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Abstract: We develop a robust inference for one-way repeated measures designs

with multiple replications per cell assuming exchangeability of the errors within

each subject. R-estimators of the treatment effects are obtained by minimizing a

dispersion function. We develop asymptotically equivalent test procedures based

on drop in dispersion, and two quadratics which depend on R-estimates and the

gradient vector. Multiple comparison procedures are developed based on the R-

estimators. Test results based on a baseball data set concerning three different base

running methods are presented and compared with normal theory and Friedman

rank sum techniques. Asymptotic relative efficiencies of the rank tests, with respect

to the normal-theory counterpart, are discussed. Comparisons with alternative

robust tests are also discussed. A small scale simulation study is conducted to

investigate the small sample behavior of the rank-based tests.
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1. Introduction

In this paper we propose a rank based inference for one-way repeated mea-
sures (RM) designs with multiple replications (MR) per cell. We assume that
the components of the error vector for each subject are exchangeable continuous
random variables and the error vectors corresponding to different subjects are
independently identically distributed. We use a sum of Jaeckel (1972) type dis-
persion functions based on intra-subject ranks of residuals to obtain R-estimates
and rank tests.

Some distribution-free test procedures for one-way RM designs with MR per
cell are available based on intra-subject rankings; however, these procedures pos-
sess certain limitations. One can use Benard and Van Elteren’s (1953) Friedman-
type rank test for testing the equality of the treatment effects when the number
of subjects is large. One can also use Mack and Skillings’s (1980) Friedman-type
rank test when the number of observations per cell is large. Brunner and Dette
(1992) developed procedures for the two factor mixed model with unequal cell
frequencies using intra-block ranks. Their statistic for testing the equality of
the treatment effects, when there are no interactions involved in the model and
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the cell frequencies are equal, reduces to the Benard-Van Elteren statistic; how-
ever, none of the aforementioned procedures produce R-estimators analogous to
Rashid, Aubuchon and Bagchi (1993) and Rashid (1995). As a result, multiple
comparisons cannot be carried out based on sensible estimators.

Hochberg and Tamhane (1987), p.213 discussed parametric analysis for one-
way RM designs with MR per cell. See also Hocking (1973) and Scheffe (1956)
for further discussions. However, the parametric analysis assumes the multi-
normality of each error vector with equicorrelated covariance matrix. In many
situations the multi-normality assumption of the error vectors may not be valid.

The purpose of this paper is to develop robust inference for one-way RM de-
signs with MR per cell. We will define a rank based dispersion function for each
subject using Jaeckel’s (1972) rank based dispersion function. For each subject,
the dispersion function will be based on the residuals and the intra-subject ranks
of the residuals. Then we will define an overall dispersion function for the pro-
posed design. Analogous to the sum of squared errors (SSE) of the linear model
theory, this dispersion function will play a key role for rank based inference for
one way RM designs with MR per cell. In Section 2, we discuss the model with
assumptions. In Section 3, we will obtain rank estimators of the treatment effects
by minimizing the dispersion function. The asymptotic distributions of the rank
estimators are developed under the assumption that n, the number of subjects,
is large. In Section 4, three different test statistics using drop in dispersion, gra-
dient of the dispersion function and R-estimators will be developed for testing
H0 : α1 = α2 = · · · = αp = 0, where p is the number of treatments (fixed) and αi

is the effect of the ith treatment. In Section 5, we develop multiple comparison
procedures using the R-estimators. In Section 6, a consistent estimator of τ, a
scale parameter, is obtained. An illustration of the aforementioned methodology
is presented in Section 7. Section 8 contains the ARE of the proposed rank tests
with respect to the normal theory counterpart. Section 9 compares the rank
tests with other nonparametric competitors. A report of a small scale simulation
study is given in Section 10. Concluding remarks are given in Section 11.

2. The Model

Consider a one-way RM designs in which there are n subjects and p levels
of a repeated measures factor. Further, each level of the repeated measures
factor is applied m times to each subject. We assume that there is a washout
period between administering any two treatments, i.e., there are are no carry-
over effects. Let Yijk be the response of the jth subject corresponding to the
ith treatment on the kth occasion. A model for this kind of experiment can be
written in the form

Yijk = µ + αi + εijk, i = 1, . . . , p; j = 1, . . . , n; k = 1, . . . ,m, (2.1)
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where µ is the overall mean, αi is the effect of the ith level of the repeated
measure factor such that

∑p
i=1 αi = 0, and εijk is the random error term. Let

Y j = (Y1j1, . . . , Y1jm, Y2j1, . . . , Y2jm, . . . , Ypj1, . . . , Ypjm)′

be the observation vector corresponding to jth subject and

εj = (ε1j1, . . . , ε1jm, ε2j1, . . . , ε2jm, . . . , εpj1, . . . , εpjm)′ (2.2)

be the corresponding error vector.
In parametric inference, one assumes that εj’s are independently multi-

normally distributed with mean 0 vector and covariance matrix

σ2[(1 − ρ)Ipm×pm + ρ1pm×11
′
pm×1], (2.3)

where σ2 is the variance of each component and ρ (− 1
mp−1 < ρ < 1) is the equi-

correlation coefficient between any two components within the jth subject, Ip×p

is an identity matrix of order p and 1p is a p × 1 vector of unity. Model (2.1)
with assumption (2.3) will be called a parametric repeated measures model in this
paper.

