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Abstract: Motivated by Shibata’s (1980) asymptotic efficiency results for the order

selected for a zero mean Gaussian AR process this paper establishes the asymp-

totic efficiency of AIC-like model selection criteria for infinite order autoregressive

processes with zero mean and unobservable errors that constitute a sequence of

nongaussian random variables. Furthermore, from the spectral density point of

view, the asympotic efficiency of AIC-like information criteria is established when

the underlying process is an infinite order nonzero mean nongaussian AR process.
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1. Introduction

The concept of asymptotic efficiency which was proposed by Shibata (1980),
deals with the selection of a finite approximation to an infinite order process
for which the average mean squared error of prediction is the smallest possi-
ble. Extensive work on this subject shows that AIC-like criteria (AIC: Akaike
(1973), FPE: Akaike (1970), Sn(k): Shibata (1980), CAT : Bhansali (1986b),
Parzen (1974), AICC : Hurvich and Tsai (1989)) which have been proved to
be inconsistent (see Shibata (1976), Hannan (1980), Bhansali (1986b)) possess
this asymptotically optimal property (see Shibata (1980) and Bhansali (1986a)
for zero mean processes, Hurvich and Tsai (1989) for regression and zero mean
Gaussian AR processes, and Karagrigoriou (1995) for nonzero mean Gaussian
processes). It should be noted here that the concept of asymptotic efficiency is
closely associated not with an estimate of the order of the underlying process but
rather with a finite approximation to the truly infinite order of the process. As a
result, it is not a surprise that consistent criteria like BIC: Schwarz (1978) and
φ: Hannan and Quinn (1979) fail to be asymptotically optimal.

Shibata (1981) also investigated the asymptotic efficiency of the spectral
density estimate of a finite order AR model fitted to an infinite order Gaussian
AR process. Taniguchi (1980) considered the nongaussian case and proved simul-
taneously the asymptotic efficiency of the order selected by AIC and that of a
spectral density estimate by fitting an ARMA(p, q) model. The quasi-Gaussian
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maximum likelihood estimator of the vector of the unknown parameters was
used and an asymptotic lower bound for the mean squared error of prediction
was evaluated using Kolmogorov-Wiener theory. Finally, it was proved that this
bound was attained if the order of the process was selected by AIC. Taniguchi’s
approach, although similar, is not based on the idea of the integrated relative
squared error used by Shibata (1981).

The nongaussian case was also investigated by Härdle (1987), who estab-
lished the efficient selection of regression variables when the unknown true error
distribution is replaced by a likelihood function ρ which is believed to be close
to the true one. Efficient selection was obtained using a special criterion which
depends on the second moments of the true error distribution and is equivalent
to the Mallows’ (1973) Cp and AIC criteria.

This work is devoted to the asymptotic efficiency of the order of a zero mean
nongaussian AR process as well as to the asymptotic efficiency of the spectral
density estimate of a nonzero mean AR process. In Section 2, the definition of
asymptotic efficiency, some preliminary results, and the assumptions required for
asymptotic efficiency will be stated. In Section 3, the asymptotic efficiency of
the order selected by the FPE, FPEα: Bhansali and Downham (1977), AIC,
Sn(k) and AICC criteria will be established. Finally, in Section 4 the asymptotic
efficiency of the spectral density estimate of a finite order AR model fitted to a
nonzero mean nongaussian infinite order AR process will be shown.

2. Assumptions and Preliminary Results

Consider the linear zero mean infinite order AR process {Xt} of the form:

Xt+1 + a1Xt + a2Xt−1 + · · · = εt+1, t = . . . ,−1, 0, 1, . . . , (2.1)

where a1, a2, . . . are real numbers and {εt} is a sequence of i.i.d. random variables
with mean zero and variance σ2. Let rij = E(Xt+iXt+j) be the autocovariance
and R = (rij , 1 ≤ i, j < ∞) the infinite dimensional covariance matrix of {Xt}.
Let V = {b : b′ = (b1, b2, . . .), ‖b‖R < ∞} be the vector space with norm

‖b‖R =
( ∞∑

i,j=1

bibjrij

) 1
2 .

