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Abstract: Control charts with estimated control limits are widely used in practice.

Common practice in control chart theory is to estimate the control limits using

data from the process and once the process is determined to be in control to treat

the resulting control limits as though fixed. Little is known about the run length

distributions of these charts when the fact that control limits are estimated is taken

into account. For example, no calculation has ever been done to find the mean and

standard deviation of the run length distribution of X̄ charts when process mean

µ and standard deviation σ are estimated. In this paper, we derive and evaluate

the mean and standard deviation of the X̄ charts when control limits are estimated

in three different ways. The results are then used to discuss the inadequacy of

the widely followed empirical rules for choosing the number of samples m and the

sample size n.
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1. Introduction

For a process variable with a N(µ, σ2) distribution, let Yij, i = 1, 2, 3, . . .
and j = 1, . . . , n denote independent random samples of size n taken in sequence.
When the mean µ and the standard deviation σ are known, the process can be
monitored by plotting the sample means

Ȳi =
1
n

n∑
j=1

Yij , i = 1, 2, 3, . . . ,

on a Shewhart chart with 3σ control limits

UCL = µ + 3
σ√
n

, CL = µ, LCL = µ − 3
σ√
n

. (1.1)

Define Ei to be the event that the ith sample mean Ȳi is either above UCL or
below LCL. Then the events {Ei} are independent and for all i ≥ 1,

P (Ei) = P (Ȳi < LCL or Ȳi > UCL) = 1 − Φ(3) + Φ(−3) = 0.0027,
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where Φ is the distribution function of a N(0, 1) random variable. If we define
U to be the number of samples until the first Ei occurs, then U is known as
the run length of the chart and has a geometric distribution with parameter
p = P (Ei) = 0.0027. It follows that the average run length (ARL) or the mean
and the standard deviation (SD) of U are given by

E(U) =
1
p

= 370.4 and SD(U) =
√

1 − p

p
= 369.9. (1.2)

When the mean µ and the standard deviation σ are unknown, the control
limits in (1.1) need to be estimated. Suppose that Xij , i = 1, . . . ,m and j =
1, . . . , n, are m independent samples of size n taken when the process is believed
to be in control; we usually estimate UCL, CL and LCL by

ÛCL =
=
X +3

σ̂√
n

, ĈL =
=
X, L̂CL =

=
X −3

σ̂√
n

, (1.3)

where µ is estimated by the grand sample mean

=
X=

1
m

m∑
i=1

 1
n

n∑
j=1

Xij

 =
1
m

m∑
i=1

X̄i,

and σ can be estimated in at least three different ways. One way is to base the
estimation on the average range

R̄ =
1
m

(R1 + R2 + · · · + Rm), (1.4)

where Ri is the range of the ith sample; and estimate σ by σ̂ = R̄/d2, where d2

is a function of the sample size n defined by

d2 = d2(n) = E(Z(n) − Z(1)),

with Z(n) and Z(1) the largest term and the smallest term, respectively, in a
random N(0, 1) sample Z1, . . . , Zn. Another way is to base the estimation on the
average standard deviation

S̄ =
1
m

(S1 + S2 + · · · + Sm), (1.5)

where Si is the ith sample standard deviation

Si =

 1
n − 1

n∑
j=1

(Xij − X̄i)2


1/2

,
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and estimate σ by σ̂ = S̄/c4, where c4 is a function of the sample size n defined
by

c4 = c4(n) =
(

2
n − 1

)1/2 Γ(n/2)
Γ[(n − 1)/2]

.

The third way is to base the estimation on the pooled sample standard deviation

Sp =

{
1
m

m∑
i=1

S2
i

}1/2

=

 1
m(n − 1)

m∑
i=1

n∑
j=1

(Xij − X̄i)2


1/2

, (1.6)

and estimate σ by σ̂ = Sp/c4[m(n − 1) + 1]. Note that our estimator
=
X of µ is

independent of our estimator σ̂ of σ in each case.
Similar to the situation where the control limits are known, we define Fi to

be the event that the ith sample mean Ȳi is either above ÛCL or below L̂CL,
and define V to be the number of samples until the first Fi occurs. We find,
however, that the behavior of {Fi} and V is quite different from the behavior of
{Ei} and U : {Ei} is an independent sequence, but {Fi} is not; the distribution
of U is well known as the geometric distribution, but the distribution of V is
unknown. In fact, no calculation, to my knowledge, has ever been done to find
the ARL and SD of V .