Model (2.1) under the assumption (2.3) is considered by Hochberg and
Tamhane (1987). For m ≥ 2, one uses the F -statistic

{n
p∑

i=1

(Ȳi..−Ȳ...)2/( p−1)}/
[
{

n∑
j=1

p∑
i=1

(Ȳij.−Ȳi..−Ȳ.j.+Ȳ...)2}/{(n−1)( p−1)}
]

(2.4)

which follows an F distribution with p − 1 and ( p − 1)(n − 1) degrees of free-
dom under the equality of the treatment effects. However, as mentioned earlier
in many instances the multinormality assumption is unreasonable, and in such
cases one would prefer to use a distribution-free procedure or an asymptotically
distribution-free procedure. In this paper, we assume that the following assump-
tions hold for model (2.1):
(B.1) The elements of εj (j = 1, . . . , n) are exchangeable random variables with

c.d.f. F (ε1j1, . . . , ε1jm, . . . , εpj1, . . . , εpjm) , and εj ’s are i.i.d. and continu-
ous random vectors;

(B.2) the bivariate density f(., .) of any two components of εj’s corresponding to
the joint c.d.f. F (., . . . , .) in (B.1) is continuous in R2;

(B.3)
∫ ∞
−∞ f(ε, ε) dε < ∞.

Model (2.1) with assumptions (B.1) - (B.3) will be called a non-parametric
repeated measures model throughout the paper. Note that

∫ ∞
−∞ f(ε, ε) dε is the

probability density function of εijk − εi′jl (i �= i′ or k �= l) at the median (0).
Further, note that if the components of the εj are independent, the assumption
(B.3) implies that the marginal distribution of the εijk has the finite Fisher
information (see Hettmansperger (1984)).



650 M. MUSHFIQUR RASHID AND ANSUMAN BAGCHI

It is well known that the normal theory repeated measures model can be
analyzed by a mixed model:

Yijk = µ + αi + βj + eijk, βj ∼ NI[0, ρσ2], eijk ∼ NI[0, (1− ρ)σ2], ρ > 0, (2.5)

where NI stands for normally and independently distributed, βj (jth subject
effect, j = 1, . . . , n) and eijk (i = 1, . . . , p; j = 1, . . . , n; k = 1, . . . ,m ) are inde-
pendently distributed. However, our non-parametric repeated measures model
cannot be written in mixed model form since the sum of βj and eijk may not have
the same distribution as Yijk. For example, the student’s t variable does not have
the reproductive property. As a result we will not be able to use a model of the
form (2.5) and define a dispersion function (Jaeckel (1972)) of the design based
on joint ranks of the entire residual vector (Yijk − µ − αi − βj , i = 1, . . . , p; j =
1, . . . , n; k = 1, . . . ,m). So, even though in parametric inference a repeated mea-
sures model is analyzed by a mixed model (in fact indirectly analyzed by a two
factor fixed effects model with i.i.d. errors), the two factor fixed effects model
(with i.i.d. errors) approach is not applicable to the non-parametric repeated
measures model. Therefore, the results for the linear model with i.i.d. errors
based on the joint rankings (Hettmansperger (1984), Chapter 5) are not applica-
ble to the non-parametric repeated measures model. Since, in the non-parametric
repeated measures model, the elements of each error vector εj are exchangeable
random variables, we will rank the residuals within each subject separately. We
will show that our results have higher efficiency than the parametric counterpart
for heavy-tailed error distributions.

3. R-Estimators and Their Asymptotic Distributions

In this section we develop rank estimators using a rank (intra-subject) based
dispersion function proposed by Jaeckel (1972). The dispersion function for the
jth subject using Wilcoxon scores is

Dj(α) = {
√

12/(mp + 1)}
p∑

i=1

m∑
k=1

[R(Yijk − αi) − (mp + 1)/2] [Yijk − αi], (3.1)

where R(Yijk − αi) stands for the intra-subject rank of the residual, Yijk − αi,
corresponding to the kth replication of the ith treatment on the jth subject. By
Theorem 1 of Jaeckel (1972), Dj(α) is a non-negative, continuous, location free
and convex function of α. The combined dispersion function is given by

D(α) = {
√

12/(mp+1)}
n∑

j=1

p∑
i=1

m∑
k=1

[R(Yijk − αi) − (mp + 1)/2] [Yijk−αi]. (3.2)

One can use the Nelder and Mead algorithm (see Olsson (1974)) to minimize
D(α).
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Combined dispersion functions (a sum of Jaeckel-type dispersion functions)
similar to (3.2) have been used in the literature to make inferences for repeated
measures designs with single or no observations per cell. See, for example, Rashid,
Aubuchon and Bagchi (1993), Rashid (1995), and Rashid and Nandram (1995).

Note that D(α) is also non-negative, continuous, location free and convex in
α. Hence a rank estimate α̂ of α can be obtained by minimizing the dispersion
function D(α). Let α0 be the true value of α. In the following we develop the
asymptotic distribution of

√
n(α̂ − α0). We need the asymptotic distribution√

n(α̂ − α0) in order to develop large sample rank tests. In order to develop the
asymptotic distribution theory we need a linear approximation to the gradient
of D(α) and a quadratic approximation to D(α).

First we consider the linear approximation to the gradient vector. It is easy
to show that negative of the vector of partial derivatives of D(α) at α (or a
negative sub-gradient −δαD(α), in case D(α) is not differentiable at α) is given
by the vector S(α) with the ith element

si(α) = {
√

12/(mp+1)}
n∑

j=1

m∑
k=1

[R(Yijk − αi) − (mp + 1)/2] , i = 1, . . . , p. (3.3)

We set
∑

= [ pIp×p − 1p 1′p]. We assume that the true value of α is α0 = 0.
Under assumptions (B.1) - (B.3), as n becomes large, using Rashid and Bagchi
(1993) it can be shown that

n−1/2
{
S

(
n−1/2α

)
− S (0)

} P−→ [−m2√n/{τ(mp + 1)}] ∑ α. (3.4)

The parameter τ = 1/[
√

12
∫ ∞
−∞ f(ε, ε)dε] in the above expression plays a

role similar to σ2(1 − ρ) in parametric repeated measures analysis. In fact, the
parameter ρ measures subject effect and if ρ = 0, there is none.

