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EXISTENCE AND STABILITY OF WEAK SOLUTIONS

TO STOCHASTIC DIFFERENTIAL EQUATIONS

WITH NON-SMOOTH COEFFICIENTS
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Abstract: Weak solutions to stochastic differential equations in R
d, d ≥ 2, are

continuous-time Markov processes. We show that under very general conditions
such solutions possess irreducibility and continuity properties which enable criteria
for Harris recurrence and transience, developed in Meyn and Tweedie (1993b),
Down, Meyn and Tweedie (1995) and Stramer and Tweedie (1994), to be applied
to them. All of our criteria are in terms of the second-order differential operator,
and hence a unified approach to the stability classification of weak solutions is
obtained which generalises that of Khas’minskii (1980); we also develop explicit
forms of the stationary measure for many such processes. The results are applicable
in continuous-time time series analysis (see Stramer, Tweedie and Brockwell (1996)
and Stramer, Brockwell and Tweedie (1996)) and we consider a multi-dimensional
threshold model as one such application.
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1. Introduction

The purpose of this paper is to investigate the stability and structure of
multi-dimensional nonlinear diffusion models, in circumstances where the model
coefficients fail to satisfy the smoothness conditions previously assumed in the
literature (see Khas’minskii (1980), Bhattacharya (1978), Kliemann (1987) and
Basak and Bhattacharya (1992)). One motivation for this is the extension of
threshold models from discrete time (see Tong (1990)) to continuous time models,
and we illustrate our results in Section 5 on one such example.

Our approach is to show that, under suitable but weak conditions, such
diffusion models can be analyzed using general state space Markov process theory,
as developed in Meyn and Tweedie (1993b). As one consequence of this, we find
that conditions for recurrence or transience, as developed by say Khas’minskii
(1980), give rather stronger conclusions than previously determined.

We consider processes which are solutions to stochastic differential equations
of the form

dX(t) = b(X(t))dt + σ(X(t))dW (t), (1)
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or equivalently in coordinate form,

dXi(t) = bi(X(t))dt +
r∑

j=1

σij(X(t))dWj(t); 1 ≤ i ≤ d,

where W = (W1, . . . ,Wr) is an r-dimensional Brownian motion (r ≥ 1) starting
from the origin, and b : R

d → R
d (the drift vector) and a := σσT : R

d →
R

d ⊗ R
d (the diffusion matrix) are locally bounded Borel measurable functions.

Throughout this paper we shall assume that d ≥ 2 (for more detailed results on
the scalar case d = 1 see Mandl (1968)) and that conditions for non-explosion (see
Narita (1982), McKean (1969), Khas’minskii (1980) and Stroock and Varadhan
(1979)) are satisfied.

We will consider weak solutions to (1) as continuous time-homogeneous
Markov processes evolving on (Rd,B(Rd)), with transition probability law
P t(x,A) = Px(X(t) ∈ A), x ∈ R

d, A ∈ B(Rd); here B(Rd) denotes the Borel
σ-field on R

d. Following Meyn and Tweedie (1993a) and Meyn and Tweedie
(1993b), in order to investigate stability of X, for a measurable set A ⊆ R

d we
denote the hitting times and occupation times of X by

τA = inf{t ≥ 0 : X(t) ∈ A}, ηA =
∫ ∞

0
11{X(t) ∈ A} dt.

We write
L(x,A) = Px(τA < ∞); U(x,A) = Ex[ηA].

Stability properties of Markov processes are typically stronger for irreducible
processes with some continuity properties, as discussed in Meyn and Tweedie
(1993a). We will be interested in µLeb-irreducible chains (where µLeb is Lebesgue
measure) defined as:

Definition 1.1. (i) A Markov process X is called µLeb-irreducible if

µLeb(B) > 0 =⇒
∫ ∞

0
P t(x,B)dt = Ex(ηB) > 0, ∀x ∈ R

d.

(ii) The process X is called Harris recurrent with respect to µLeb if L(x,A) ≡ 1
whenever µLeb{A} > 0, and transient if there exists a countable cover of R

d by
sets Aj such that U(x,Aj) ≤ Mj < ∞ for all j.

It is well known (see Meyn and Tweedie (1993a) and Tweedie (1994)) that
if X is a time-homogeneous irreducible Markov process on R

d then we have a
dichotomy between recurrence and transience. Moreover (see Azéma, Duflo and
Revuz (1967), Getoor (1979) and Meyn and Tweedie (1993a)), if a weak solution
X is Harris recurrent then an essentially unique invariant measure π exists. If the
invariant measure is finite, then it may be normalized to a probability measure;
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in this case X is called positive Harris recurrent. If the invariant measure is not
finite then X is called null Harris recurrent. For weak solutions that are positive
Harris recurrent it is further known (see Meyn and Tweedie (1993a)) that under
general conditions P t(x, ·) → π(·), where π is the unique invariant measure, in
some appropriate sense; and in particular it may be that such convergence occurs
exponentially quickly.

