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Abstract: Essentially two classes of iterative procedures have been proposed in the

literature to solve optimal design problems in linear regression: exchange algorithms

devoted to the construction of optimal exact designs in a finite design space and

methods from convex programming yielding optimal moment matrices only. By

simultaneously taking weights and support points as variables the design problem

represents a nonconcave, not necessarily differentiable, but Lipschitz continuous

maximization problem. We, therefore, adapt bundle trust methods from nondiffer-

entiable optimization to the design problem and show their numerical behaviour.

Explicit efficiency bounds for the numerical solutions can be given in the case of a

regression range with finitely many elements.
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1. Introduction

Algorithms for computing optimal experimental designs traditionally fall in
one of the following two classes: the class of exchange algorithms for constructing
optimal designs for a finite design space and the class of convex programming
methods that only yield optimum moment matrices leaving the problem how to
reconstruct a design from a given moment matrix unsolved.

The first versions of exchange algorithms were addressed to D-optimality and
go back to Wynn (1970) and Fedorov (1972). Reviews of these and other exchange
schemes are given by Cook and Nachtsheim (1980) and, more recently, by Nguyen
and Miller (1992). A new approach to the construction of optimal exact designs
using pattern search was proposed by Hardin and Sloane (1993). Gaffke and
Mathar (1992) gave an excellent review of convex programming algorithms used
in the design context.

In the present article we introduce a new algorithm for computing optimal
or nearly optimal approximate experimental designs. This algorithm is based
on the bundle trust method developed by Schramm and Zowe (1988). Bundle
methods have become popular in nondifferentiable convex optimization in the
1980’s (see Hiriart-Urruty and Lemaréchal (1993) for a thorough introduction).
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The use of nondifferentiable optimization techniques in a general purpose
routine for optimal experimental design is motivated by the following facts: there
are only few restrictions in the choice of optimality criteria under consideration, so
in particular, nondifferentiable techniques allow the investigation of E-optimality;
nondifferentiability is connected with singular moment matrices that often arise
when only subsystems of the unknown modelling parameter vector are of interest
and the use of nondifferentiable methods allows us to keep the number of support
points variable.

Whereas for theoretical investigations it is useful to formulate the design
problem in terms of moment matrices or probability measures, the numerical
treatment of the problem is best done by viewing designs as an array of support
points and corresponding weights. This transition, however, calls for applica-
tion of methods from nonconvex optimization since the moment matrix mapping
is convex in the support points whereas the information function is a concave
function of the moment matrix.

Our computer code OPTDES is based on the bundle trust codes BTCLC
and BTNCLC of Schramm (1991); BTCLC is designed for the minimization of a
convex objective function subject to linear constraints, BTNCLC for minimiza-
tion of a nonconvex, but locally Lipschitz continuous objective function subject
to linear constraints. In the convex case knowledge of one arbitrary subgradi-
ent at each iteration point is required, in the nonconvex case the concept of
subdifferentials is replaced by the concept of generalized gradients in the sense
of Rockafellar (1980) and Clarke (1983). The generalized gradient calculus for
the design problem is given in Wilhelm (1995). There chain rule arguments are
used to characterize the set of generalized gradients for various design optimality
criteria.

In the implemented version OPTDES we restrict ourselves to the class of
matrix means φp, the concave analogues to Kiefer’s ϕp-criteria, introduced in
Kiefer (1974). The subgradient representation for this class of information func-
tions was found by Gaffke (1985) and is also given in Lemma 6.16 of Pukelsheim
(1993). To obtain subgradient representations for other optimality criteria the
results in Hoang and Seeger (1991) could be related with Wilhelm (1995).