Also let ‖t‖ = ‖t‖I , for all t in V , where I is the infinite dimensional identity
matrix and ‖R‖2 = supt:‖t‖≤1 ‖Rt‖2.

Consider now the projection a(k) = (a1(k), . . . , ak(k), 0, 0, . . .)′ of the pa-
rameter a = (a1, a2, . . .)′ with respect to the norm ‖ · ‖R on the k dimensional
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subspace V (k) = {c : c′ = (c1, . . . , ck, 0, 0, . . .)} and let γ = a(k) − a. The
spectral density of the process {Xt} is given by

f(λ) =
σ2

2π
· 1
|A(eiλ)|2 , −π ≤ λ ≤ π, (2.2)

where A(eiλ) =
∑∞

j=0 aje
ijλ, a0 = 1.

Given observations x1, . . . , xn, if the kth order AR model, with k× k covari-
ance matrix R(k) and innovation variance σ2

k,

Xt+1 + a1(k)Xt + a2(k)Xt−1 + · · · + ak(k)Xt+1−k = εt+1,k, a0(k) = 1 (2.3)

is assumed, the least squares estimator â(k) = (â1(k), . . . , âk(k), 0, 0, . . .)′ of a(k)
and the estimator

σ̂2
k =

n−1∑
t=Kn

(Xt+1 + â1(k)Xt + · · · + âk(k)Xt+1−k)2/N

of σ2
k are obtained, where N = n−Kn and Kn is a preassigned upper bound for

the selected order. Let {Yt} be another realization of the process independent
of, but with the same probabilistic structure as {Xt}. Then, an order k̂ selected
by any selection procedure is called asymptotically efficient if (Shibata (1980))

Qn(k̂)
/

Ln(k�
n) P−→1, as n → ∞,

where Qn(k) is the penalty function defined by

Qn(k) = E[(Ŷt+1 − Yt+1)2|X1, . . . ,Xn] − σ2,

Ln(k) the expectation of Qn(k), Ŷt+1 the 1-step ahead predictor of Yt+1 given by
Ŷt+1 = −∑k

i=1 âi(k)Yt+1−i, and {k∗
n}∞n=1 a sequence of positive integers at each

of which the minimum of Ln(k) with respect to k (1 ≤ k ≤ Kn) is attained.
Finally, a spectral density estimate of f(λ) is given by

f̂k(λ) =
σ̂2

k

2π
· 1
|Âk(eiλ)|2 , (2.4)

where Âk(eiλ) = 1 + â1(k)e1iλ + · · · + âk(k)ekiλ. Then, the estimated covariance
matrix is R = (rl−m, 1 ≤ l,m < ∞) where rl =

∫ +π
−π eilλf̂k(λ)dλ. For the goodness

of fit of f̂k we use the integrated relative squared error, namely

Q̃n(k) =
1
2π

+π∫
−π

[ f̂k(λ) − f(λ)
f(λ)

]2

dλ. (2.5)
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From the point of view of the autoregressive spectral density, an order k̂ is called
asymptotically efficient if

Q̃n(k̂)
Ln(k∗

n)
P−→2/σ2, n → ∞.

Assumptions
A0. {εt} has finite moments up to the 16th order: Eεi = 0, ∀i, E(εiεj) = δi−jσ

2,

where δk =

{
1, if k = 0
0, otherwise

and

E|ε1|16 < ∞. (2.6)

A1. {Xt} is a stationary not degenerate to a finite order autoregressive process.
A2. The associated power series A(z) =

∑∞
j=0 ajz

j converges and is nonzero for
|z| ≤ 1.

A3. Kn is a sequence of positive integers such that Kn → ∞ and Kn/n
1
2 → 0,

as n → ∞.
A4.

∑∞
j=0 j|aj | < ∞.