Using (3.4) we construct a linear approximation to the gradient of the dis-
persion function as follows:

n−1/2S (α) = n−1/2S(0) − [m2√n/{τ(mp + 1)}] ∑ α + op(1), (3.5)

where op(1) tends to zero in probability uniformly for all vectors α such that√
n‖α‖ ≤ c, for any c > 0. The expression (3.5) can be proved assuming (3.4)

and from the fact that S(α) has monotone components in α since D(α) is a
convex function of α. (See Rashid and Bagchi (1993) for details. See also a
related result in Rashid, Aubuchon and Bagchi (1993) for single group repeated
measures balanced incomplete block designs.) Jureckova (1969) proved a similar
result based on the joint rankings for the linear model with i.i.d. errors.

Next, we consider a quadratic approximation to D(α). Let

D(α) = {
√

12/(mp + 1)}
p∑

i=1

n∑
j=1

m∑
k=1

[R(Yijk − αi) − (mp + 1)/2] [Yijk − αi]
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and
Q(α) = D(0) + [m2n/{2τ(mp + 1)}]α′∑α − α′S(0). (3.6)

It is clear that Q(α) is a quadratic in α and has the property that Q(0) =
D(0). Also the gradient of Q(α) is an approximation to that of D(α). Further,
under assumptions (B.1) - (B.3), for every c > 0 and every ε > 0,

lim
n→∞P0

{
sup

‖√nα‖≤c

|D(α) − Q(α)| ≥ ε
}

= 0. (3.7)

The expression in (3.7) can be proved assuming (3.5) and using arguments
similar to those given in Jaeckel (1972). Then the function

Q(α) = D(0) + [nm2/{2τ(mp + 1)}]α′∑α − α′S(0)

is a quadratic approximation to D(α), satisfying

D(α) = Q(α) + op(1) (3.8)

as implied by (3.7). Hence, minima of D(α) and Q(α) coincide asymptotically.
It is shown in Rashid and Bagchi (1993) that the statements

(3.4), (3.5) and (3.7) are equivalent. (3.9)

(See Heiler and Willers (1988), and Rashid, Aubuchon and Bagchi (1993) for sim-
ilar conclusions, respectively, for the linear model with i.i.d. errors and repeated
measures balanced incomplete block designs.)

Finally, suppose α̃ minimizes Q(α). Then

α̃ = [τ(mp + 1)/(nm2)]
∑− S(0), (3.10)

where
∑− is a generalized inverse of

∑
satisfying

∑− ∑ ∑− =
∑− . But, by a

multivariate Central Limit Theorem (Mardia, Kent and Bibby (1979), p. 51)

n−1/2[S(0)] D−→ MV N
(
0, {m2/(mp + 1)}∑)

as n → ∞. (3.11)

Similar to Jaeckel (1972), it follows from (3.7) that

√
n(α̂ − α̃) P−→ 0 as n → ∞. (3.12)

Therefore, under assumptions (B.1) - (B.3) and the true value α0,

√
n(α̂ − α0) D−→ MV N

(
0, {τ2(mp + 1)/m2} ∑−)

(3.13)

as n → ∞.
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4. Rank Tests

In this section we develop three different statistics based on rank estimates
of α for testing hypothesis of the form α1 = α2 = · · · = αp = 0.

Assuming (3.7), (3.11), (3.12) and (3.13), and using arguments similar to
those given in Rashid and Bagchi (1993) it can be shown that under H0 : α1 =
α2 = · · · = αp = 0,

D∗(τ) = 2[D(0) − D(α̂)]/τ = 2[Q(0) − Q(α̃)]/τ + op(1)

= [(mp + 1)/(nm2)][S(0)]′
∑−[S(0)] + op(1).

Let τ̂ be a consistent estimator of τ. Hence, by (3.11)

D∗(τ̂) = 2[D(0) − D(α̂)]/τ̂ (4.1)

has a chi-square distribution with p − 1 degrees of freedom as n → ∞.

McKean and Hettmansperger (1976) proved (4.1) for the linear model with
i.i.d. errors. Rashid, Aubuchon and Bagchi (1993) proved (4.1) for the balanced
incomplete repeated measures designs with exchangeable errors within each sub-
ject. The D∗ test is analogous to likelihood ratio tests.

Now, we develop a test statistic based on the gradient vector assuming
that the null hypothesis H0 : α1 = α2 = · · · = αp = 0 is true. Since by
(3.11), n−1/2S(0) has an asymptotic multi-normal distribution, we can consider
a quadratic form involving it and obtain the following statistic

S∗={(mp+1)/(nm2)}[S(0)]′
∑−[S(0)]=[12/{npm2(mp+1)}]

p∑
i=1

R2
i..−3n(mp+1).

Under assumptions (B.1) - (B.3) and H0,

S∗ D−→ χ2
p−1 (4.2)

as n → ∞, since the rank of
∑

is p − 1. Here Ri.. is the sum of the ranks of the
observations corresponding to the ith treatment. The S∗ statistic can be called
the generalized Friedman’s statistic or Benard-Van Elteren (1953) statistic. It is
also a scores test.

A third approach to testing α1 = α2 = · · · = αp = 0 is based directly on the
full model R-estimate α̂ determined by minimizing D(α). Assuming (3.13) it can
be shown that under assumptions (B.1) - (B.3) and H0 : α1 = α2 = · · · = αp = 0,

W ∗(τ̂) = [(nm2p)/{τ̂2(mp+1)}](α̂)′
∑

(α̂)=(nm2p)/{τ̂2(mp+1)}∑p
i=1(α̂i−α∗)2

(4.3)
converges to a chi-square distribution with p− 1 degrees of freedom, where α∗ =
(1/p)

∑p
i=1 α̂i. Note that W ∗(τ̂) is a Wald-type test. To make the D∗ and W ∗
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tests operational, we need a consistent estimate of τ. We develop a consistent
estimate of τ in Section 6.