After reviewing the design problem in Section 2, we give a short description
of the bundle trust methodology and present its transformation to the design
context in Section 3. Section 4 deals with the computation of Kiefer’s ϕp-criteria
and of the corresponding subgradients. In Section 5 we describe the special
features of our approach available in the case of finitely many regression vectors.
Although affirmative results on the convergence of bundle trust methods are
available only for concave maximization problems, the numerical results given in
Section 6 show that the algorithm is of practical interest.
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2. The Design Problem

We consider the design problem in classical linear models; more details can
be found in Pukelsheim (1993) for example. For each regression vector x in the
regression range X ⊆ R

k a random variable Y is observed, whose expectation
depends linearly on x and on an unknown parameter vector θ ∈ R

k,

E[Y ] = x′θ.

An (approximate) experimental design is a probability measure on the re-
gression range X with finite support. It can be identified with its support points
x1, . . . ,x� ∈ X and corresponding weights ω1, . . . ,ω� > 0 that sum to 1, where �
varies over the set of positive integers. We use the notations (X;ω) and

{
x1,...,x�
ω1,...,ω�

}
for a design, where the k×�matrix X contains as ith column the regression vector
xi, while the � dimensional weight vector ω contains the weights ωi.

We assume that for the experiment given by a design (X;ω) we can take
uncorrelated and homoscedastic observations of Y . Let K ′θ be the parameter
system of interest, described by a k×s matrix K with full column rank s. In this
setup, the choice of (X;ω) is based on its information matrix for K ′θ,

CK(M(X;ω)) = min
{L∈Rs×k:LK=Is}

LM(X;ω)L′.

Here the minimum refers to the Loewner partial ordering on the set of nonnega-
tive definite s×s matrices, and the moment matrix M(X;ω) is defined by

M(X;ω) =
�∑

i=1

ωixix
′
i = Xdiag(ω)X ′.

The notation diag(a) is used for a diagonal matrix that has the entries of the
vector a as its diagonal elements.

For some regression setups the number � of support points of at least one
optimal design is known. In general, estimability of the interesting parameter
system requires at least s support points. The Carathéodory theorem gives an
upper bound for �, whence we get the following box constraints

s ≤ � ≤ s(s+ 1)/2 + s(k − s). (1)

The number of support points can be eliminated from the variable list by using
the upper bound in (1) and extending the domain of ω to the � dimensional
probability simplex S� = {α ∈ R

� : αi ≥ 0 for i = 1, . . . ,�,
∑�

i=1 αi = 1}. By X �

we denote the � fold cartesian product of the regression space X .
The main problem thus consists in solving

maximize ψ(X;ω) subject to X ∈ X � and ω ∈ S�. (2)
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Here ψ is used as abbreviation of the composition φ ◦ CK ◦M for a given in-
formation function φ. The notion of information functions was introduced by
Pukelsheim (1980) (Definition 3) and is thoroughly discussed in Chapter 5 in
Pukelsheim (1993).

A popular class of information functions are the concave matrix means φp

for −∞ ≤ p ≤ 1 (see Chapter 6 in Pukelsheim (1993)). They form the concave
analogues to Kiefer’s ϕp-criteria, introduced in Kiefer (1974).

For a positive definite s×s matrix A the pth matrix means are defined in
terms of the ordered eigenvalues λ1, . . . ,λs of A by

φp(A) = (s−1
∑

λp
i )

1/p for −∞ < p ≤ 1, p �= 0.

The widely used D-criterion is obtained as a limit for p = 0, i.e. φ0(A) =
(detA)1/s. Further as limit for p = −∞ one gets the well-known E-criterion
which calls for maximization of the smallest eigenvalue λs of A. This criterion is
differentiable if and only if the smallest eigenvalue is simple. Differentiability also
breaks down for the other extremum p = 1 (T-optimality), since the optimum
moment matrix tends to be singular in this case. Singular moment matrices
may even arise for 0.5 < p < 1 due to rounding errors and they also come with
parameter subsystems.

