 4.09 4.06 3.98 3.94 3.84 3.75 3.68
5 4.20 4.20 4.09 4.06 3.86 3.86
6 4.27 4.20 4.17 4.06 4.04
7 4.33 4.31 4.17 4.17
8 4.39 4.31 4.29
9 4.39 4.39
10 4.48
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5. Power Comparisons

In this section we use simulation to compare the powers of NKDOWN,
WELUP, NEWUP, PERCL and NEWCL. Tukey’s (1953) (studentised) range
test, denoted as RANGE, is also included for its simplicity and availability of
confidence intervals. All these tests strongly control the type I FWE rate at level
α. From Section 3, it is known that PERCL and NEWCL dominate NKDOWN
and NEWUP, respectively. It is also known that NKDOWN dominates RANGE.

Several notions of power are available in the literature. Carmer and Swan-
son (1973) and Welsch (1977) use the overall power, which is the probability
of rejecting all false subset hypotheses. Ramsey (1978) introduces the any-pair
power which is the probability of rejecting at least one false pairwise hypothe-
sis, and the all-pair power which is the probability of rejecting all false pairwise
hypotheses. Einot and Gabriel (1975) propose the P -subset power, which, for
a given subset P ⊆ K, is the probability of rejecting the subset hypothesis HP

when it is false. In general, for arbitrary µi, a multiple test has a collection of
2k − k − 1 P -subset powers, one for each subset P with |P | ≥ 2. It is most
unlikely that for two competing tests, e.g. NKDOWN and NEWUP, one would
dominate the other for all P -subset powers. On the other hand, if the P -subset
power of a particular subset P is of concern, then it might be argued whether a
multiple test is needed at all. The any-pair power overemphasizes the sensitivity
to the largest difference between the µi. The overall and all-pair powers do not
differentiate among rejecting none, some, or most of the false hypotheses, as long
as not all false hypotheses are rejected.

We use the average power as the criterion of our power comparisons. For a
given configuration of µi, let M denote the number of false pairwise hypotheses.
Let the random variable m denote the number of false pairwise hypotheses being
rejected by a given multiple test. The average power of this test is then defined
as the expectation E(m/M).

The distribution function F (·) is assumed to be normal with a known vari-
ance σ2. (We also tried unknown σ2 with ν = 20 and similar results were
observed.) The configurations of µi considered are the maximum range and min-
imum range configurations of Ramsey (1978). Let

f =
(1
k

k∑
i=1

(µi − µ̄)2/σ2
)1/2

where µ̄ =
1
k

k∑
i=1

µi

and δ = meani,j|µi − µj|/σ over all i, j such that µi �= µj. Without loss of
generality, assume the µi sum to zero and are monotonically increasing in i.
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Then, for fixed f , the maximum range configuration is given by

µ1 = −
√

k/2f, µ2 = · · · = µk−1 = 0, µk =
√

k/2f,

and the minimum range configuration is given by

µ1 = · · · = µk/2 = −f, µk/2+1 = · · · = µk = f for even k;

µ1 = · · · = µ(k+1)/2 = −
√

(k − 1)/(k + 1)f,

µ(k+3)/2 = · · · = µk =
√

(k + 1)/(k − 1)f for odd k.

The other experimental conditions are α = 0.05, k = 3, 4, 5 and 6. The value of
f is varied systematically to cover the full range of power. For each given set of
experimental conditions, N = 100, 000 experiments are simulated. For the ith
experiment, mi is calculated and E(m/M) is estimated by

∑N
i=1 mi/(MN).

Results for k = 3, 4, 5 and 6 are given in Tables 2,3,4 and 5, respectively.
Note that, when k = 3, NKDOWN and PERCL are the same, and WELUP,
NEWUP and NEWCL are the same. When k = 6, Table 6 also contains the
power at the equal spaced configuration.

From these tables, the following can be observed. NEWUP is more powerful
than WELUP most of the time, and WELUP is more powerful than NKDOWN
almost all the time. The largest power difference among NKDOWN, WELUP
and NEWUP is about 0.01. NEWCL is more powerful than PERCL almost
all the time, with the largest power difference between them being about 0.01.
PERCL and NEWCL are always more powerful than NKDOWN and NEWUP
respectively, which agrees with the theoretical result. The largest power dif-
ferences between PERCL and NKDOWN and between NEWCL and NEWUP
are about 0.02. There are quite a few occasions when PERCL is less powerful
than both WELUP and NEWUP, but NEWCL is almost always more powerful
than NKDOWN. RANGE is always the least powerful test; the largest power
difference is about 0.11 between RANGE and NEWCL, and about 0.10 between
RANGE and NKDOWN.