In practice, the well known rules for choosing m and n in order to estimate
µ and σ “adequately” are to choose m between 20 and 30 with n equal to 4
or 5 (Montgomery (1991), Quesenberry (1993)). However, these rules are based
primarily on empirical evidence. On the other hand, studies in control chart
theory usually ignore the effect of estimating control limits, except in Hillier
(1969) where the effect of estimation is considered explicitly in setting up X̄ and
R charts, and in Proschan and Savage (1960) where the maximum value of m is
tabulated for a given n. But, as with many other studies, the above two studies
are primarily concerned with controlling the Type I Error at desired levels. If
control limits do not need to be estimated, knowing Type I Errors allows one to
find the ARL and SD of the run length distribution of the control charts quite
easily through equation (1.2). What is not fully realized is that when control
limits must be estimated, knowing Type I Errors does not permit one to find
ARL and SD using equation (1.2), even with the approach of Hillier (1969), or
Proschan and Savage (1960). This point is first explored in Quesenberry (1993),
where the dependence among the Fi is well documented, and through a simulation
study, the inadequacy of the above mentioned empirical rules is addressed. Our
work is directly motivated by the work of Quesenberry (1993).

In this paper, the ARL and SD of the run length distribution of the X̄

charts are found when control limits are estimated in three different ways. Ex-
pressions for the ARL and SD are derived in Section 2. Numerical evaluation of
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these expressions are carried out in Section 3. Some discussions and conclusions
regarding the choice of m and n are given in Section 4.

2. Derivation

Let Xij, i = 1, . . . ,m and j = 1, . . . , n denote historical data and let Yij,
i = 1, 2, 3, . . . , and j = 1, . . . , n denote current or future data. In order to
handle both the in-control and out-of-control cases, let Xij ∼ N(µ, σ2) and let
Yij ∼ N(µ + aσ, b2σ2), where a and b are constants. When a = 0 and b = 1, the
process is in control, otherwise the process is shifted and/or changed. Because
=
X∼ N(µ, σ2/(mn)) and Ȳi ∼ (µ+aσ, b2σ2/n), for any given

=
X=

=
x and any given

σ̂, we have

P (Fi | =
x, σ̂)

= P
(
Ȳi < L̂CL or Ȳi > ÛCL | =

x, σ̂
)

= 1 − Φ

(=
x +3σ̂/

√
n − µ − aσ

bσ/
√

n

)
+ Φ

(=
x −3σ̂/

√
n − µ − aσ

bσ/
√

n

)

= 1 − Φ

(
1

b
√

m

( =
x −µ

σ/
√

mn

)
+

3
b

σ̂

σ
− a

b

√
n

)

+ Φ

(
1

b
√

m

( =
x −µ

σ/
√

mn

)
− 3

b

σ̂

σ
− a

b

√
n

)

= 1 − Φ
(

z

b
√

m
+

3
b
w − a

b

√
n

)
+ Φ

(
z

b
√

m
− 3

b
w − a

b

√
n

)
= h(z,w; a, b), say, (2.1)

where z = (
=
x −µ)/(σ/

√
mn) and w = σ̂/σ. Because {Fi}, given

=
x and σ̂, are

independent, from the equations (2.1) and (1.2) and the property of conditional
expectation, we find the first two moments of V as

E(V ) = E
{
E(V | =

X, σ̂)
}

=
∫ +∞

−∞

∫ +∞

0

1
h(z,w; a, b)

1√
2π

exp
(
−1

2
z2
)

f(w)dzdw, (2.2)

E(V 2) = E
{
E(V 2 | =

X, σ̂)
}

=
∫ +∞

−∞

∫ +∞

0

(
2 − h(z,w; a, b)
h2(z,w; a, b)

)
1√
2π

exp
(
−1

2
z2
)

f(w)dzdw, (2.3)

where f(w) is the probability density of W = σ̂/σ whose form depends on the
normality assumption and m and n only. The standard deviation of V is now
found according to

SD(V ) =
{
E(V 2) − E2(V )

}1/2
. (2.4)
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3. Evaluation

In order to evaluate E(V ) and E(V 2), we need f(w) when σ is estimated by
R̄/d2(n), S̄/c4(n) and Sp/c4[m(n − 1) + 1], respectively. For the first two cases,
f(w) is the result of an m-fold convolution of a known probability density, but
unfortunately, its form is too complicated for numerical computation. For the
third case, f(w) is the density of a scaled χ distribution with m(n − 1) degrees
of freedom. Our approach is therefore to approximate f(w) in the first two cases
and to use the exact f(w) in the third case.