Note that (2.6) implies that E|∏ν
j=1 εj | < ∞, ν ≤ 16. Note also that as-

sumptions A1−A3 coincide with the assumptions required for the asymptotic
efficiency in the nonzero mean Gaussian AR(∞) case (Karagrigoriou (1992) and
(1995)). Assumptions A2 and A4 imply that |A(eiλ)| is bounded above and
bounded away from zero. Therefore A(eiλ) and consequently f(λ) are continu-
ous for −π ≤ λ ≤ π. As a result, two constants Γ1 and Γ2 can be found such
that 0 < Γ1 < f(λ) < Γ2, −π ≤ λ ≤ π. If λ1 < · · · < λp (p ≤ k) are the distinct
eigenvalues of R(k), then (see Berk 1974) 2πΓ1 ≤ λ1 < · · · < λp ≤ 2πΓ2. Since
the norm of R(k) is dominated by the largest modulus of the eigenvalues of R(k),
we have ‖R(k)‖ ≤ 2πΓ2 and ‖R−1(k)‖ ≤ (2πΓ1)−1, where R(k)−1 is the inverse
of R(k). Assumption A4 implies that

∞∑
j=0

|aj | < ∞ (2.7)

and therefore the expectation of {Xt} is finite and in particular is equal to 0 since
E(εi) = 0, for all i. Note that (2.7) is the condition imposed on the parameters
of the process for the Gaussian case (Shibata (1980)). The cost to be paid for
dropping the Gaussian assumption is the stronger condition A4.

Under assumptions A0−A2 and condition (2.7), the penalty function Qn(k)
in this case, can be easily derived from Lemma 2.1 of Karagrigoriou (1995):

Qn(k) = ‖a(k) − â(k)‖2
R + ‖γ‖2

R.
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As for the quantity asymptotically equivalent to the expectation of Qn(k), it is
given by Shibata (1980) and Karagrigoriou (1992) Ln(k) = kσ2N−1+‖γ‖2

R. Since
{Xt} is a zero-mean AR(∞) process it has a moving average representation of
the form:

Xt+1 =
∞∑

j=0

βjεt+1−j , β0 = 1. (2.8)

The following lemma provides the relationship between the ai’s and the βi’s
as well as their connection to the so called “Brillinger’s mixing condition”.

Lemma 2.1. The following two statements are equivalent

(i)
∞∑

j=0

j|aj | < ∞, (ii)
∞∑

j=0

j|βj | < ∞, (2.9)

where the aj ’s are defined in (2.1) and the βj ’s in (2.8).
In addition, if assumptions A0−A2 are satisfied, then assumption A4 (and

consequently (2.9 ii)) implies Brillinger’s mixing condition, namely
∞∑

t1=−∞

∞∑
t2=−∞

· · ·
∞∑

tk−1=−∞
|tjcumk| < ∞, j = 1, . . . , k − 1, k = 2, . . . , 16, (2.10)

where cumk = cum(Xt1+t,Xt2+t, . . . ,Xtk−1+t,Xt) and cum(X1, . . . ,Xn) repre-
sents the joint cumulant of order n of (X1, . . . ,Xn) (see Rosenblatt (1983)).

Proof. For the proof of the first part refer to Hannan and Kavalieris (1986).
To prove the second part of the Lemma we make use of the moving average
representation of the process {Xt} given in (2.8), so that

∑
t1,...,tk−1

|tjcumk|=
∞∑

l1,...,lk−1,l=0

( k−1∏
j=1

βlj

)
βlcum(εt+t1−l1 , . . . , εt+tk−1−lk−1

, εt−l).

Due to independence, the cumulants are equal to zero unless all subscripts are
equal. Furthermore, since by A0 the moments up to the 16th order are finite
the above quantity is bounded by C

∑∞
l=0 βlβt1+l, . . . , βtk−1+l, for some constant

C. Therefore,
∞∑

t1,...,tk−1=−∞
|tjcumk| ≤ C

∞∑
l=0

|βl|
∑
t1

|βt1+l| · · ·
∑
tk−1

|βtk−1+l||tj |,

where j = 1, . . . , k−1 and k = 2, . . . , 16. Since (2.9 ii) implies that
∑

j |βj | < ∞,
the mixing condition is verified.