Specifically, our goals here are: (a) to find conditions under which weak
solutions to (1) are µLeb-irreducible with suitable continuity properties (Section
2); (b) within this context to derive criteria for the process to be Harris recurrent
or transient (Section 3); (c) and for recurrent chains, to find conditions when π

is finite, when convergence to π is exponentially fast, and finally to derive the
structure of π under extra conditions (Section 4). We then conclude in Section 5
with an application to multi-dimensional continuous-time threshold AR models.

A number of authors have considered related problems, under various condi-
tions on the drift vector b and the diffusion matrix a. Conditions for recurrence,
non-recurrence and infinite mean recurrence time relative to an open set O (i.e
conditions for Px(τO < ∞) ≡ 1, Px(τO = ∞) > 0 and Ex[τO] = ∞) appear to be
first derived in Khas’minskii (1980). There it is shown that under the assumption
that b and a are Lipschitzian and a is positive definite, such single set recurrence
and non-recurrence gives “open-set” recurrence or non-recurrence for all open
sets. It is further shown in Bhattacharya (1978) that the process is either “open-
set” recurrent or transient under weaker assumptions on b and a (namely if b is
locally bounded and Borel measurable and a is continuous and positive definite).
An “open-set” transience-recurrence dichotomy based on invariant control sets is
also derived in Kliemann (1987) for degenerate diffusions under the assumption
that b and a are C∞.

We will show that even under more general “non-smooth” assumptions on
the drift vector b and the diffusion matrix a, we can derive not only a dichotomy
for open sets, but a stronger version, namely a Harris recurrence-transience di-
chotomy w.r.t. µLeb.

A similar test function approach for weak (rather than our total variation
norm) convergence of the transition probability P t(x, ·) to π(·) is derived in Basak
and Bhattacharya (1992) for a broad class of diffusions under the assumption
that a and b are Lipschitzian. Their models include singular diffusions and highly
nonradial nonsingular diffusions, and are not in general irreducible, so the criteria
of Khas’minskii (1980) can not be applied or else fail. Our results typically do
not apply as given here to this class, since we focus on irreducibility conditions;
but we believe some of our results could be used to remove the smoothness
conditions even without irreducibility, using, for example, Theorem 4.5 of Meyn
and Tweedie (1993b).
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2. Irreducibility Properties

Our goal in this section is to show that a broad class of diffusions are µLeb-
irreducible and have continuity properties which make them T -processes. These
are defined following Meyn and Tweedie (1993a) by:

Definition 2.1. A process will be called a T -process if for some probability
measure λ on [0,∞) there exists a kernel T (x,A) with T (x, R

d) > 0 ∀x ∈ R
d

such that

(i) For A ∈ B(Rd) the function T ( · , A) is lower semi-continuous;
(ii) For all x ∈ R

d and A ∈ B(Rd) the measure T (x, · ) satisfies
∫ ∞
0 P t(x,A)λ(dt)

≥ T (x,A).

We will often use the next Proposition, which follows from Theorem 6.4 of
Tweedie (1994), and which gives an intuitive feeling for T -processes:

Proposition 2.2. If X(t) is µLeb-irreducible and has the weak Feller property
(i.e. Ex(f(X(t))) is continuous in x when f is bounded and continuous), then
X(t) is a T -process.

We first find sufficient conditions for weak solutions of (1) to be µLeb-
irreducible T -processes in the case when the diffusion matrix is not necessarily
continuous provided the noise can drive the process to a sufficiently large set
of states. If x = [ x1 · · · xd ] and y = [ y1 · · · yd ] then we use the inner
product notation (x, y) =

∑d
i=1 xi yi, and ||x||2 = (x, x).

Theorem 2.3. Suppose that R
d can be divided up into finitely many polyhedra

O1, . . . , Ok such that R
d = ∪k

i=1Oi and the Oi have pairwise disjoint interiors.
Assume also that the diffusion matrix a(x) satisfies a Lipschitz condition in the
interior of each Oi and that for some 0 < k1 < k2 and all θ ∈ R

d,

k1||θ||2 ≤ (θ, a(x)θ) ≤ k2||θ||2.

Then if for any initial value x there exists a unique (in law) weak solution
(Ω,F , {F̂t}, P̂x, Ŵ ,Xx) to (1) with Xx

0 = x, this solution is a µLeb-irreducible
T-process.

Proof. We first assume that b(·) and σ(·) are globally bounded. For simplicity
we also assume that k = 2 (i.e. R

d = ∪2
i=1Oi and hence the boundary of O1,

∂O1 is the same as that of O2). The extension to k > 2 is straightforward. By
the Cameron-Martin-Girsanov formula (see e.g. Stroock and Varadhan (1979)
Theorem 6.4.3) there exists a weak solution (Ω,F , {Ft}, Px,W, Y x) to (1) with
diffusion matrix a(x), drift vector zero and initial value Y x

0 = x, where the
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measure Px on (Ω,F) satisfies dP̂x = Mx(Y x, t)dPx and

Mx(Y x, t) = exp
[
− 1

2

∫ T

0
(b(Y x(s)), (a−1b)(Y x(s)))ds

+
∫ T

0
((a−1b)(Y x(s)), dY x(s))