Because all three estimators of σ give close estimates and in the third case
a scaled χ density is the exact density, we decide to use scaled χ densities to
approximate f(w) in the first two cases. Patnaik (1950) gives steps to follow
if one wants to approximate the distribution of the average range by that of a
cχν/

√
ν random variable, where c and ν are constants to be determined, and

χν is a χ random variable with ν degrees of freedom. The approach of Patnaik
(1950) can be applied to approximate the distribution of the average standard
deviation; we make a small modification to give a unified presentation below.

Let Var (Z(n)−Z(1)) = v2(n), Var (R̄/[d2(n)σ]) = M1 and Var (S̄/[c4(n)σ]) =
M2. Then M1 = v2(n)/[md2

2(n)] and M2 = [1 − c2
4(n)]/[mc2

4(n)] are known
constants. For any positive constant M , let

r =
{
−2 + 2

√
1 + 2M

}−1
, (3.1)

t = M +
1

16r3
, (3.2)

ν =
{
−2 + 2

√
1 + 2t

}−1
, (3.3)

c = 1 +
1
4ν

+
1

32ν2
− 5

128ν3
. (3.4)

Then the probability density of cχν/
√

ν is

f(w; ν, c) =
(

2
c

)
(ν/2)ν/2

Γ(ν/2)

(
w

c

)ν−1

exp

[
−ν

2

(
w

c

)2
]

, 0 < w < ∞. (3.5)

To approximate the density of W = σ̂/σ = R̄/(d2(n)σ) with (3.5), replace M

in (3.1) to (3.4) by M1 to obtain ν and c; to approximate the density of W =
σ̂/σ = S̄/(c4(n)σ) with (3.5), replace M in (3.1) to (3.4) by M2 to obtain ν and
c. The exact density of W = σ̂/σ = Sp/{c4[m(n − 1) + 1]σ} is given by (3.5)
with ν = m(n − 1) and c = {c4[m(n − 1)] + 1}−1.

The accuracy of the above approximations to the densities of R̄/(d2(n)σ)
and S̄/(c4(n)σ) is studied through simulation. Without loss of generality, we
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take σ = 1 and simulate 10,000 combinations with m = 5 and n = 4 to generate
10,000 estimates of σ based on (1.4) and (1.5), respectively. The histograms
of these estimates together with their corresponding approximate densities are
plotted in Figure 1. It can be seen from Figure 1 that approximation (3.5) is
good. For larger m and n (plots are not shown here), this approximation is even
better.

Average Range, m = 5 n = 4

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Estimate of sigma

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Estimate of sigma

Average Standard Deviation, m = 5 n = 4

Figure 1. Approximation (3.5) to the densities of R̄/[d2(4)σ] and S̄/[c4(4)σ].
Each histogram is based on 10,000 simulated point estimates of σ = 1. The
solid line is the density (3.5) with ν = 13.9259 and c = 1.0181 for the top
plot and with ν = 14.2745 and c = 1.0177 for the bottom plot.

With (3.5) ready for use, we evaluate (2.2) to (2.4) for various m, n, a and b

using NAG routine D01DAF. Table 1 contains the results when the process is in
control (a = 0 and b = 1), and Table 2 contains the results when there is a shift
in the mean (a �= 0, b = 1), or a shift in the variance (a = 0, b �= 1), or a shift in
both the mean and the variance (a �= 0, b �= 1).



AVERAGE RUN LENGTH AND STANDARD DEVIATION OF X̄ CHARTS 795

Table 1. Average run length and standard deviation of the X̄ charts with
different estimators of σ, and when the process is in control. In each combi-
nation of m and n, the first value is when R̄/d2(n) is used, the second value
is when S̄

c4(n) is used, and the third value is when Sp/c4[m(n−1)+1] is used.

ARL SD
n n

m 4 5 6 7 8 9 10 4 5 6 7 8 9 10

5 3071 1581 1024 775 643 564 512 45928 23152 12429 7225 4587 3179 2381
2890 1426 904 679 562 493 448 43493 20332 9937 5284 3153 2125 1585
2223 1191 806 630 534 475 435 33683 15740 7840 4319 2691 1887 1451

10 879 627 524 470 437 414 397 7277 2945 1728 1257 1021 881 790
848 600 499 446 413 391 375 6684 2583 1497 1085 879 756 676
754 564 481 435 406 386 371 4947 2146 1344 1012 836 727 657

20 520 454 420 400 387 378 371 1303 893 728 639 584 547 520
513 445 411 391 377 368 361 1252 850 687 600 546 510 483
492 435 405 387 375 366 359 1115 798 660 584 535 502 478