In addition, differentiability may fail if the weight vector comes to lie on the
boundary of the probability simplex (see Fellman (1980)). Therefore, a general
algorithm for solving problem (2) should rely on nondifferentiable optimization
techniques. Moreover, we must be able to treat nonconvex problems due to the
following fact. The composition φ ◦ CK is an information function on the set of
nonnegative definite k×k matrices and hence a concave function of the moment
matrix M . The moment matrix mapping is a linear function of the weight vector
ω, but it is convex considered as a function of the support points xi. So we can
neither ensure convexity nor concavity for our objective function ψ.

A special situation arises when the regression range consists of finitely many
regression vectors. The design problem then can be formulated as a problem in
the weights only, yielding a concave maximization problem. In this case we write
ψX for ψ(X, ·) and with this notation the problem reads as:

maximize ψX(ω) subject to ω ∈ S�. (3)

To solve this problem we adapt a bundle trust version for convex minimization
problems.

3. The BT-Methodology
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In Wilhelm (1995) it is shown that the objective function ψ in problem
(2) is directionally Lipschitz continuous at all designs (X;ω) with rangeK ⊆
rangeX. ψ is even locally Lipschitz continuous on the set of designs with feasible
moment matrix, where ‘feasible’ means that the range of the moment matrix
contains the range of the parameter matrix K. It is well known that a locally
Lipschitz continuous function f : R

m → R is differentiable almost everywhere.
The generalized gradient (see Clarke (1983)) is defined by

∂f [x] = conv{g : there exists a sequence (xi)i∈N such that lim
i→∞

xi = x,

f is differentiable at xi, i ∈ N, and lim
i→∞∇f(xi) = g},

where conv denotes the convex hull and ∇ the gradient mapping.
For a convex function f the generalized gradient coincides with the subdif-

ferential

∂f [x] = {g ∈ R
m : f(y) ≥ f(x) + 〈g, y − x〉 for all y ∈ R

m}.

Therefore, the elements of ∂f [x] are called subgradients of f at x, even for non-
convex f .

Computing the whole subdifferential is usually very time consuming and
for many problems it is not possible to get more than one subgradient of f at
x. Bundle methods require only the knowledge of one arbitrary subgradient
at each iteration point. Subgradients evaluated during the process are stored
in the so-called bundle and a convex combination of the stored subgradients is
used to compute a search direction. The next iterate is derived through a line
search along this direction. The next iteration point will be accepted if there
is a sufficient increase of the function value. The calculated subgradient at this
point will be added to the bundle if it enriches the subgradient information no
matter whether the corresponding point is accepted or not. (For more details
see Hiriart-Urruty and Lemaréchal (1993)). The bundle trust methods avoid the
usual line search by using a cutting plane model with an additional trust region
term. The next candidate is then obtained as solution of a quadratic program.

Transforming this methodology to the design problem (2) results in the fol-
lowing algorithm:
Step 1. Choose a starting design (X0;ω0), an accuracy parameter ε > 0, a small
positive constant c0, two positive numbers 0 < s1 < s2 < 1 and an upper bound
Jmax ≥ 3 for the number of subgradients to be stored in the bundle. Let XL(XU )
be a lower (upper) bound for the competing support matrices X ∈ X �.
Step 2. Put m = 0, J0 = {0}, Z0 = X0, η0 = ω0, and compute ψ(X0;ω0) and
g0 ∈ ∂ψ[(X0;ω0)].
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Step 3. Inner Iteration
For all j ∈ Jm compute the linearization errors

αm
j = ψ(Zj ; ηj) − ψ(Xm;ωm) + 〈gj , (Xm;ωm) − (Zj ; ηj)〉

and put
βm

j = max{αm
j , co‖(Xm;ωm) − (Zj; ηj)‖2}.

For fixed tm > 0 solve the following quadratic program in (v,D, δ) with v ∈ R,
D ∈ R

k×�, δ ∈ R
�:

maximize v − 1
2tm

‖(D; δ)‖2 (4)

subject to v ≤ βm
j + 〈gj , (D; δ)〉, j ∈ Jm (5)

−ωm
i ≤ δi ≤ 1 − ωm

i , i = 1, . . . , �
�∑

i=1

δi = 0

XL −Xm  D  XU −Xm.