]
. (2)

Furthermore, with 0 ≤ t1 < t2 < · · · < tn

P̂x[(Xt1 , . . . ,Xtn) ∈ Γ] = Ex[11{(Y x
t1

,...,Y x
tn

)∈Γ}Mx(Y x, tn)]; Γ ∈ B(Rdn), (3)

where Ex denotes expectation relative to Px. Therefore since Mx(Y x, t) is always
positive it suffices to prove that Y x is irreducible. We first show that Xx and
hence also Y x has the weak Feller property. Let d(x) : R

d → R be the Euclidean
distance from x to ∂O1 and define for any ε > 0 f ε(x) : R

d → R to be 1 if
d(x) < ε, 0 if d(x) > 2ε and such that f ε(·) is continuous and bounded by 1.
To show that Xxn converges weakly to Xx as xn → x we first note that Xxn is
relatively weakly compact (cf. Exercise 5.3.15 of Karatzas and Shreve (1991)).
Without loss of generality and using the Skorokhod representation we assume
that Xxn converges with probability one to X̂ as xn → x. To complete the
proof we now show that X̂ is a weak solution to (1) with a(·), b(·) as defined in
Theorem 2.3 and initial point Xxn = x. From continuity of b(·)(1 − f ε(·)) and
σ(·)(1 − f ε(·)) for any ε > 0 we have that as xn → x,

∫ T

0
b(Xxn(s))(1 − f ε(Xxn(s)))ds →

∫ T

0
b(X̂(s))(1 − f ε(X̂(s)))ds; (4)

∫ T

0
σ(Xxn(s))(1 − f ε(Xxn(s)))dW (s) →

∫ T

0
σ(X̂(s))(1 − f ε(X̂(s)))dW (s). (5)

Using Exercise 7.3.2 of Stroock and Varadhan (1979) we have that for all initial
points x there exists some constant C > 0 such that

∣∣∣Ex(
∫ T

0
f ε(X(t))dt))

∣∣∣ ≤ Cε, (6)

where C depends on k1, k2 and T . From (4), (5) and (6) we now have that X̂ is a
weak solution to (1) and the Feller property follows from uniqueness of solutions
to (1). The Feller property in the case that the drift vector b(·) and the diffusion
matrix a(·) are unbounded follows directly from Lemma 11.1.1 of Stroock and
Varadhan (1979). Using (6) and Theorem 3.2.1 of Stroock and Varadhan (1979)
we have that for Y x, L(y,A) > 0 for any y ∈ R

d and any set A ⊂ R
d with

positive Lebesgue measure and hence by Proposition 2.1 of Meyn and Tweedie
(1993a) Y x is ϕ-irreducible with ϕ = µLebR, where R(x, ·) =

∫ ∞
0 P t(x, ·)e−tdt is
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the resolvent kernel. We then infer from Theorem 3.2.1 of Stroock and Varadhan
(1979) that if µLeb(A ∩ Oi) > 0 for some 1 ≤ i ≤ k then

∫ ∞
0 P t(x,A)dt > 0 for

all x ∈ Oi. The µLeb-irreducibility follows now directly from R(x,A) > 0, x ∈ Oi

which implies that ϕ(A) > 0 whenever µLeb(A) > 0. The proof that Xx is a
T -process now follows from µLeb-irreducibility and Proposition 2.2.

Remark 2.4. From Exercise 7.3.2 of Stroock and Varadhan (1979) we have that
under the assumptions of Theorem 2.3 existence of a weak solution to (1) always
holds and this solution is unique (in law) if d = 2 (see Exercise 7.3.4 of Stroock
and Varadhan (1979) for details). In the case when d > 2 we have from Bass
and Pardoux (1987) that uniqueness holds if a(x) is constant in the interior of
each Oi. For the more general case when the diffusion matrix is not necessarily
constant in the interior of each Oi the question of uniqueness is still open.

As a second major class of diffusions satisfying (1), which fall into the µLeb-
irreducible T -process framework, we next consider stochastic systems of the form

( dX(t)
dY (t)

)
=

( f(Y (t))
b(X(t), Y (t))

)
dt +

( 0
A

)
dW (t), (7)

where A is a non-singular matrix. These processes are studied in Kliemann
(1987) under the assumption that f and b are C∞, and we relax this continuity
assumption below. In particular this class includes continuous-time threshold
ARMA processes with constant white noise variance (see Brockwell and Stramer
(1995)), which can therefore be studied in this context. For the case d = 2 we
will give more results than in the case when d > 2.

In order to study (7), we need the following notation and assumptions. Let B

be a d−p dimensional Brownian motion with B(0) = 0 defined on the probability
space (C[0,∞)(d−p),B[0,∞)(d−p), P ) and let Ft = σ{B(s), s ≤ t} ∨ N , where N
is the σ-algebra of P -null sets of B[0,∞)(d−p) and P denotes the law of B; we
use E to denote expectation relative to P . For any x ∈ R

(p) and y ∈ R
(d−p) let

Zt(x, y) = (x+
∫ t
0 f(Bs +y)ds,Bt +y), where f is an Rp-valued function on Rd−p

which satisfies global Lipschitz conditions.
We will use the following assumption:

Controllability Assumption: We assume that the transition probability
Py(Zt ∈ D) of Zt(x, y) is positive for any set D in R

d with positive Lebesgue
measure.