Brillinger (1969), using the mixing condition given in (2.10), proved that

cum(mη1θ1(u1), . . . ,mηsθs(us)) = O(N−s+1), (2.11)
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where N = n − Kn, ui = 0,±1,±2, . . ., ηi, θi = 1, . . . , k, i = 1, . . . , s, s =
1, 2, 3, . . ., mηiθi

(u) is the ηith×θith entry of the matrix

N−1 ·
∑

Kn≤t≤n−1

Xt+uX
′
t, u = 0,±1 ± 2, . . . ,

and Xt = (Xt,Xt−1, . . . ,Xt+1−k)′.

3. Asymptotic Efficiency of the Order Selection for Prediction

Lemma 3.1. Under assumptions A0−A2 and A4 for the zero mean process
(2.1) the following expressions hold:

E‖N−1
n−1∑

t=Kn

Xtεt+1‖2
R−1(k) = N−1σ2k,

E‖N−1
n−1∑

t=Kn

Xtεt+1‖m
R−1(k) = N−m

2 σm

m
2
−1∏

j=0

(k + 2j) + O(N−m
2
−1)k

m
2 , m = 4, 6, 8.

Proof.

E‖N−1
n−1∑

t=Kn

Xtεt+1‖2
R−1(k) = N−2E

{ n−1∑
t1=Kn

X′
t1εt1+1R

−1(k)
n−1∑

t2=Kn

Xt2εt2+1

}
.

Note that due to the independence of the εt’s the above expectation is equal to
zero unless t1 = t2. Therefore, the above quantity is equal to

N−2E
{ n−1∑

t=Kn

X′
tεt+1R

−1(k)Xtεt+1

}
= N−2

n−1∑
t=Kn

E{X′
tR

−1(k)Xtε
2
t+1}.

Since εt is independent of Xτ for every τ < t and Eε2
t = σ2 for all t, the above

expression becomes:

σ2N−2
n−1∑

t=Kn

E{X′
tR

−1(k)Xt} = σ2N−2
n−1∑

t=Kn

tr(R−1(k)E{XtX′
t})

= σ2N−2
n−1∑

t=Kn

tr(R−1(k)R(k)) = σ2N−2Nk,

where trA is the trace of the matrix A. Let rij be the ith×jth entry of R−1(k).
Since εt+1 =

∑∞
j=0 ajXt+1−j , the term E‖∑

Xtεt+1/N‖4
R−1(k) is equal to

k∑
l1,l2,l3,l4=1

rl1l2rl3l4
∞∑

j1,j2,j3,j4=0

aj1 · · · aj4 × E
{ n−1∑

t=Kn

Xt+1−l1Xt+1−j1

N
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×
n−1∑

t=Kn

Xt+1−l2Xt+1−j2

N

n−1∑
t=Kn

Xt+1−l3Xt+1−j3

N

n−1∑
t=Kn

Xt+1−l4Xt+1−j4

N

}

=
k∑

l1,...,l4=1

rl1l2rl3l4
∞∑

j1,...,j4=0

aj1 · · · aj4E
{ 4∏

i=1

m1,li(ji)
}

=
k∑

l1,...,l4=1

rl1l2rl3l4
∞∑

j1,...,j4=0

aj1 · · · aj4

∑
v

{ p∏
h=1

cum(m1,li(ji)(iεvh))
}
,

where the
∑

is over all partitions of (v1, . . . , vp), p = 1, 2, 3, 4 of the integers
1, 2, 3, 4. By (2.11) the main terms are those involving the cumulants of order 2
i.e.: ∑

rl1l2rl3l4×[
E

(
∑

Xt+1−l1εt+1)(
∑

Xt+1−l2εt+1)
N2

E
(
∑

Xt+1−l3εt+1)(
∑

Xt+1−l4εt+1)
N2

+E
(
∑

Xt+1−l1εt+1)(
∑

Xt+1−l3εt+1)
N2

E
(
∑

Xt+1−l2εt+1)(
∑

Xt+1−l4εt+1)
N2

+E
(
∑

Xt+1−l1εt+1)(
∑

Xt+1−l4εt+1)
N2

E
(
∑

Xt+1−l2εt+1)(
∑

Xt+1−l3εt+1)
N2

]
+ O(N−3)k2

which coincides with the expectation of ‖∑
Xtεt+1/N‖4

R−1(k) for a zero mean
Gaussian AR(∞) process {Xt} (Shibata (1980)) and the proof is complete.