(Here  denotes componentwise ordering of matrices.)
Let (vm,Dm, δm) denote the attained solution and λm

j , j ∈ Jm, the corre-
sponding Lagrange multipliers. Put Zm+1 = Xm + Dm, ηm+1 = ωm + δm and
compute ψ(Zm+1; ηm+1), one subgradient gm+1 of ψ at (Zm+1; ηm+1) and βm

m+1.
If ψ(Zm+1; ηm+1) − ψ(Xm;ωm) ≥ s1v

m we do a serious step
else if βm

m+1 + 〈gm+1, (Dm; δm)〉 < s2v
m and βm

m+1 ≤ ∑
j∈Jm

λm
j β

m
j then we do a

null step, else we modify tm and try again solving problem (4).
Step 4. Serious Step / Null Step
If the serious criterion is fulfilled, we put Xm+1 = Zm+1, ωm+1 = ηm+1,
Jm+1 = Jm ∪ {m + 1}, m = m + 1, and go to Step 5, else if the null step
criterion is fulfilled, we put Xm+1 = Xm, ωm+1 = ωm, Jm+1 = Jm ∪{m+ 1},
m = m+ 1, and go to Step 5.
Step 5. Stopping criterion
If ‖∑

j∈Jm
λm

j g
j‖ ≤ ε and

∑
j∈Jm

λm
j β

m
j ≤ ε then STOP else go to Step 6.

Step 6. Reset
If | Jm |= Jmax then gather all active subgradients in the set J ⊂ Jm, that is put
J = {j : j ∈ Jm, λ

m
j > 0}.

If | J |≤ Jmax − 1 then put Jm+1 = J and go to Step 3, else introduce some
additional index m̃, put gm̃ =

∑
j∈Jm

λm
j g

j , βm
m̃ =

∑
j∈Jm

λm
j α

m
j and Jm+1 =

{m} ∪ {m̃} and go to Step 3.
In the following paragraphs more detailed information with regard to the above
algorithm is given.
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Choice of initial parameters
In the concave case all linearization errors αm

j are nonnegative and, therefore,
in this case the parameter c0 is chosen to be zero. In general, our objective
function ψ is not concave, whence the subgradient inequality is no longer valid
and the αm

j ’s may become negative. It is common in nonsmooth optimization to
replace the linearization errors under this circumstances by the “weights” βm

j .
The only aim for the parameter c0 lies in preventing negative linearization errors,
whence, usually a small value for c0 is chosen. In our implementation we had
good experiences by setting c0 = 0.01, s1 = 0.1, s2 = 0.2 and Jmax = 20. (For
the meaning of s1 and s2 see below.)

Upper and lower bounds for the competing support matrices are usually
given by the special problem under investigation. Up to now we only use the
constraints induced by the bounds of the design region.

Inner Iteration
The inner iteration aims at finding a suitable steplength tm. The initial value

and adaptation of the parameter tm can be controlled by providing an estimate
for the optimum value of ψ. As a default we take |ψ(X0;ω0)| ∗ 103 as optimum
value of ψ, as recommended by Schramm (1991), p. 13.

The maximization problem (4) of the inner iteration is a reformulation of
the following trust region problem:

maximize ψ̂m((Xm;ωm) + (D; δ)) (6)

subject to
1
2
‖(D; δ)‖2 ≤ ρm

−ωm
i ≤ δi ≤ 1 − ωm

i , i = 1, . . . , �
�∑

i=1

δi = 0

XL −Xm  D  XU −Xm.

The cutting plane model ψ̂m of ψ at (Xm;ωm) is thereby obtained using the
stored subgradients via

ψ̂m((Xm;ωm) + (D; δ)) = ψ(Xm;ωm) + max
j∈Jm

{〈gj , (D; δ)〉 − βm
j }.