Remark 2.5. If f(x) = Cx, where C is a p×(d−p) matrix then it is well known
(see Proposition 5.6.5 of Karatzas and Shreve (1991)) that the Controllability
Assumption holds in the case when

rank(e, Ĉe, . . . , Ĉ(d−1)e) = d,
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where Ĉ and e are d × d matrices such that

ĉij =




cij , if 1 ≤ i ≤ p and p + 1 ≤ j ≤ d,
1, if i = j ≥ p + 1,
0, otherwise,

and

eij =

{
1, if i = j ≥ p + 1,
0, otherwise.

We now have

Theorem 2.6. Assume that the Controllability Assumption holds and consider
stochastic differential equations of the form (7); that is,

dXi(t) = fi(Y (t))dt 1 ≤ i ≤ p

dYi(t) = bi(X(t), Y (t))dt +
d∑

j=p+1

σijdWj(t); p + 1 ≤ i ≤ d, (8)

where W = (Wp+1, . . . ,Wd) is a (d − p)-dimensional Brownian motion starting
from the origin, b : R

d → R
d−p is Borel-measurable and satisfies linear growth

conditions and a(d−p)×(d−p) is a positive definite matrix (aik =
∑d

j=p+1σijσjk,
p + 1 ≤ i, k ≤ d). Then
(i) For any x ∈ R

p, y ∈ R
d−p there exists a unique (in law) weak solu-

tion (X(t), Y (t)) to (8) with initial point (x, y), and this solution is a µLeb-
irreducible process.

(ii) If Γ is the set of all x ∈ R
d for which b(x) is discontinuous, and for each

ε > 0 there exists a closed set Cε such that Γ ⊂ Cε and for each t > 0
µLeb(0 < s < t : Zs(x, y) ∈ Cε) ≤ Kε, where K depends only on t, then
(X(t), Y (t)) is also a T -process.

Proof. For simplicity we assume that the matrix {σij}, p + 1 ≤ i ≤ d, p + 1 ≤
j ≤ d is the identity matrix I. It is obvious that Zt(x, y) as defined in the
Controllability Assumption is the unique strong solution to

dXi(t) = fi(Y (t))dt 1 ≤ i ≤ p

dYi(t) = dWi(t) p + 1 ≤ i ≤ d

with initial point (x, y). By the Camerom-Martin-Girsanov formula there exists
a unique weak solution to (8) on (C[0,∞)d−p,B[0,∞)d−p, P̂x,y). We now infer
from Remark 5.3.8 of Karatzas and Shreve (1991) that dP̂x = Mx(Y x, t)dPx,

where

P̂x,y[(Xt, Yt) ∈ Γ] = E[11{Zt(x,y)∈Γ}M(Zt(x, y))]; Γ ∈ B(Rd), (9)
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and

M(Zt(x, y))=exp
[
− 1

2

d∑
i=p+1

∫ t

0
(bi(Zs(x, y)))2ds+

d∑
i=p+1

∫ t

0
bi(Zs(x, y))dBi(s)

]
.

Thus (i) follows from positivity of M(Zt(x, y)) and the Controllability Assump-
tion.

The proof of (ii) will now follow directly from Proposition 2.2, provided
we can show that (X(t), Y (t)) is weak Feller. From the assumption that the
occupation time of Zt(x, y) in a small neighborhood around the boundary is
small we have that if g is bounded and continuous then as (xn, yn) → (x, y)

g(Zt(xn, yn))M(Zt(xn, yn)) → g(Zt(x, y))M(Zt(x, y))

almost everywherewith respect toµLeb. According toCorollary 3.5.16 of Karatzas
and Shreve (1991) M(Zt(x, y)) is a martingale under the measure P and hence
for each x ∈ R

p and y ∈ R
d−p, E[M(Zt(x, y))] = 1 and clearly {M(Zt(xn, yn))}

is uniformly integrable. We now observe that {g(M(Zt(xn, yn)))} is uniformly
bounded in n and hence {g(Zt(xn, yn))M(Zt(xn, yn))} is uniformly integrable.
The Feller property of (X,Y ) follows now from Exercise 16.21 of Billingsley
(1986), p.223 and this completes the proof.

Remark 2.7. Theorem 2.6 can be generalized to the case when σij are functions
of (X(t), Y (t)) which satisfy Lipschitz conditions. Then Zt(x, y) is the unique
strong solution (for existence and uniqueness see Protter (1990)) to

dXi(t) = fi(Y (t))dt 1 ≤ i ≤ p

dYi(t) =
d∑

j=p+1

σij(X(t), Y (t))dWj(t); p + 1 ≤ i ≤ d

and the proof is now similar to the proof of Theorem 2.6.