5. Multiple Comparisons

In this section we develop multiple comparison procedures based on the R-
estimators. First we consider a Tukey-type procedure. From (3.13), for large n,

we have
V̂ar0[

√
n(α̂i − α̂i′)] = 2τ̂2(mp + 1)/(pm2) (i �= i′). (5.1)

Therefore, using (5.1) and following Hochberg and Tamhane (1987), p. 83,
100(1 − γ)% confidence intervals for all contrasts b′α are given by

b′α̂ ± qγ,p,∞ τ̂ [(mp + 1)/(npm2)]1/2
p∑

i=1

|bi|/2, (5.2)

where qγ,p,∞ is the upper (100γ)th percentile for the range of p independent
N(0, 1) random variables, and bi is the ith element of b. Similarly, we can produce
least significant difference (LSD) and Bonferroni’s procedures.

Finally, we develop multiple comparisons of test treatments with a control
treatment. Without any loss of generality, let us assume that treatment 1 is the
control treatment. Then the R-estimates of the p − 1 contrasts α2 − α1, α3 −
α1, . . . , αp − α1 will be α̂2 − α̂1, α̂3 − α̂1, . . . , α̂p − α̂1 where α̂i’s are obtained by
minimizing D(α). Therefore, from (3.13), ρ(α̂i−α̂1,α̂i′−α̂1) = 1/2. The estimates
α̂i − α̂1 (i = 2, 3, . . . , p) along with the estimate τ̂ for τ can be used in Dunnett’s
(1955) procedure to obtain the following 100(1 − γ)% simultaneous two-sided
intervals:

αi − α1 ∈
[
α̂i − α̂1 ± |M |(γ)

p−1,ρ {2τ̂2(mp + 1)/(npm2)}1/2
]
, (5.3)

where |M |(γ)
p−1,ρ is the upper γ point of the maximum absolute values of the

components of (p − 1) N(0, 1) random variables with common correlation ρ.

Similarly one can produce one-sided confidence intervals.

6. Estimation of τ

In this section we consider a method of estimating τ. It has been mentioned
earlier that the parameter τ plays a role similar to σ3(1−ρ) in parametric repeated
measures. Therefore, it is important to find a consistent estimator τ̂ of τ.

For the one-way repeated measures with multiple replications per cell
1/[

√
12τ ] is the density of d

(i,i′)
j = Yijk −Yi′j� (i �= i′ = 1, . . . , p; k, 
 = 1, . . . ,m)

at αi−αi′ for each j = 1, . . . , n. We can consider Yi1k−Yi′1�, Yi2k−Yi′2�, . . . , Yink−
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Yi′n� as a random sample from an absolutely continuous symmetric distribution
with median at αi − αi′ . Let d

(i,i′)
(j) be the ordered d

(i,i′)
j (j = 1, . . . n).

Bloch and Gastwirth (1968) developed a consistent estimate of the reciprocal
of the density function at the median using the ordered observations. Using Bloch
and Gastwirth (1968), we construct the following consistent estimate of τ :

[n/{2
√

12q}]
[
d
(i,i′)
([ n

2
]+q) − d

(i,i′)
([ n

2
]−q+1)

]
(i �= i′ = 1, . . . , p). (6.1)

Note that the estimate does not depend on the αi’s. We can produce m2p(p− 1)
consistent estimates of τ using (6.1).

Furthermore, we can consider d
(k,�)
1 = Yi1k − Yi1�, d

(k,�)
2 = Yi2k − Yi2�, . . . ,

d
(k,�)
n = Yink − Yin�, k �= 
, as a random sample from an absolutely continuous

symmetric distribution with median at 0. Therefore,

[n/{2
√

12q}]
[
d
(k,�)

([ n
2
]+q) − d

(k,�)

([ n
2
]−q+1)

]
(k �= 
) (6.2)

is another set of mp(m − 1) consistent estimators of τ.

We average all the mp(mp−1) consistent estimators in (6.1) and (6.2) to get
an overall consistent estimator of τ. This overall estimate of τ is a weighted esti-
mator, and we expect that this estimate will perform better than an unweighted
estimator (based on only one sample).

Following Bloch and Gastwirth (1968), one may set q = cn4/5. In our small
sample study (see Section 10) c = .5 was chosen to estimate τ. The τ̂ has per-
formed well in standardizing the D∗ and W ∗ tests in the sense of maintaining a
selected significance level. For all practical purposes, it is recommended that c

be chosen to be .5.

7. An Illustration

For illustrative purposes, we consider an example using the Woodward (1970)
data presented in Table 1. Woodward (1970), a shortstop of the 1970 Cincinnati
Reds NL baseball team compared three methods of base running around the
first base, entitled “round out” (treatment 1), “narrow angle” (treatment 2) and
“wide angle” (treatment 3), in order to determine which one requires the least
amount of time to reach the second base. For a detailed description of these
methods, see Hollander and Wolfe (1973), Figure 1, page 142.