The quadratic constraint in problem (6) is resolved by a penalty approach and
the trust region parameter ρm is substituted by the parameter tm (see Schramm
(1991) for justification).

Since vm represents the increase of the function value predicted by the cutting
plane model, the serious step criterion decides whether we can trust our model
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or not. The parameter s1 indicates what fraction of the model increase is at least
required in a serious step.

If a sufficient increase in the function value cannot be achieved, we then
check in the null step criterion whether addition of the actual subgradient leads
to a model change and improves information. The first inequality of the null step
criterion says that the actual solution vm of the quadratic program (4) violates
constraint (5) for the new subgradient gm+1 and, hence, the model changes. If
in the concave case the serious criterion is not fulfilled, then the first inequality
in the null step criterion holds automatically even with parameter s1. In the
nonconcave case we add the mentioned inequality to the null step criterion with
a weaker condition controlled by the parameter s2.

If neither the serious nor the null step criterion is fulfilled the parameter
tm is adapted by bisection. If it is impossible to diminish tm, a line search is
performed, that sometimes can cause numerical troubles.

Stopping criterion and convergence
A necessary but not sufficient condition for (Xm;ωm) to be optimal is the

nullvector being an element of the subdifferential of ψ at (Xm;ωm). The stopping
rule merely says that 0 “lies up to ε” in the convex hull of certain subgradients gj

of ψ at designs (Zj; ηj) which are “not far away from (Xm;ωm)” (see Schramm
(1991)).

It can be shown that there exists a cluster point (X̄ ; ω̄) of the sequence
{(Xm;ωm)}m∈N generated by the BT-algorithm if ψ is weakly semismooth, bounded
below and if the sequence of iterates is bounded (see Schramm (1991)). A func-
tion f : R

m → R is called weakly semismooth if its directional derivative f ′(x; d)
exists for all x and d and can be represented as f ′(x; d) = limt↓0 g(x+ td)′d where
g(x+ td) is a generalized gradient of f at (x+ td).

4. Computing Function Values and Subgradients

In our implementation OPTDES we allow as information functions all pth
matrix means, −∞ ≤ p ≤ 1. These information functions are completely deter-
mined by the eigenvalues of the information matrix. A spectral decomposition of
the information matrix may cause numerical problems, whence a singular value
decomposition of a matrix root of the information matrix is preferable. We cal-
culate the function value and one subgradient of ψ at (X;ω) in the following
way.
1. Solve the linear equation (K ′K)L = K ′ yielding a left inverse L of the coef-

ficient matrix K. Let R = Ik − KL. This step only has to be worked out
once.
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2. Let M = M(X;ω) = Xdiag(ω)X ′. The minimizing left inverse LM of K used
in the defining relation of the information matrix C = CK(M) is obtained as

solution of
(
K ′

RM

)
L′

M =
(
Is
0

)
.

3. Computing C̃ = LMXdiag(ω1/2
1 , . . . ,ω

1/2
� ) and running a singular value de-

composition C̃ = Udiag(σ1, . . . ,σs)V ′ yield the roots σ1, . . . ,σs of the eigen-
values of C.

4. From the defining relation of pth matrix means we derive the following for-
mulae for the function value ψ(X;ω)

ψ(X;ω) =




(1
s

∑s
j=1(σj)2p)

1
p for p ∈ (−∞, 1], p �= 0,

(
∏s

j=1(σj)2)
1
s for p = 0,

(σs)2 for p = −∞.

5. According to Lemma 6.16 in Pukelsheim (1993) and Theorem 2 in Wilhelm
(1995), some simple vector and matrix operations easily gives us one subgra-
dient of φ ◦ CK at M at hand:

B =




(
∑s

j=1(σj)2p)−1LM
′Udiag((σ)2p−2)U ′LM for p ∈ (−∞, 1],

1
#σmin(C̃)

∑#σmin(C̃)−1

i=0 LM
′us−ius−i

′LM for p = −∞.