Following Brockwell and Williams (1995) and Nisio (1973) we can generalize
the results of Theorem 2.6 for d = 2 to the case when σ(·) is not necessarily
continuous. In particular this class includes continuous-time threshold AR(2)
processes with white noise variance that is not necessarily constant (see Brockwell
and Williams (1995)).

Theorem 2.8. Consider the following two dimensional stochastic differential
equation,

( dX1(t)
dX2(t)

)
=

( f(X2(t))∑k
i=0 bi(X1(t),X2(t))11{X1(t)∈(ri,ri+1)}

)
dt

+
( 0∑k

i=0 σi(X1(t))11{X1(t)∈(ri,ri+1)}

)
dW (t), (10)
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where −∞ = r0 ≤ r1 ≤ · · · ≤ rk+1 = ∞; c1 ≤ σi(·) ≤ c2 with positive c1 and c2;
for each i = 1, . . . , k bi is Lipschitz and σi has continuous derivatives and f is a
one to one function with continuous and bounded derivatives of order up to two.
Then for any initial value x there exists a unique (in law) weak solution to (10)
and this solution is a µLeb-irreducible T-process.

Proof. Existence and uniqueness follows directly from Nisio (1973). Let
(X1,X2) be the unique weak solution to (10) with initial point x defined on some
probability space (Ω,F , Px). Without loss of generality we assume that k = 1.
Applying Itô’s rule to (10) with F (x1, x2) = (x1, f(x2)) we can also assume that
f(x) = x for all x ∈ R. Using the same argument as in Brockwell and Williams
(1995) (for details see the proof of Lemma 3.1) we can show that for any ε > 0
there exists K > 0 such that Ex(

∫ ∞
0 11(|X1(t)| < ε)dt) ≤ Kε, where Ex denotes

expectation relative to Px. The proof that (X1(t),X2(t)) has the Feller property
is now similar to the proof of Theorem 2.3. We next show that (X1(t),X2(t)) is
a µLeb-irreducible process. To do this we consider for i = 0, 1 the following two
dimensional stochastic differential equation,

( dXi
1(t)

dXi
2(t)

)
=

( Xi
2(t)

bi(Xi
1(t),X

i
2(t))

)
dt +

( 0
σi(Xi

1(t))

)
dW (t). (11)

Applying Itô’s rule to (11) with F (x1, x2) = (x1,
∫ x2
0

du
σi(u)

) we can assume that
σi(x) ≡ 1. From Theorem 2.6 we have that for any initial point x there exists
a unique (in law) weak solution to (11) and this solution is a µLeb-irreducible
process. This implies that if O1 = {x = (x1, x2) ∈ R

2 : x1 < r1} and O2 = {x =
(x1, x2) ∈ R

2 : x1 > r1}, then for (X1,X2) and each i = 1, 2 L(x,A) > 0 for all
x ∈ Oi and any set A ⊂ R

2 with µLeb(A ∩ Oi) > 0. The proof that (X1,X2) is a
µLeb-irreducible T -process is now similar to the proof of Theorem 2.3.

3. Transience and Recurrence

We now turn to conditions for recurrence and transience. Note that our
next sequence of results apply to models in Khas’minskii (1980), Bhattacharya
(1978) and Kliemann(1987); for it is trivial under the assumption that the vec-
tor drift b and the diffusion matrix a are Lipschitzian and a is positive definite
(see Khas’minskii (1980)) that the diffusion process is a T -process; from The-
orem 2.3, all models in Bhattacharya (1978) with diffusion matrix a that are
Lipschitzian are µLeb-irreducible T -processes; and it was observed in Meyn and
Tweedie (1993a) that the models in Kliemann (1987) are T -processes, and now
we have from Theorem 2.6 and Remark 2.7 that under the Controllability As-
sumption these models are also µLeb-irreducible.
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3.1. Criteria for recurrence and transience

We first establish a transience-Harris recurrence dichotomy for weak solutions
to (1) which are µLeb-irreducible T -processes. Note that we get a stronger version
of recurrence than the one in Bhattacharya (1978), where it was shown that
Px{τO < ∞) ≡ 1 for each open set O: we have that the Harris condition gives
Px{ηA = ∞} ≡ 1 for any set A with positive Lebesgue measure, so both the class
of recurrent sets and the “strength of recurrence” are extended.

Proposition 3.1. Let X be a µLeb-irreducible weak solution of (1). Then one
of the following holds:
(i) X is Harris recurrent and for all x, and all A with µLeb(A) > 0

Px{ηA = ∞} ≡ 1; (12)

(ii) X is transient and if X is also a T -process then every compact set K is
uniformly transient (i.e. Ex(ηK) ≤ M < ∞ for all x and compact K).