Woodward considered 22 baseball players for the experiment. Each player
made two runs corresponding to each method and took rest between the runs.
Each entry in Table 1 represents the time taken to run from a point on the first
base line 35 ft from home plate to a point 15 ft short of second base.
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Table 1 . Subjects’ times for two trials of each round
Subjects Round out Narrow angle Wide angle

1 2 1 2 1 2
1 5.4 5.4 5.5 5.5 5.5 5.6
2 5.9 5.8 5.7 5.7 5.7 5.8
3 5.3 5.1 5.6 5.6 5.5 5.5
4 5.5 5.6 5.5 5.5 5.3 5.5
5 5.9 5.9 5.9 5.8 5.7 5.7
6 5.5 5.4 5.5 5.6 5.7 5.5
7 5.4 5.4 5.4 5.4 5.3 5.4
8 5.4 5.5 5.5 5.5 5.3 5.4
9 5.2 5.3 5.0 5.1 4.9 5.1
10 5.8 5.9 5.9 5.7 5.7 5.7
11 5.2 5.3 5.3 5.1 5.1 5.1
12 5.7 5.6 5.5 5.6 5.4 5.5
13 5.6 5.6 5.4 5.3 5.5 5.4
14 5.1 5.0 4.9 5.1 4.9 5.0
15 5.5 5.5 5.5 5.5 5.4 5.4
16 5.5 5.4 5.6 5.5 5.5 5.5
17 5.5 5.6 5.6 5.5 5.4 5.3
18 5.5 5.4 5.5 5.5 5.5 5.6
19 5.5 5.5 5.5 5.4 5.3 5.2
20 5.7 5.6 5.5 5.7 5.4 5.4
21 5.7 5.7 5.7 5.6 5.6 5.5
22 6.2 6.4 6.3 6.3 6.2 6.3

Following the notation of our paper, n = 22, p = 3 and m = 2.
The least-squares estimates and the R-estimates of the treatment contrasts

α1 − α2, α2 − α3, and α1 − α3 are presented in Table 2.

Table 2. Estimates of contrasts
Method α1 − α2 α2 − α3 α1 − α3

Rank 0.0000 0.0999 0.1000
Least-squares 0.0136 0.0705 0.0841

Based on the discussions in Section 6, a consistent estimate of τ was found to
be 0.1101. Consequently, the test statistics for various rank tests are calculated:

D∗ = 20.67 (P-value 0+), S∗ = 18.27 (P-value .0001) and

W ∗ = 20.79 (P-value 0+)

all of which are highly significant. The normal theory F (defined in (2.4)) statistic
(using SAS) was found to be 5.87 (P-value .0056), which is also significant.
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In Table 3, we present confidence intervals for the difference of treatment
effects, using results from Section 5 and results from normal theory, respectively.

Table 3. 95% Joint confidence intervals for pairwise comparisons based
on R-estimators and least-squares estimators

Procedure Method Comparisons
Used α1 − α2 α2 − α3 α1 − α3

LSD Rank [-0.0497, 0.0497] [0.0503, 0.1497] [0.0503, 0.1497]
Least [-0.0395, 0.0667] [0.0174, 0.1236] [0.0310, 0.1372]

Tukey-type Rank [-0.0573, 0.0573] [0.0427, 0.1573] [0.0427, 0.1573]
Least [-0.0504, 0.0776] [0.0065, 0.1345] [0.0201, 0.1481]

The Tukey-type and LSD procedures based on the R-estimates imply that
both the round out and narrow angle methods of base running differ from the
wide angle at γ = 0.05; however, the round out method and the narrow angle
method do not differ from each other. We come to the same conclusions from
corresponding normal theory intervals. It appears the wide angle method takes
the least time.

Next, we present the pairwise comparisons results based on Friedman rank-
sum. One concludes in favor of the alternative hypothesis αi �= αi′ if

|Ri·· − Ri′··| > qγ,p,∞
[
nm2p(mp + 1)/12

]1/2
, (7.1)

where qγ,p,∞ is the upper (1 − α)th percentile for the range of p independent
N(0, 1) random variables. We obtain

|R1·· − R2··| = 36.0, |R2·· − R3··| = 39.0, |R1·· − R3··| = 75.0 (7.2)

which were compared to the upper critical value (right hand side of equation
7.1) of 41.125 for γ = 0.05. It follows, that only the round out and the wide
angle methods significantly differ at a 5% level. Note that we arrived at different
conclusions from that of normal theory and R-estimator intervals.

8. Asymptotic Relative Efficiency

Under assumptions (B.1) - (B.3) and for large n, the test-statistics D∗ and
W ∗ can be written as S∗(0) + op(1) under the null hypothesis of the equality of
the treatment effects. Also under assumptions (B.1) - (B.3) and the sequence
of translation alternatives Hn : yijk = µ + αi/

√
n + εijk, (i = 1, . . . , p, j =

1, . . . , n, and k = 1, . . . ,m,
∑p

i=1 αi = 0) it can be shown that

E[n−1/2S(0)] = −[m2/{τ(mp + 1)}][ pIp×p − 1p 1′p]α. (8.1)



658 M. MUSHFIQUR RASHID AND ANSUMAN BAGCHI

Therefore, using (8.1) and (4.2), the non-centrality parameter of all three
rank tests under the translation alternatives is

{m2p/(mp + 1)}
[∫ ∞

−∞
f(ε, ε) dε

]2 p∑
i=1

α2
i . (8.2)

Under the translation alternatives, it can be shown that the F statistic converges
to a chi-square distribution with p − 1 degrees of freedom and non-centrality
parameter

m
p∑

i=1

α2
i /{σ2(1 − ρ)}. (8.3)

Therefore the ARE of all the rank tests with respect to the normal theory coun-
terpart (F ) under the translation alternatives is

[12σ2(1 − ρ)mp/(mp + 1)]
[∫ ∞

−∞
f(ε, ε) dε

]2

, (8.4)

where ρ is the equi-correlation coefficient and σ2 is the variance of the error term.
As a result, the ARE is improved compared to the one-way repeated measures
models. (i.e., when m=1).