In the same way, we can easily verify the formula for m= 6 and 8.

Lemma 3.2. Under assumptions A0−A4 and for a divergent sequence k = kn,
the zero mean process (2.1), as n → ∞, satisfies

(i) ‖N−1
n−1∑

t=Kn

Xt(εt+1,k − εt+1)‖2 P−→ 0, and

(ii)
∣∣∣‖N−1

n−1∑
t=Kn

Xtεt+1,k‖2
R−1(k) − ‖N−1

n−1∑
t=Kn

Xtεt+1‖2
R−1(k)

∣∣∣ P−→ 0,

where εt+1,k is defined in (2.3).

Proof. (i) Let γi = ai(k) − ai. Then, the expectation of the quantity under
investigation is equal to

k∑
l=1

n−1∑
t1,t2=Kn

∞∑
m1,m2=0

N−2γm1γm2E(Xt1+1−m1Xt1+1−lXt2+1−m2Xt2+1−l)
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=
k∑

l=1

∞∑
m1,m2=0

γm1γm2E
{( n−1∑

t=Kn

Xt+1−m1Xt+1−l

N

)( n−1∑
t=Kn

Xt+1−m2Xt+1−l

N

)}

=
k∑

l=1

∞∑
m1,m2=0

γm1γm2

{
cum

( n−1∑
t=Kn

Xt+1−m1Xt+1−l

N

)
cum

( n−1∑
t=Kn

Xt+1−m2Xt+1−l

N

)

+cum
( n−1∑

t=Kn

Xt+1−m1Xt+1−l

N
,

n−1∑
t=Kn

Xt+1−m2Xt+1−l

N

)}

=
k∑

l=1

( ∞∑
m=0

γmN−1E(
n−1∑

t=Kn

Xt+1−mXt+1−l)
)2

+
k∑

l=1

( ∞∑
m=0

γm

)2
O(N−1),

where the cumulant of order 2 is O(N−1) by (2.11). Then, the above expectation
becomes:

k∑
l=1

( ∞∑
m=0

γm
1
N

Nrml

)2
+

k∑
l=1

( ∞∑
m=0

γm

)2
O(N−1)

≤ ‖γ‖2
k∑

l=1

( ∞∑
m=0

γ̃mrml

)2
+

k∑
l=1

( ∞∑
m=0

γm

)2
O(N−1),

where γ̃m = γm/‖γ‖. Note that ‖γ̃‖ = 1 where γ̃ = (γ̃1, γ̃2, . . .)′. Using the
definition of the norm of R and the fact that a(k) is the projection of a the
above quantity is bounded by ‖γ‖2‖R‖2 +

∑
j |aj |kN−1O(1) which converges to

zero by A3, inequality (2.7), and the fact that ‖γ‖ converges to zero since k is a
divergent sequence.
(ii) Let Ck =

∑
Xtεt+1,k/N and C =

∑
Xtεt+1/N . Simple calculations show

that ∣∣∣‖Ck‖2
R−1(k) − ‖C‖2

R−1(k)

∣∣∣
≤

(∣∣∣‖Ck‖R−1(k) − ‖C‖R−1(k)

∣∣∣)2
+ 2‖C‖R−1(k)

∣∣∣‖Ck‖R−1(k) − ‖C‖R−1(k)

∣∣∣
≤ ‖Ck − C‖2

R−1(k) + 2‖C‖R−1(k)‖Ck − C‖R−1(k).

Note that ‖Ck−C‖R−1(k) ≤ ‖Ck−C‖·‖R−1(k)‖. The result follows from Lemma
3.1, the first part of this Lemma and the fact that the norm of the matrix R−1(k)
is finite.

Lemma 3.3. Under assumptions A0−A4 the following statements hold as n →
∞ :

(i) max
1≤k≤Kn

‖R̂(k) − R(k)‖ P→ 0, (ii) max
1≤k≤Kn

‖R̂−1(k) − R−1(k)‖ P→ 0,
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where R̂(k) is the k × k sample covariance matrix and R̂−1(k) the inverse of
R̂(k).