It is clear from the present study that NEWCL is the most powerful multiple
test, with PERCL a close runner-up. However, both these tests are genuine closed
tests and so not easy to perform. It must be noted that NEWUP is a compelling
choice: it is as easy to perform as WELUP and NKDOWN, and does not suffer
a major sacrifice in power. Finally, RANGE does suffer from considerable power
deficiencies, which should be weighed against its advantages such as simplicity
and the availability of confidence intervals.



ON STEP-UP TESTS FOR COMPARING SEVERAL TREATMENTS 969

Table 2. Powers of three multiple tests for k = 3, α = 0.05 and known σ2

f δ RANGE NKDOWN NEWUP

a. Minimum range (M = 2)
0.800 1.697 0.126 0.149 0.156
1.100 2.334 0.242 0.284 0.296
1.400 2.970 0.401 0.463 0.478
1.700 3.606 0.579 0.651 0.667
2.000 4.242 0.743 0.808 0.819
2.300 4.879 0.865 0.913 0.919
2.600 5.515 0.941 0.967 0.970
2.900 6.152 0.978 0.990 0.990
3.200 6.788 0.993 0.997 0.998

b. Maximum range (M = 3)
1.000 1.633 0.136 0.167 0.174
1.500 2.449 0.298 0.360 0.366
2.000 3.265 0.469 0.560 0.561
2.500 4.083 0.611 0.712 0.712
3.000 4.899 0.732 0.825 0.825
3.500 5.716 0.836 0.906 0.906
4.000 6.532 0.913 0.956 0.956
4.500 7.348 0.960 0.983 0.983
5.000 8.165 0.984 0.994 0.994

Table 3. Powers of six multiple tests for k = 4, α = 0.05 and known σ2

f δ RANGE NKDOWN WELUP NEWUP PERCL NEWCL

a. Minimum range (M = 4)
0.800 1.600 0.075 0.090 0.092 0.093 0.091 0.094
1.100 2.200 0.155 0.186 0.190 0.192 0.190 0.196
1.400 2.800 0.278 0.332 0.338 0.340 0.341 0.349
1.700 3.400 0.435 0.510 0.516 0.518 0.526 0.534
2.000 4.000 0.603 0.685 0.689 0.691 0.706 0.712
2.300 4.600 0.754 0.825 0.828 0.829 0.847 0.850
2.600 5.200 0.867 0.917 0.918 0.919 0.933 0.935
2.900 5.800 0.938 0.966 0.966 0.967 0.976 0.976
3.200 6.400 0.975 0.988 0.988 0.989 0.993 0.993

b. Maximum range (M = 5)
1.000 1.697 0.104 0.126 0.127 0.129 0.126 0.129
1.500 2.545 0.248 0.299 0.299 0.301 0.300 0.302
2.000 3.394 0.413 0.491 0.491 0.492 0.497 0.498
2.400 4.073 0.544 0.633 0.632 0.634 0.647 0.647
2.800 4.752 0.673 0.758 0.758 0.759 0.780 0.780
3.200 5.430 0.789 0.859 0.859 0.860 0.883 0.883
3.600 6.109 0.880 0.928 0.928 0.928 0.946 0.947
4.000 6.788 0.940 0.968 0.968 0.968 0.979 0.979
4.400 7.468 0.974 0.988 0.987 0.988 0.993 0.993
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Table 4. Powers of six multiple tests for k = 5, α = 0.05 and known σ2

f δ RANGE NKDOWN WELUP NEWUP PERCL NEWCL

a. Minimum range (M = 6)
0.800 1.633 0.057 0.068 0.068 0.064 0.068 0.066
1.100 2.245 0.126 0.151 0.152 0.144 0.153 0.149
1.400 2.858 0.239 0.284 0.287 0.274 0.291 0.285
1.700 3.470 0.391 0.457 0.461 0.449 0.469 0.468
2.000 4.082 0.562 0.639 0.644 0.637 0.654 0.658
2.300 4.695 0.722 0.795 0.800 0.799 0.808 0.815
2.600 5.307 0.848 0.902 0.905 0.907 0.910 0.917
2.900 5.920 0.928 0.961 0.962 0.964 0.964 0.968
3.200 6.532 0.971 0.987 0.987 0.989 0.988 0.990

b. Maximum range (M = 7)
0.900 2.033 0.070 0.084 0.085 0.082 0.084 0.082
1.300 2.936 0.168 0.201 0.202 0.197 0.201 0.198
1.700 3.840 0.297 0.354 0.356 0.351 0.356 0.357
2.100 4.743 0.441 0.519 0.522 0.520 0.525 0.532
2.500 5.647 0.594 0.680 0.683 0.686 0.691 0.704
2.900 6.550 0.740 0.818 0.821 0.826 0.830 0.843
3.300 7.454 0.856 0.912 0.914 0.919 0.921 0.929
3.700 8.357 0.932 0.965 0.966 0.969 0.969 0.973
4.100 9.261 0.973 0.988 0.989 0.990 0.990 0.992