The ARE’s corresponding to exchangeable multivariate normal (N), mul-
tivariate t (with k d.f.), multivariate logistic (standard form) and multivariate
exponential distributions, respectively, are given by

3mp/{π(mp + 1)}, [6mp/{π(mp + 1)(k − 2)}]
{

Γ
(

k + 1
2

)
/Γ

(
k

2

)}2

,

π2mp/{8(mp + 1)}, and mp(1 − ρ)(3 + 4ρ)2/{3(mp + 1)}. (8.5)

From (8.5) we see that for the multivariate normal and t distributions the AREs
are independent of ρ. However, for the bivariate exponential distribution (John-
son and Kotz (1972), p. 263)

f(u, v) = e−(u+v)[1 + θ(2e−u − 1)(2e−v − 1)], |θ| ≤ 1, 0 < u, v < ∞
the ARE depends on ρ, (increasing function of ρ when 0 ≤ ρ ≤ 1

4 ). In Table 4,
we present ARE values for some specific choices of the parameters m, p and k.

Table 4. Asymptotic relative efficiencies (m = 2)

p = 2 3 4 5 6 7 8 9 10
Mult. normal 0.76 0.82 0.85 0.87 0.88 0.89 0.90 0.9047 0.9095
Mult. t (3 d.f.) 1.95 2.08 2.16 2.21 2.24 2.27 2.29 2.30 2.32
Mult. logis.(ρ = .5) 0.99 1.06 1.10 1.12 1.14 1.15 1.16 1.17 1.18
Mult. expon.(ρ = .2) 3.08 3.30 3.43 3.5 3.55 3.59 3.62 3.65 3.68
Note. Multi: Multivariate; t: student’s t; logis: logistic; expon: exponential.
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It is seen that the rank tests developed in this paper are relatively more
efficient than their normal theory counterparts for heavy-tailed symmetric dis-
tributions (t, and logistic) and skewed distributions (exponential).

9. Comparisons with Alternative Robust Tests

In this section we compare the performances of the S∗, W ∗, and D∗ statistics
with other nonparametric tests such as Mack and Skillings (1980) test. We also
discuss Jaeckel’s (1972) fixed effects model approach with reference to the model
considered in this article.

9.1. Mack and Skillings (M-S) test

Mack and Skillings (1980) developed distribution free tests for main effects
in a two-factor ANOVA with multiple replications per cell for the model:

yijk = µ + αi + βj + eijk, i = 1, . . . , p, j = 1, . . . , n, k = 1, . . . ,m, (9.1)

where αi (
∑t

i=1 αi = 0) is the main effect of the ith level of the first factor (A),
βj (

∑n
j=1 βj = 0) is the main effect of the jth level of the second factor (B), m is

the replications per cell and eijk are i.i.d. random errors.
To obtain a distribution free test for H0 : α1 = α2 = · · · = αp = 0, M-S

ranked the observations from smallest to largest within each level of the factor
B. Let Rij. denote the sum of the ranks in the ith level of factor A and jth level
of factor B. It turns out that the S∗ test in this article is identical to both the
M-S and Benard-Van Elteren tests (See Mack and Skillings (1980), p. 949.) Both
the S∗ and Benard-Van Elteren tests follow a chi-square distribution as n → ∞
when m and p are fixed. However, the M-S test-statistic follows a chi-square
distribution with p−1 degrees of freedom as m → ∞ when p and n are fixed. As
a result S∗ also follows a chi-square distribution with p − 1 degrees of freedom
when m → ∞. The M-S test (under i.i.d. errors) achieves Wilcoxon efficiency
when compared with its normal theory counterpart. If we assume m → ∞ rather
than n → ∞, then under the sequence translation alternatives Hm : αi/[m]

1
2 the

S∗ test for model (2.1) under assumptions (B.1) - (B.3) achieves the following
efficiency when compared with its normal theory counterpart:

12σ2(1 − ρ)
[∫ ∞

−∞
f(ε, ε) dε

]2

(9.2)

which follows from the ARE expression in (8.4). The ARE’s corresponding to
exchangeable multivariate normal, multivariate t (with k d.f.), multivariate logis-
tic (standard form) and multivariate exponential distributions, respectively, are
given by

3/π, [6/{π(k − 2)}] {Γ (k/2 + .5) /Γ (k/2)}2 , π2/8, and (1 − ρ)(3 + 4ρ)2/3.
(9.3)



660 M. MUSHFIQUR RASHID AND ANSUMAN BAGCHI

Note that for most distributions (multivariate logistic, normal and t) the
above ARE’s are independent of ρ and the number of treatments. Thus, as
m → ∞, the S∗ test of this article has efficiency equal to that of the M-S test,
and therefore it achieves Wilcoxon efficiency (when the error distributions are
multivariate normal, t and logistic) when compared with the normal theory F

test.
Note that under H0 both D∗(τ) and W ∗(τ) also follow a chi-square distri-

bution with p − 1 degrees of freedom when n is fixed and m → ∞. Thus D∗(τ)
and W ∗(τ) achieve the efficiency in (9.3) with respect to their parametric coun-
terparts. We are not able to estimate τ by keeping n fixed and letting m → ∞
because we need a random sample to estimate τ. In a repeated measures setting,
the assumption m → ∞ might not be feasible. Note that m → ∞ is useful if
we are interested in testing equality of the levels of the second factor B (subject
effect in our case) for the i.i.d. error models. For this case the M-S procedure
requires rankings to be done separately within the levels of the first factor (A).
In repeated measures designs, it is possible that we are not interested in subject
effects.