Proof. The fact that the chain is either transient or Harris recurrent with respect
to some µ (that is, there exists a σ-finite measure µ, such that whenever µ{A} > 0
L(x,A) ≡ 1) is known (see Meyn and Tweedie (1993a)). By Theorem 2.4 of
Meyn and Tweedie (1993d), we then have in the recurrent case that Px{ηA =
∞} ≡ 1 whenever ϕ(A) > 0, where ϕ = µR and R is the resolvent kernel.
We conclude from µLeb-irreducibility that R(x,A) > 0 for any set A in R

d with
positive Lebesgue measure and all x ∈ R

d. Thus ϕ(A) > 0 whenever µLeb(A) > 0,
which gives (12) for the required sets.

In the transient case, each compact set K is “small” since X is a T -process.
From Theorem 8.3.5 of Meyn and Tweedie (1993c) we thus have that every com-
pact set is uniformly transient for the resolvent, and (ii) follows now immediately
from the identity (see Tuominen and Tweedie (1979))

U(x,A) =
∑
n>0

Rn(x,A) = UR(x,A),

where R is the resolvent chain, ηR
A is the (discrete) occupation time of A for the

resolvent and UR(x,A) = Ex[ηR
A ].

Under various continuity conditions on b and a, it is known that “open
set” recurrence of the process X(t) follows if L(x,O) ≡ 1 for some O open and
bounded (see Khas’minskii (1980)), or if L(x,K) ≡ 1 for some K compact (see
Bhattacharya (1978)). Our next result extends this.

Proposition 3.2. Let X be a µLeb-irreducible weak solution of (1).
(i) If X is a T -process and there exists a compact set K such that L(x,K) ≡ 1

then X is Harris recurrent.
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(ii) If there exists a set U with positive Lebesgue measure such that for some one
x L(x,U) < 1 then X is transient.

Proof. (i) follows directly from Theorem 3.2 of Meyn and Tweedie (1993a) and
the T -property. To see (ii), note from the dichotomy between recurrence and
transience, and µLeb-irreducibility that if X is not transient then X is Harris
recurrent and hence by Proposition 3.1(i) L(x,A) ≡ 1 for all A with positive
Lebesgue measure. This obviously contradicts the assumption L(x,U) < 1 and
so the chain is transient.

Remark 3.3. Note that in Bhattacharya (1978) it was shown that in the recur-
rent case

Px(X(ti) ∈ U for a sequence {ti} with ti → ∞) = 1

for all x ∈ R
d and all nonempty open sets U . Clearly (12) is a much stronger

condition.

3.2. Test functions for recurrence and transience

Test functions for the condition L(x,K) ≡ 1 are given in Khas’minskii (1980)
under the condition that the process almost surely exits from each bounded
set in a finite time, and from Proposition 3.2 this will give us a criterion for
Harris recurrence. We now see that in fact this extra condition can be omit-
ted for µLeb-irreducible T -processes because of the strength of the Harris recur-
rence/transience dichotomy.

For suppose that U is a bounded set. Under the conditions of Proposition 3.1,
either the chain is transient in which case Ex(ηU ) is bounded and the chain must
reach U c almost surely; or the chain is Harris recurrent and since µLeb(U c) > 0,
we also have that L(x,U c) ≡ 1. So the condition of Khas’minskii is always
satisfied for µLeb-irreducible T -processes.

Proposition 3.4. Assume that X, the weak solution to (1), is a µLeb-irreducible
T -process. If there exists a positive definite symmetric matrix B such that for
some compact set C,

2(Bx, b(x)) + tr(a(x)B) ≤ 2(Ba(x)Bx, x)
(Bx, x)

x ∈ Cc,

then L(x,C) ≡ 1 and the process is Harris recurrent.

Proof. Apply Theorem 3.1 of Meyn and Tweedie (1993b) with the test function
V (x) = log(Bx, x) + k (as used in Khas’minskii (1980)) to see that L(x,C) ≡ 1.
The result follows from Proposition 3.2(i).

Proposition 3.5. Assume that X, the weak solution to (1), is a µLeb-irreducible
process. Then X is transient if there exists a semi positive definite symmetric
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matrix B with at least one of its eigenvalues nonzero and such that for some
compact set C, and a constant α > 0

2(Bx, b(x)) + tr(a(x)B) ≥ 2(1 + α)(Ba(x)Bx, x)
(Bx, x)

, x ∈ Cc.

Proof. Apply Theorem 3.3 of Stramer and Tweedie (1994) with the test function
V (x) = 1−k(Bx, x)−α (again as used in Khas’minskii (1980)) to find L(x,C) < 1.
Now the result follows from Proposition 3.2(ii).

Remark 3.6. A condition for the stronger “transience” result |Xx(t)−Xy(t)| →
∞ a.s. exponentially fast as t → ∞ for all x �= y is given in Remark 2.5 of Basak
and Bhattacharya (1992) for the more general case that X is not necessarily irre-
ducible, but under the assumption that a and b are Lipschitzian. Their condition
is stronger than that in Proposition 3.4.

4. Null Recurrence, Positive Recurrence and Exponential Ergodicity

For positive Harris recurrent processes it is known (see Meyn and Tweedie
(1993a)) that under very general conditions P t(x, ·) → π(·). Specifically, if the
chain is aperiodic in the sense that some skeleton is µLeb-irreducible (see Meyn
and Tweedie (1993a) Section 5) then the transition probabilities converge in total
variation to π.