Table 5. Powers of six multiple tests for k = 6, α = 0.05 and known σ2

f δ RANGE NKDOWN WELUP NEWUP PERCL NEWCL

a. Minimum range (M = 9)
0.800 1.600 0.042 0.049 0.049 0.050 0.049 0.051
1.100 2.200 0.097 0.113 0.114 0.115 0.114 0.117
1.400 2.800 0.191 0.223 0.225 0.228 0.226 0.231
1.700 3.400 0.327 0.378 0.382 0.386 0.384 0.391
2.000 4.000 0.491 0.557 0.563 0.568 0.563 0.573
2.300 4.600 0.656 0.728 0.735 0.739 0.732 0.742
2.600 5.200 0.796 0.858 0.864 0.866 0.859 0.868
2.900 5.800 0.894 0.938 0.941 0.942 0.938 0.943
3.200 6.400 0.953 0.977 0.979 0.979 0.977 0.979
3.500 7.000 0.982 0.993 0.993 0.994 0.993 0.994

b. Maximum range (M = 9)
0.900 1.732 0.064 0.075 0.076 0.077 0.075 0.077
1.300 2.502 0.162 0.190 0.192 0.194 0.190 0.195
1.700 3.271 0.297 0.349 0.354 0.357 0.350 0.357
2.100 4.041 0.456 0.533 0.539 0.542 0.536 0.545
2.500 4.811 0.629 0.714 0.720 0.723 0.719 0.727
2.900 5.581 0.785 0.857 0.862 0.864 0.861 0.867
3.300 6.351 0.896 0.943 0.945 0.946 0.945 0.947
3.600 6.928 0.947 0.975 0.976 0.977 0.976 0.977
3.900 7.506 0.976 0.990 0.991 0.991 0.991 0.991
4.300 8.276 0.993 0.998 0.998 0.998 0.998 0.998
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Table 5. (Continued)

f δ RANGE NKDOWN WELUP NEWUP PERCL NEWCL

b. Equally spaced means (M = 15)
1.300 1.776 0.096 0.113 0.114 0.115 0.114 0.116
1.800 2.459 0.210 0.242 0.243 0.245 0.245 0.248
2.300 3.143 0.331 0.375 0.375 0.378 0.379 0.382
2.800 3.826 0.436 0.487 0.488 0.491 0.492 0.494
3.300 4.509 0.522 0.578 0.579 0.582 0.582 0.584
3.800 5.192 0.592 0.652 0.652 0.654 0.655 0.657
4.600 6.285 0.679 0.740 0.740 0.741 0.744 0.745
5.600 7.651 0.756 0.818 0.817 0.818 0.825 0.825
6.600 9.017 0.816 0.877 0.876 0.877 0.891 0.891
7.600 10.383 0.872 0.925 0.924 0.925 0.943 0.943

6. Closing Remarks

Step-up tests based on range statistics are studied in detail. Lemma 2.1 is
fundamental in specifying the αp’s which in turn determine the critical values so
that the type I FWE rate is strongly controlled at level α. The new step-up test
NEWUP, which is based on the specification α∗

p, is slightly more powerful than
Welsch’s (1977) test WELUP and recommended.

The interrelationship between step-up tests and closed tests is described.
This enables us to construct a closed test that is uniformly more powerful than
a particular step-up test. Indeed, similar interrelationships exist between step-
down tests and closed tests. The power superiority of these genuine closed tests
should be weighed against the complexity of performing them.

It is difficult to decide which definition of power is more appropriate in
general or in a particular situation. The motivation behind the definition of the
average power is to address the all-or-nothing drawback of the all-pair and overall
powers. The simulation results of the present study and Ramsey (1978) agree
over the order of powers of the RANGE, NKDOWN and PERCL, but differ in
the magnitudes of the power differences.

Finally, a general step-down test scheme is available (Einot and Gabriel
(1975)), of which a NK type test is only a shortcut version. Different test statistics
can be employed in this scheme to obtain different step-down tests. An analogous
theory, however, is not available for step-up tests. Research in this direction is
no doubt worthwhile.
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