Here #σmin(C̃) denotes multiplicity of the smallest eigenvalue of the infor-
mation matrix C and uj denotes a normalized eigenvector corresponding to
the jth eigenvalue of C stored in the jth column of U .
A subgradient (B̃;β) of ψ at (X;ω) is obtained by calculating B̃=2BXdiag(ω)
and β = (x1

′Bx1, . . . ,x�
′Bx�)′.

The implementation is done in FORTRAN and for most of the matrix routines
the NAG Fortran Library is called.

5. Finitely Many Regression Vectors

In the case of finitely many regression vectors the objective function is con-
cave. We then put c0 = 0 and, therefore, βm

j equals αm
j . If in the mth iteration

the stopping criterion is fulfilled, we have at hand an efficiency bound for the
optimal function value. Since all convex combinations g =

∑
j∈Jm

µjg
j with

µj ≥ 0,
∑
µj = 1 lie in the ε-subdifferential of ψX(ωk) for ε =

∑
j∈Jm

µjα
m
j , the

subgradient inequality implies for all γ ∈ S�

ψX(γ)≤ψX(ωm) + 〈g, γ − ωm〉 + ε

≤ψX(ωm) + ‖g‖‖γ − ωm‖ + ε ≤ ψX(ωm) + ε(1 +
√

2).
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Thus, putting ε̃ = εψX(ω0)/(1 +
√

2) we get the following efficiency bound

ψX(ωm)
maxγ∈S� ψX(γ)

≥ 1 − ε̃.

On the other hand we get an additional stopping criterion by using duality ar-
guments.

Theorem 1. A weight vector ω ∈ S� with ψX(ω) > 0 is ψX-optimal in S� for
estimating K ′θ if and only if there exists a subgradient g ∈ ∂ψX [ω] such that

gi=ψX(ω), for all i with ωi > 0

gi≥ψX(ω), for all i with ωi = 0.

Proof. From the Duality Theorem 7.12 in Pukelsheim (1993) we know that a
moment matrix M∗ maximizes φ ◦ CK over a set M if and only if there exists
a matrix N ∈ N = {N ∈ NND(k) : trAN ≤ 1 for all A ∈ M} such that, upon
setting C = CK(M∗), we have

trM∗N=1 (7)

M∗N=KCK ′N (8)

φ(C)φ∞(K ′NK)=trCK ′NK. (9)

Here φ∞ denotes the polar function to φ (see Chapter 5 in Pukelsheim (1993)).
Denote M = M(X;ω) and let B be an arbitrary subgradient of φ ◦ CK at M .
Obviously, N = (maxi=1,...,� x

′
iBxi)−1B is a member of N and it follows from the

subdifferential decomposition 7.8 and 7.9 in Pukelsheim (1993) that M and N

fulfill conditions 8 and 9.
Condition 7 writes as x′iBxi = maxi=1,...,� x

′
iBxi for all i with positive weight

ωi. Since N is a member of N , Theorem 7.11 in Pukelsheim (1993) says that
φ(CK(M)) ≤ (φ∞(K ′NK))−1. For the above choice of N the right hand side
equals maxi=1,...,� x

′
i Bxi. The assertion now follows from the subgradient char-

acterization in Corollary 2 in Wilhelm (1995).

According to Theorem 1 we can stop the optimization process if in the actual
iteration point the quotient (maxi=1,...,� g

m
i )−1ψX(ωm) exceeds 1 − ε̃.

6. Numerical Results

Convergence results for the BT-methodology are only available for the con-
cave case, in the design context this means for problems with fixed support points
or in the case of finitely many regression vectors. To show that the method
proposed in this article ends in reliable results we give some examples for the
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numerical behaviour of our implementation. All computations were carried out
on a HP 9000/400s Apollo Workstation.