Moreover, as shown in Meyn and Tweedie (1993a), often the process may
converge exponentially quickly, in which case it does so in the strong sense of
V -uniform ergodicity: that is, for some function V ≥ 1 and constants β < 1 and
R < ∞,

‖P t(x, ·) − π‖V ≤ V (x)R βt t ∈ R+, x ∈ R
d, (13)

where for any signed measure µ, ‖µ‖V = sup|g|≤V |µ(g)|. As in Section 3.2, we
can use test functions to find conditions for null recurrence, positive recurrence
and V -uniform ergodicity of weak solutions to (1).

Proposition 4.1. Assume that X, the weak solution to (1), is µLeb-irreducible
and Harris recurrent. Let C be any compact set in R

d such that µLeb(C) > 0.
If there are positive definite matrices B1, B2 and numbers ε > 0, M < ∞, such
that for x ∈ Cc

2(B1x, b(x)) + tr(a(x)B1) < M,

2(B2x, b(x)) + tr(a(x)B2) > ε
(B2a(x)B2x, x)

(B2x, x)

then X is null recurrent.
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Proof. Apply Theorem 4.3 of Stramer and Tweedie (1994) with V = (B1x, x),
W = (B2x, x)α − k (as used in Khas’minskii (1980)) where 0 < α < 1 and the
constant k is sufficiently large.

Proposition 4.2. Assume that X, the weak solution to (1), is a µLeb-irreducible
T -process.
(i) If there exists a semi-positive definite matrix B such that for some c > 0 ,

f ≥ 1 and R > 0

2(Bx, b(x)) + tr(a(x)B) ≤ −cf(x) for ||x|| > R, (14)

then X is positive recurrent;
(ii) If X is aperiodic, and there exists a positive definite matrix B such that for

some c > 0 and R > 0

2(Bx, b(x)) + tr(a(x)B) ≤ −c(Bx, x) for ||x|| > R, (15)

then the process is exponentially ergodic and for V = (Bx, x) + 1 we have
that (13) holds.

Proof. Apply Theorem 4.2 of Meyn and Tweedie (1993b) with V (x) = (Bx, x)+
1 to get positive recurrence in (i); the same function gives V -uniform ergodicity
from Theorem 6.1 of Meyn and Tweedie (1993b) also.

Remark 4.3. It is often easy to verify aperiodicity, and hence convergence in
total variation as a consequence of (14). It is not hard to show that the class
of processes given in Theorem 2.3 is also aperiodic under the assumption that a

satisfies a Lipschitz condition in R
d. In this case we have from (3) and Theorem

3.2.1 of Stroock and Varadhan (1979) that P t(x,A) > 0 for any set A ⊆ R
d

with positive Lebesgue measure. We conjecture that this class of processes is
aperiodic without the extra assumption on a but have not yet shown this. For
the class of processes defined in Theorem 2.6, aperiodicity follows from (9) and
the Controllability Assumption.

Remark 4.4. From Theorem 4.5 of Meyn and Tweedie (1993b) we have that
even without irreducibility, condition (14) can be used to give the existence of
a stationary probability for a T -process. A similar test function to (14) can be
found in Remark 2.6 of Basak and Bhattacharya (1992) under the assumption
that a and b are Lipschitzian.

Finally we find an explicit expression for the stationary density in the positive
recurrent case, under suitable conditions.

Theorem 4.5. Suppose that R
d can be divided up into finitely many polyhedra

O1, . . . , Ok such that R
d = ∪k

i=1Oi and the Oi have pairwise disjoint interiors.
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Assume that in the interior of each Oi b0 : R
d → R is of class C2 with bounded

second partial and bounded gradient ∇b0. Assume also that there exist a sequence
bn : R

d → R such that
(i) bn is of class C2 with bounded second partial and bounded gradient ∇bn.
(ii) On the interior of each Oi, 1 ≤ i ≤ k, bn(x) → b0(x) and ∇bn(x) → ∇b0(x)

as n → ∞
(iii) exp2bn(x) are uniformly integrable.
Let

∇̂b0(y) =

{
∇b0(y), if y ∈ int(Oi),
arbitrary, otherwise.

Then the weak solution X0 to the stochastic differential equation

dX(t) = ∇̂b0(X(t))dt + dW (t) 0 ≤ t ≤ ∞, (16)

where W is a standard R
d-valued Brownian motion, has a stationary density

π(dx) = exp2b0(x)dx.

Proof. Let (Ωn,Fn, {Fn
t }, Pn

x ,W n,Xn) be the weak solution to (16) with drift
vector ∇bn, n ≥ 0. From (2) and (3) we have that, with 0 ≤ t1 < t2 < · · · < tn

Pn
x [(Xn(t1), . . . ,Xn(tn)) ∈ Γ] = Ex[11{(Bx

t1
,...,Bx

tn
)∈Γ}Mx

n (Bx, tn)]; Γ ∈ B(Rdn),

where Bx is a d-dimensional Brownian motion (with Bx(0) = x) and

Mx
n (Bx, t) = exp

[
−1

2

∫ t

0
||∇bn(B(s))||2ds +

∫ t

0
(∇bn(B(s)), dB(s))

]
.