Proof. (i) It is easy to see that, for r̂ij =
∑n−1

t=Kn
Xt+iXt+j/N ,

max
1≤k≤Kn

‖R̂(k) − R(k)‖ ≤ max
1≤k≤Kn

∑
1≤i,j≤k

(r̂ij − rij)2 =
∑

1≤i,j≤Kn

(r̂ij − rij)2.

Note that r̂ij is an unbiased estimator for rij so that

E
( Kn∑

i,j=1

(r̂ij − rij)2
)

=
Kn∑

i,j=1

cum(
∑

Xt+iXt+j

N
,

∑
Xt+iXt+j

N
).

By assumption A4 and (2.11) the above cumulant is of order O(N−2+1) so that
the expectation is of order O(1)K2

n/N which tends to 0 by A3. The proof of the
second part of this Lemma is exactly the same as the one in Lemma 3.2 part (ii)
(Karagrigoriou (1995)).

Note that the formulas for E‖∑
Xtεt+1/N‖i

R−1(k), i = 2, 4, 6, 8 are identi-
cal to the expressions that arise in the case where the errors have a Gaussian
distribution (Shibata (1980), Karagrigoriou (1992) and (1995)). In addition, by
Lemma 4.1 of Karagrigoriou (1995) both k∗

n and k̂ ≡ k̂n, the sequences that
minimize Ln(k) and the Sn(k) criterion respectively, are divergent sequences.
Consequently, the results presented by Shibata (1980) for a Gaussian process
and, in general, for any process for which the moments of the error distribution
coincide with those of the Normal distribution are also valid in this case where
the Gaussian assumption has been dropped and the moments up to the 16th

order are only required to be finite. As a result, the following main Theorems
hold:

Theorem 3.1. Under assumptions A0−A4, for the processes (2.1) and (2.3)
and for every divergent sequence k = kn

Qn(k)
/

Ln(k) P−→ 1, as n → ∞.

Furthermore, for every ε > 0,

lim
n→∞P [Ln(k̂)

/
Ln(k∗

n) ≤ 1 + ε] = 1,

where k̂ is the order that minimizes the criterion Sn(k) = (N + 2k)σ̂2
k and k∗

n is
the sequence that minimizes Ln(k).

Remark 3.1. By Theorem 3.1 and the fact that Ln(k∗
n) = mink Ln(k) we have

lim
n→∞P

[
Qn(k)

/
Ln(k∗

n) ≥ 1 − ε
]

= 1, for all ε > 0,
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which indicates that the mean squared error of prediction Qn(k) is asymptoti-
cally never below Ln(k∗

n). The following theorem shows that this lower bound is
attained when k is the order selected by the Sn(k) criterion.

Theorem 3.2. Under assumptions A0−A4 and for the processes (2.1) and
(2.3), the order k̂ selected by Sn(k) is asymptotically efficient, i.e.,

Qn(k̂)
/

Ln(k∗
n) P−→ 1, as n → ∞,

where k∗
n is the divergent sequence that minimizes Ln(k).

Theorem 3.3. Let δn(k) be a real-valued random or nonrandom function of
k and k∗

n be the divergent sequence that minimizes Ln(k). Under assumptions
A0−A4, if the true underlying process is an AR(∞) process of the form (2.1)
and an AR(k) process of the form (2.3) is fitted to a set of observations and if

(i) max
1≤k≤Kn

∣∣∣δn(k)
N

∣∣∣ P−→ 0 and (ii) max
1≤k≤Kn

∣∣∣δn(k) − δn(k∗
n)

NLn(k)

∣∣∣ P−→ 0,

then k̂0, the order selected by the criterion S0
n(k) = (N + δn(k) + 2k)σ̂2

k (Shibata
(1980)) is asymptotically efficient.

The asymptotic efficiency of the AIC-like criteria as well as the inefficiency
of BIC and φ criteria is established in the following Corollary, which is the
equivalent to Corollary 5.1 of Karagrigoriou (1995) for the zero mean nongaussian
case and follows immediately from Theorem 3.3.