9.2. Jaeckel’s (1972) univariate approach

In this subsection we consider Jaeckel’s (1972) univariate (fixed effects) ap-
proach. One might want to analyze a replicated repeated measures model by the
cell means as done in parametric inference. It is well known that the parametric
repeated measures model based on the cell means can be analyzed by a mixed
model:

Ȳij. = µ+αi+βj + ēij., βj ∼ NI[0, ρσ2], ēij. ∼ NI[0, (1−ρ)σ2/m], ρ > 0, (9.4)

where βj (j = 1, . . . , n) and ēij. (i = 1, . . . , p; j = 1, . . . , n) are independently
distributed. Note that (9.4) requires ρ > 0, whereas for an exchangeable model
ρ ∈ (−1/(p−1), 1), provided the εj has a finite covariance matrix. In the absence
of normality of the Ȳij., (9.4) also requires that the sum of βj and ēij. has the same
distributional form as the Ȳij., which is not valid for all continuous distributions.
Thus the practice of writing a repeated measures model as a mixed model is not
valid under nonparametric inference. Therefore, we cannot use Jaeckel’s (1972)
fixed effects model approach in analyzing our model (2.1) or model (9.4) (without
normality) using the average of the replicates. Further, the use of the sample
average of the replicates is justified in normal theory inference because the sample
average is a sufficient statistic. Note that the sample average is not a sufficient
statistic for all continuous distributions.

If one applies Jaeckel’s (1972) method for the fixed effects model to estimate
the random effects (e.g. βj in models 9.4 and 2.5) in mixed models then one
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would estimate the random variable βj by assuming that it is fixed. Thus, it is
not clear how to use the results of Hettmansperger (1984), Chapter 5 in the case of
repeated measures and mixed models. Analogous to normal theory inference, one
might want to apply Jaeckel’s (1972) results to the fixed effects version of model
(2.5) (i.e. assuming the βj is fixed and Var(eijk) = Var(Yijk) = σ2). However,
in that case the dependency of the data within each subject will be ignored.
For example, the denominator of the drop in dispersion test will contain a scale
parameter τ1 = 1/[

√
12

∫ ∞
−∞ g2(x) dx] where g(·) is the p.d.f. of eijk, the random

error term in the fixed effects version of model (2.5). It is worth noting that
the power of the tests for repeated measures models (either normal theory or
nonparametric inference) must be an increasing function of ρ, which is evidenced
from our simulation study. See also Jensen (1982) for discussions concerning
normal theory repeated measures models. However, the power function of the
tests based on Jaeckel’s (1972) dispersion function for the fixed effects version of
model (2.5) will not contain a parameter that will show the dependency of the
data within each subject.

Martin (1988), p.265 noted, “Although Draper (1988), p.243 mentions that
the rank based methods using Jaeckels’s (1972) dispersion function for fixed ef-
fects models may be extended to mixed models, I wonder really how natural
the methods are even for estimating random effects, let alone variance compo-
nents?” Concerning parametric inference about mixed models, Hocking (1985)
noted that one should formulate a statistical model directly in terms of the co-
variance structure of observations. Samuels, Casella and McCabe (1991) noted
that many people would find this difficult, because for them a linear representa-
tion like models (2.5) and (9.4) is easier to formulate than a set of assumptions
about a covariance matrix. Note that in general Jaeckel’s (1972) fixed effects
model approach requires N(= pnm) → ∞ as m → ∞ (when Huber’s condition
is satisfied, see Heiler and Willers (1988) for a detailed discussion) and assumes
mixed models as fixed effects models.

10. Small Sample Study

A small scale simulation study (with n = 15and 20) was conducted to in-
vestigate the small sample behavior of the rank-based procedures developed in
this article. The distributions considered were multivariate normal and multi-
variate t (with 3 and 8 degrees of freedom) with scale parameter σ2 = 1 and
ρ = .2, .5 and .8. The data sets were generated for p = 2, 3, 4, and 5, m = 2
and n = 15 and 20. We have run 1000 simulations on each distribution. In the
following we describe the results of the simulation study.

First, we see how well the rank tests achieve the nominal level .05. The
empirical levels are presented in Table 5.
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Table 5. The empirical levels of the rank tests at the nominal .05 level
when σ=1.0, m = 2

(n p) F (., . . . , .) Test(ρ = .2) Test(ρ = .5) Test(ρ = .8)
D∗ S∗ W ∗ D∗ S∗ W ∗ D∗ S∗ W ∗

15 2 N .056 .058 .063 .049 .060 .059 .058 .071+ .071+

t8 .053 .063 .059 .053 .056 .056 .041 .048 .045
t3 .051 .060 .051 .047 .053 .046 .054 .059 .050

15 3 N .054 .050 .058 .058 .055 .060 .052 .054 .056
t8 .050 .048 .048 .050 .050 .059 .047 .039 .051
t3 .056 .064+ .050 .045 .053 .045 .046 .049 .043

15 4 N .060 .054 .070+ .056 .040 .066+ .048 .043 .059
t8 .048 .050 .052 .042 .041 .049 .049 .046 .052
t3 .049 .053 .041 .056 .057 .057 .045 .051 .052

15 5 N .059 .050 .065+ .057 .051 .071+ .051 .050 .061
t8 .051 .047 .057 .049 .048 .046 .049 .045 .056
t3 .050 .057 .038 .039 .042 .035 .042 .042 .028

20 2 N .051 .039 .058 .057 .043 .063 .048 .039 .050
t8 .058 .050 .055 .050 .040 .057 .051 .043 .059
t3 .053 .056 .054 .051 .044 .054 .045 .043 .050

20 3 N .056 .048 .067+ .037 .040 .051 .057 .057 .067+

t8 .052 .062 .052 .037 .052 .030− .053 .062 .048
t3 .057 .058 .056 .045 .058 .041 .041 .038 .052

20 4 N .060 .061 .063 .057 .051 .071+ .051 .050 .061
t8 .057 .056 .053 .050 .048 .055 .045 .046 .052
t3 .042 .049 .041 .046 .042 .044 .051 .049 .050

20 5 N .055 .039 .061 .044 .036 .066+ .062 .048 .067
t8 .038 .036 .052 .055 .046 .059 .062 .056 .063
t3 .047 .051 .042 .053 .063 .051 .047 .058 .047

Note. N: Multivariate normal; t3: Multivariate t with 3 degrees of freedom; t8: Multi-
variate t with 8 degrees of freedom; +: Two standard deviations above the true level; −:
Two standard deviations below the true level.