6.1. Accuracy

First we give a comparison between the optimal function values obtained by
OPTDES and those obtained by POLYPLAN. The latter program was written
by Preitschopf (1989) and is particularly designed for differentiable experimen-
tal design problems in polynomial regression models over the interval [−1, 1].
POLYPLAN requires that the number of support points of the optimal design is
known in advance. The results obtained by the optimization routine are checked
in POLYPLAN via the General Equivalence Theorem and bear, therefore, high
accuracy. In Table 1 the optimal function values are given for the D- and A-
criterion in polynomial regression models of degree d,

y(t) = θ0 + θ1t+ θ2t
2 + · · · + θdt

d + ε,

for d = 2, . . . , 12. As starting designs we used uniform distribution on d + 1
equidistant points. Symmetry is used in POLYPLAN to reduce dimensionality,
so POLYPLAN works with d− 1 variables, whereas OPTDES works with 2d+ 2
variables.

Table 1. A- and D-optimal function values for polynomial regression models
obtained by OPTDES and POLYPLAN

A-optimality D-optimality
d OPTDES POLYPLAN OPTDES POLYPLAN
2 .37500000 .37500000 .52913368 .52913368
3 .10660907 .10660907 .26749612 .26749612
4 .26497896E-01 .26497897E-01 .13385589 .13385589
5 .61067953E-02 .61067953E-02 .66785544E-01 .66785544E-01
6 .13399177E-02 .13399177E-02 .33293682E-01 .33293682E-01
7 .28390598E-03 .28390598E-03 .16595215E-01 .16595215E-01
8 .58600445E-04 .58600445E-04 .82728583E-02 .82728583E-02
9 .11851683E-04 .11851683E-04 .41249350E-02 .41249350E-02
10 .23581719E-05 .23581719E-05 .20571972E-02 .20571972E-02
11 .46298770E-06 .46298770E-06 .10261932E-02 .10261932E-02
12 .89892637E-07 .89892637E-07 .51199949E-03 .51199949E-03

The results of OPTDES differ from those of POLYPLAN only in the last
significant digit of the optimal value for the A-criterion in polynomial regression
of degree d = 4.

As a second example we consider linear regression over the cube [−1.00, 1.00]3,

y(t1, t2, t3) = θ0 + θ1t1 + θ2t2 + θ3t3 + ε.
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Let us try to find a D-optimal design by starting with the uniform distribution
on the points of a full 33 factorial design with levels -1, 0 and 1. The D-optimal
design obtained by OPTDES puts mass 1/4 on each of the following four corners,
x1 = (−1.0,−1.0, 1.0)′ , x2 = (−1.0, 1.0,−1.0)′ , x3 = (1.0,−1.0,−1.0)′ and x4 =
(1.0, 1.0, 1.0)′ reducing the number of support points from 27 to 4. In contrast,
the D-optimal design obtained by ACED of Welch (1984) puts weight 0.065 to
these four corners and weight 0.185 to the other four, see Figure 1. The value of
the D-criterion for both designs is the same and equals 1.
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Figure 1. D-optimal designs for θ in linear regression over three-dimensional
cube [−1, 1]3. On the left we show the design found by OPTDES, on the
right the one found by ACED.

6.2. Initial values

The quality of an algorithm can be judged by its robust behaviour under
different starting points. Since the function value of the actual iteration point
appears in the subgradient representation as a multiplicative factor, it is neces-
sary that the starting design has positive information. A quite natural choice as
starting design is uniform distribution on equidistant points, but the examples
given below indicate that poor starting designs often perform better. Usually,
in the neighbourhood of the optimum the objective function is very flat and
the subgradients only offer a small amount of new information. Starting with a
poor design opens the possibility of getting a good global model of our objective
function and, hence, this can lead to fast convergence.