30 455 418 398 385 377 371 366 820 651 572 526 496 475 459
451 413 392 379 371 365 360 800 631 551 504 474 453 437
440 407 389 377 369 363 359 749 608 538 496 468 449 434

50 415 395 384 377 372 368 366 588 515 477 454 438 427 418
413 392 380 373 368 365 362 580 505 466 442 426 415 406
407 389 379 372 367 364 361 559 495 460 438 423 412 404

75 398 385 378 373 370 368 366 502 460 437 422 413 406 400
397 383 376 371 368 365 364 497 454 430 416 405 398 392
393 381 375 370 367 365 363 486 448 427 413 404 396 391

100 390 381 376 372 370 368 367 465 435 419 408 401 396 392
389 380 374 371 368 366 365 461 431 414 403 396 390 386
387 378 373 370 368 366 365 453 427 411 401 394 389 385

200 380 375 373 371 370 369 368 414 400 393 388 385 382 380
379 375 372 370 369 368 367 412 399 391 386 382 379 377
378 374 371 370 369 368 367 409 397 389 385 381 379 377

300 376 373 372 371 370 369 369 399 390 385 382 380 378 377
376 373 371 370 369 369 368 398 389 384 380 378 376 375
375 373 371 370 369 369 368 396 387 383 380 377 376 374

500 374 372 371 370 370 370 369 387 382 379 377 376 375 374
374 372 371 370 370 369 369 386 381 378 376 375 374 373
373 372 371 370 370 369 369 385 380 377 376 374 373 373

1000 372 371 371 370 370 370 370 378 376 374 373 373 372 372
372 371 371 370 370 370 370 378 375 374 373 372 372 371
372 371 370 370 370 370 370 377 375 374 373 372 372 371

∞ 370 370
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Table 2. Average run length and standard deviation of the X̄ charts with
different estimators of σ when n = 5, and when the process is out of control.
In each combination of m, a and b, the first value is when R̄/d2(5) is used, the
second value is when S̄/c4(5) is used, and the third value is when Sp/c4[m(5−
1) + 1] is used.