The pluses (minuses) in Table 5 indicate empirical levels above (below) two
standard deviations at the proportion 0.05. We see that only the empirical levels
of the D∗ test are within the two standard deviations of the nominal level 0.05.
For example, when p = 2, n = 15 and ρ = .8, the empirical levels of S∗ and W ∗

are outside the two standard deviations interval (.0362, .0638) with the center
at the proportion 0.05. Therefore, we recommend the D∗ test when n ≥ 15, and
p ≥ 2.

Next, we investigate the empirical powers of the S∗, W ∗, D∗ and F statis-
tics for testing H0 : α1 = α2 = · · · = αp = 0 versus H1 : αi �= αi′ (i �= i′).
Under the local alternatives, the rank tests in this article have a non-central chi-
square distribution with p − 1 degrees of freedom and non-centrality parameter
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m2p
∑p

j=1

∑p
i=1 α2

i /[(mp + 1)τ2]. The parametric F for testing the hypothesis of
no treatment effects has a non-central F - distribution with non-centrality param-
eter m

∑p
i=1 α2

i /[σ
2(1 − ρ)]. We draw the empirical power curves as a function

of distance (
∑p

i=1 α2
i = d) when the nominal level is .05 and the distribution is

multivariate t with 3 (t3) degrees of freedom. The power curves (Figure 1) are
drawn for n = 15, p = 3 and ρ = .5 for S∗, W ∗, D∗ and F when the observations
are generated from a multivariate t3. The alternatives (α1, α2, α3) are chosen to
be (−.5, 0, .5)′, (−.7, 0, .7)′, (−.65, 0, .65)′ , (−.4, 0, .4), (−.2,−.1, .3)′ , (−.6, 0, .6)′

and (−.3, 0, .3)′ .
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Figure 1. Empirical power curves of D∗, S∗, W ∗ and F tests when level = .05,
ρ = .5, σ = 1, n = 15, p = 3, m = 2, distance =

∑p
i=1(αi−ᾱ)2, and εj follows

a multivariate t with 3 d.f.

We observe that the rank tests perform better than the F test. However,
among the rank tests the D∗ test has the highest empirical power. We have also
investigated the empirical powers of the rank tests and the F test for multivariate
t8 and multivariate normal distributions. When the data came from the t8
distribution, the rank tests again perform better than the F test. The D∗ test
has the highest empirical power among the rank tests. However, the F test is
competitive with the rank tests. For the normal distribution the F test performed
the best which is expected. The D∗ test was the second best. Note that in general
the empirical powers of all the tests are increasing functions of ρ. For illustrative
purposes, we have plotted the empirical powers of the D∗ test in Figure 2.
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Figure 2. Empirical power curves of D∗ test as a function of ρ (corr.) when
level= .05, n=15, p=3, σ=1, m=2, distance =

∑p
i=1(αi−ᾱ)2, and εj follows

a multivariate t with 3 d.f.
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Figure 3. Empirical power curves of the D∗ test when level = .05, ρ = .5,
σ = 1, n = 15, p = 3, m = (2 , 4), distance =

∑p
i=1(αi − ᾱ)2, and εj follows

a multivariate t with 3 d.f.
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On the basis of the study, we see that the D∗ test is the most powerful test
among the rank tests.

Consider now the effect of m on the empirical powers of the rank tests and
the F test. For m = 2 and m = 4, we have plotted empirical power curves (Figure
3) of the D∗ test when the distribution is multivariate t3, n = 15, p = 3, ρ = .5
with the same alternatives used in previous curves.

It is evident that the empirical powers increase with m.

Next, we investigate whether it is better to analyze the replicates rather
than the cell means. We have plotted the empirical power curves of the D∗ test
based on the replicates and the cell means when the data were generated from
the multivariate t3. We see from Figure 4 that the empirical powers based on
the replicates are higher than those based on the cell means.
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Figure 4. Empirical power curves of the D∗ test based on the replicates
(m = 4) and average of the replicates when Level = .05, ρ = .5, σ = 1,
n = 15, p = 3, distance =

∑p
i=1(αi− ᾱ)2, and εj follows a multivariate t with

3 d.f.

We have also examined the estimated standard error of the estimator of α1−
α2 and found that for multivariate normal distributions the estimated standard
error of the least squares estimate of α1 − α2 is much less than that of the R-
estimate of α1 − α2. However, for the multivariate t distributions the estimated
standard error of the least squares estimate of α1 −α2 is higher than that of the
R-estimators.
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To summarize, the D∗ test had the best performance among all rank tests.
Specifically, for n ≥ 15 and p ≥ 2, it achieved the prescribed level of significance
well and was the most powerful test. Our simulation study also showed that
the empirical powers of the rank tests are better when the analysis is based on
replicates (rather than cell means) and increase with cell size.

11. Concluding Remarks

In this article we have developed three rank tests analogous to the non-
parametric linear model with i.i.d. errors. We have given a justification of the
Benard-Van Elteren statistic from the non-parametric repeated measures model
point of view. We have shown that our R-estimators are more robust than those
of the normal theory estimators. Our results will have potential applications in
biological, behavioral, medical and pharmaceutical research where replications
are made for statistical analysis and accuracy.

The results of this article can be extended to unbalanced (different block
sizes) and proper (same block size) designs with unequal or no replications per
cell. These designs are under investigation and will appear in a future work.
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