In Table 2 below, we show the results for different starting designs for E-
optimality in polynomial regression of degree d = 3 over the interval [−1, 1]. The
optimal value 0.040000 is attained at the design

{ −1.0
0.126667

−0.5
0.373333

0.5
0.373333

1.0
0.126667

}
.

The last column in Table 2 gives the number of iterations that has been performed
by OPTDES to obtain the optimum with an error bound of 10−6. We failed to
converge to the optimum with the last starting design. In this case we got stuck
in a local optimum. The procedure ended in the optimal design for the reduced
experimental domain [0.0, 1.0]. Numerical evidence suggests that we get stuck in
a local optimum if and only if zero is included as support point in the starting
design and the other support points are all positive or all negative.
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Table 2. Results for E-optimality for different starting designs

starting design starting value # iterations{
−1.0
0.25

−1/3
0.25

1/3
0.25

1.0
0.25

}
0.021205 73{

−1.0
1/11

−0.8
1/11

−0.6
1/11

−0.4
1/11

−0.2
1/11

0.0
1/11

0.2
1/11

0.4
1/11

0.6
1/11

0.8
1/11

1.0
1/11

}
0.023364 108{−0.000001

0.25
0.3
0.25

0.6
0.25

1.0
0.25

}
0.000146 138{−1.0

0.25
−0.6
0.25

−0.3
0.25

0.000001
0.25

}
0.000146 155{

0.000001
0.25

0.3
0.25

0.6
0.25

1.0
0.25

}
0.000146 151{ −0.8

0.0001
−0.2

0.9997
0.1

0.0001
0.6

0.0001

}
0.000001 66{

0.9
0.0001

0.95
0.0001

0.99
0.0001

1.0
0.9997

}
1.140E-11 108{

0.0
0.000001

0.5
0.373333

0.75
0.5

1.0
0.1266666

}
1.589E-08 ∞

6.3. Further examples

New insight results from our method especially for E-optimality in polyno-
mial regression models of degree d over a real compact interval [a, b]. Heiligers
(1994) showed that simplicity of the smallest eigenvalue λmin(CK(M)) depends
on the interval width. For symmetric intervals [−b, b] where b is small enough
(e.g. if b ≤ 1) the smallest eigenvalue is simple and the E-optimal design for all
d + 1 parameters is supported by the extremum points xCH

i,d = cos[π(d − i)/d],
for i = 0, 1, . . . ,d, of the dth degree Chebychev polynomial (see Heiligers (1994)
and Pukelsheim and Studden (1993)). These points coincide with the dth de-
gree quantiles of the arcsin distribution and designs having these points for its
support are called arcsin support designs. However, for large b arcsin support
designs may become inadequate for solving the E-optimal design problem. For
cubic regression the efficiency of the E-optimal arcsin support design for θ com-
pared to the E-optimal one among all designs decreases from 1.0 for b = 1.6 to
0.543 for b = 3.0. Table 3 shows the E-optimal designs for θ found by OPTDES
and their information gain compared to the arcsin support designs.

Table 3. E-optimal designs for θ in cubic regression over [−b, b] and their
information gain compared to the arcsin support designs.

support points weights percent
b x∗1 x∗2 x∗3 x∗4 ω∗

1 ω∗
2 ω∗

3 ω∗
4 info gain

1.6 −1.60 −0.80 0.80 1.6 0.127 0.373 0.373 0.127 0.0
1.7 −1.700 −0.826 0.826 1.700 0.0779 0.4221 0.4221 0.0779 0.59
1.8 −1.800 −0.844 0.844 1.800 0.0764 0.4236 0.4236 0.0764 4.73
1.9 −1.900 −0.859 0.859 1.900 0.0742 0.4258 0.4258 0.0742 13.30
2.0 −2.000 −0.873 0.873 2.000 0.0715 0.4285 0.4285 0.0715 21.55
3.0 −3.000 −0.943 0.943 3.000 0.0439 0.4561 0.4561 0.0439 84.29
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