We first show that the finite-dimensional distributions of the process Xn con-
verge as n → ∞ to the finite dimensional distribution of X0. By Scheffé’s the-
orem and Exercise 21.21 of Billingsley (1986), p.289, it suffices to show that
Mx

n (Bx, t) converges in probability to MX
0 (B, t) as n → ∞. This follows since

both
∫ t
0 ||∇bn(B(s))||2ds and

∫ t
0 (∇bn(B(s)), dB(s)) converge in probability as

n → ∞ to the corresponding integrals with b0 for each fixed t.
Let πn(dx) = exp2bn(x)dx on B(Rd) for all n ≥ 0. We now have from

Pn
x (Xx

n(t) ∈ A) → P 0
x (Xx

0 (t) ∈ A) as n → ∞ for all A ∈ B(Rd) and Theorem
16.13 of Billingsley (1986) that

∫
Pn

x (Xx
n(t) ∈ A)πn(dx) → ∫

P 0
x (Xx

0 (t) ∈ A)π(dx)
as n → ∞ for all A ∈ B(Rd). We also have from Theorem 16.13 of Billings-
ley (1986) that πn(Rd) → π(Rd) as n → ∞ and hence by Scheffé’s theorem
πn(A) → π(A) as n → ∞ for all A ∈ B(Rd). The proof follows now directly from
Exercise 5.6.18 of Karatzas and Shreve (1991).
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5. A Threshold Model in Continuous Time

Example 5.1. As an application of the criteria above, we consider one special
case of multivariate continuous time threshold AR(1) processes. These processes
are extensions of continuous time threshold AR(1) processes (see Stramer, Brock-
well and Tweedie (1996)). Here X is the weak solution to (1) with b and σ defined
as follows. Let ε1, ε2, . . . , εN (N = 2d) be all the possible vectors in {0, 1}d. For
each j = 1, . . . , N define

Aj = {x ∈ R
d : xi < 0 if εj

i = 0 and xi > 0 if εj
i = 1}.

Note that R
d = ∪N

j=1Aj . Thus, if for example d = 2, then

A1 = {x ∈ R
2 : x1 < 0 and x2 > 0}; A2 = {x ∈ R

2 : x1 > 0 and x2 < 0};

A3 = {x ∈ R
2 : x1 < 0 and x2 < 0}; A4 = {x ∈ R

2 : x1 > 0 and x2 > 0}.
Assume that b(x) is linear and σ(x) is constant on each Aj , j = 1, . . . , N , i.e.
for all x ∈ Aj b(x) = bjx and σ(x) = σjI, where σj are positive constants, I is
the d× d identity matrix and bj are d× d matrices. On the boundaries we define
b(x) and σ(x) to be bjxj and σjI for some arbitrary j such that x ∈ Aj .

Proposition 5.2. Let X be the multivariate continuous time threshold AR(1)
process defined above. Then

(i) X is positive recurrent if −bj is positive definite for each j = 1, . . . , N .
(ii) X is null recurrent if b(x) ≡ 0 and d = 2;
(iii) X is transient if bj is positive definite for each j = 1, . . . , N or b(x) ≡ 0

and d > 2.

Proof. By Theorem 2.3 X is a µLeb-irreducible T -process.

Suppose first that b(x) ≡ 0. If d = 2 we apply Proposition 3.4 with B = I to
show that X is Harris recurrent and Proposition 4.1 with B1 = B2 = I to show
that X is null recurrent. If d > 2 we apply Proposition 3.5. with B = I to show
that X is transient.

Now assume that b(x) �≡ 0. If condition (i) holds then condition (14) is
satisfied with c = max{λj : 1 ≤ j ≤ N}, where λj is the largest eigenvalue of
bj for each 1 ≤ j ≤ N , B = I and f(x) = ||x||2 + 1. Note that λj < 0 for each
j. The proof of (i) follows now directly from Proposition 4.2. If condition (iii)
holds then

(Ix, bjx) ≥ λj ||x||2,
where λj > 0 is the smallest eigenvalue of bj for each 1 ≤ j ≤ N . The proof of
(iii) follows now directly from Proposition 3.5.
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Remark 5.3. We can refine the results of Proposition 5.2 if we assume that
σ is constant. For simplicity let σ = I. Then we infer from Theorem 4.5 and
Proposition 5.2 that if condition (i) of Proposition 5.2 holds then X is positive
Harris recurrent and the stationary distribution has probability density π(x) ∝
exp(

∑N
j=1 2bjx11(x ∈ Aj)). Moreover we have from Proposition 4.2 that since

X is aperiodic and condition (15) is satisfied then X is V -exponentially ergodic
with V = ||x||2 + 1.
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Azéma, J., Duflo, M. and Revuz, D. (1967). Measure invariante sur les classes récurrentes des
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