ARL SD

a/b a/b

m .3/1 .6/1 .9/1 0/1.2 0/1.4 .5/1.5 1/2 .3/1 .6/1 .9/1 0/1.2 0/1.4 .5/1.5 1/2

5 789.4 133.7 19.2 148.3 42.5 13.5 3.1 14322.8 3482.2 335.4 709.3 106.6 27.5 3.2

716.4 123.8 18.4 141.4 41.4 13.3 3.1 12584.5 3065.1 297.5 643.7 100.0 26.3 3.2

604.8 108.7 17.0 130.3 39.7 13.0 3.1 9753.1 2385.1 235.7 536.1 89.0 24.3 3.1

10 254.7 42.6 9.5 101.6 35.3 11.1 3.0 1354.0 181.1 21.9 216.5 54.0 14.9 2.7

245.3 41.6 9.4 99.6 34.9 11.0 3.0 1197.6 164.9 20.8 204.0 52.2 14.7 2.6

232.9 40.3 9.2 96.8 34.4 10.9 2.9 1008.6 145.0 19.3 187.6 49.9 14.2 2.6

20 156.2 28.4 7.5 88.6 32.9 10.1 2.9 334.0 49.1 9.9 125.8 39.9 11.3 2.4

154.0 28.1 7.4 87.8 32.7 10.1 2.9 320.5 47.8 9.7 122.7 39.4 11.2 2.4

151.2 27.8 7.4 86.l 32.5 10.1 2.9 304.5 46.2 9.6 118.8 38.6 11.1 2.4

30 133.9 25.3 7.0 85.4 32.2 9.8 2.9 221.7 35.5 8.1 107.4 36.4 10.4 2.4

132.7 25.1 7.0 84.9 32.1 9.8 2.9 216.3 34.9 8.0 105.6 36.1 10.3 2.4

131.3 25.0 6.9 84.2 32.0 9.8 2.9 210.1 34.3 7.9 103.5 35.7 10.3 2.4

50 118.6 23.2 6.6 83.2 31.7 9.6 2.8 160.6 28.0 7.0 95.1 33.9 9.7 2.3

118.0 23.1 6.6 82.9 31.7 9.6 2.8 158.5 27.7 6.9 94.2 33.7 9.7 2.3

117.4 23.0 6.6 82.5 31.6 9.6 2.8 156.0 27.4 6.9 93.1 33.5 9.6 2.3

75 111.8 22.3 6.5 82.2 31.5 9.5 2.8 136.8 25.0 6.5 89.7 32.8 9.4 2.3

111.4 22.2 6.5 82.0 31.5 9.5 2.8 135.6 24.8 6.5 89.1 32.6 9.4 2.3

111.0 22.2 6.5 81.8 31.4 9.5 2.8 134.2 24.7 6.4 88.4 32.5 9.3 2.3

100 108.6 21.8 6.4 81.7 31.4 9.4 2.8 126.2 23.6 6.3 87.1 32.2 9.2 2.3

108.3 21.8 6.4 81.6 31.4 9.4 2.8 125.4 23.5 6.3 86.7 32.1 9.2 2.3

108.0 21.7 6.4 81.4 31.4 9.4 2.8 124.5 23.4 6.2 86.2 32.0 9.2 2.3

200 103.9 21.2 6.3 81.1 31.3 9.4 2.8 111.8 21.7 6.0 83.5 31.4 9.0 2.3

103.8 21.2 6.3 81.0 31.3 9.4 2.8 111.5 21.7 5.9 83.3 31.4 9.0 2.3

103.7 21.1 6.3 81.0 31.2 9.3 2.8 111.1 21.7 5.9 83.0 31.3 9.0 2.3

300 102.4 21.0 6.3 80.9 31.2 9.3 2.8 107.4 21.2 5.9 82.3 31.1 8.9 2.3

102.4 21.0 6.3 80.9 31.2 9.3 2.8 107.2 21.1 5.8 82.2 31.1 8.9 2.3

102.3 20.9 6.3 80.8 31.2 9.3 2.8 106.9 21.1 5.8 82.0 31.1 8.9 2.3

500 101.2 20.8 6.2 80.7 31.2 9.3 2.8 103.8 20.7 5.8 81.3 30.9 8.8 2.3

101.2 20.8 6.2 80.7 31.2 9.3 2.8 103.8 20.7 5.8 81.3 30.9 8.8 2.3

101.2 20.8 6.2 80.7 31.2 9.3 2.8 103.7 20.7 5.8 81.2 30.9 8.8 2.3

1000 100.4 20.7 6.2 80.6 31.1 9.3 2.8 101.4 20.4 5.7 80.6 30.8 8.8 2.3

100.4 20.7 6.2 80.6 31.1 9.3 2.8 101.4 20.4 5.7 80.6 30.8 8.8 2.3

100.3 20.7 6.2 80.6 31.1 9.3 2.8 101.4 20.4 5.7 80.6 30.8 8.8 2.3

∞ 99.5 20.6 6.2 80.5 31.1 9.3 2.8 99.0 20.1 5.7 80.0 30.6 8.8 2.3

4. Discussions and Conclusions

From Table 1 and Table 2, we observe that for the m and n combinations
considered and in an average sense,
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• Estimating σ to set up any one of the three X̄ charts has noticeable effect on
the ARL and SD of the chart. This effect is large when m < 20; is still fairly
large when 20 ≤ m < 50; becomes small when 50 ≤ m < 500; and becomes
very small when m ≥ 500.

• As m increases, ARL approaches its limiting value faster than SD does.
• It is possible for ARL to be slightly smaller than its limiting value, but the

same thing does not happen to SD.
• Among the three estimators of σ, Sp/c4[m(n − 1) + 1] performs uniformly

better than S̄/c4(n), and S̄/c4(n) performs uniformly better than R̄/d2(n),
in terms of producing an SD that is close to its limiting value. The same
statement is, however, not true for ARL when n is large.

• For fixed m, both ARL and SD are decreasing functions of n.

For the out-of-control case, we have presented the results for n = 5 only.
The results for other values of n are qualitatively the same. Based on the above
observations, we conclude that
1. If µ and σ need to be estimated and an X̄ chart that performs as if µ and σ

were known is desired, it is necessary to take m to be at least 100 when n = 5,
and m ≥ 50 when n = 10. This is not always possible in practice, but it is a
result that should be better known.

2. The pooled estimator Sp/c4[m(n − 1) + 1] gives better control performance
and should be preferred, unless the need for simplicity suggests the use of the
average range R̄/d2(n).

3. When the total number of measurements that can be taken to estimate control
limits is fixed (i.e. m times n is a constant), increasing n and decreasing m
has the desirable effect of getting run length distributions with smaller SD.
For example, when mn = 100 and Sp is used, SD is 808 for m = 20 and n = 5,
while SD is only 663 for m = 10 and n = 10, and both cases have acceptable
ARL. When setting up X̄ charts, this possibility should be explored together
with other concerns, such as monitoring short-term versus long-term process
variation.

4. The findings of this paper are meaningful in an average sense. They do not
apply to specific individual X̄ charts.
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