Corollary 3.1. Under assumptions A0−A4, if the true underlying process is
zero mean AR(∞) of the form (2.1) and an AR(k) process of the form (2.3) is
fitted to a set of n observations then
1. AIC(k) = n log σ̂2

k + 2k, FPE(k) = σ̂2
k(1 + (2k)/n), S′

n(k) = (n + 2k)σ̂2
k,

AICC(k) = AIC(k)+2(k+1)(k+2)(n−k+2)−1 and FPEα(k) = σ̂2
k(1+(αk)/n),

α �= 2 are asymptotically efficient and
2. BIC(k) = n log σ̂2

k + k log n and φ(k) = n log σ̂2
k + ck log log n, c > 2, are not

asymptotically efficient criteria.

Examples. The significance of the results presented above lies in the fact that
the error distribution is allowed to be nongaussian as long as the moments up to
the 16th order are finite. The simplest case of such a distribution that can be
considered is a t−distribution with at least 17 degrees of freedom. Also, some
assymetric distributions with finitely many moments fall into the same category.

The most interesting case is the one in which the error sequence is a mix-
ture of Gaussian white noise processes. Such a mixture model is of the form
εt = Zt/

√
W/d where Zt is an i.i.d. Gaussian sequence and W is a chi-square
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variable with d degrees of freedom, d > 16. Note that in general W may be any
nonnegative random variable independent of Zt. Observe that, in the case of the
chi-square distribution, the errors constitute a sequence of uncorrelated random
variables following the t-distribution. Applications of the mixture models can be
spotted in linear state space models like the seasonal adjustment models. In such
models the estimation of the state is usually of great interest because it simplifies
the problem of the analysis of the series. A procedure for the state estimation or
equivalently, the fitting of the process, is provided by either the AIC criterion or
its likeness.

Apart from these theoretical considerations which are well known, the prac-
tical applications and the implications and differences the nongaussian distribu-
tions entail are the key issues in the contributions of the present work.

4. Asymptotic Efficiency of the Order Selection for the Spectral Den-
sity Estimate

We turn now to the asymptotic efficiency from the point of view of the
autoregressive spectral estimation. Consider a stationary process {Xt} with ex-
pectation µ and covariance rl = E(XtXt+l) − µ2 of the form

m + Xt+1 + a1Xt + a2Xt−1 + · · · = εt+1, t = . . . ,−1, 0, 1, . . . (4.1)

where a1, a2, . . ., and m are real numbers and {εt} is a sequence of i.i.d. random
variables satisfying assumption A0. Note that {Zt} = {Xt − µ} is a stationary
zero mean process sharing the same covariance and autocovariance matrices with
{Xt}.

Given observations x1, . . . , xn, if the kth order AR model with k × k covari-
ance matrix R(k) and innovation variance σ2

k

m(k) + Xt+1 + a1(k)Xt + a2(k)Xt−1 + · · · + ak(k)Xt+1−k = εt+1,k (4.2)

is assumed, the L.S.E. â(k) of a(k) and the estimators m̂(k) of m(k) and

σ̂2
k =

n−1∑
t=Kn

(m̂(k) + Xt+1 + â1(k)Xt + · · · + âk(k)Xt+1−k)2/N

of σ2
k are obtainable. Note that b′(k) = (m(k), a1(k), . . . , ak(k), 0, . . .) is the

projection of b′ = (m,a1, a2, . . .) with respect to the norm ‖ · ‖∗R on the k + 1
dimensional subspace V (k + 1) = {c(k) : c′(k) = (c0, c1, . . . , ck, 0, . . .)}, where

‖b‖∗R =
{(

b0 + (
∞∑

j=1

bj)µ
)2

+
∞∑

i,j=1

bibjrij

} 1
2 .
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Observe that m(k) = −µ
∑

ai(k) and the projections of a into V (k+1) and V (k)
(see section 2) subspaces coincide so that (4.2) is equivalent to Zt+1 + a1(k)Zt +
· · ·+ak(k)Zt+1−k = εt+1,k. In this case, the 1-step ahead predictor of Yt+1 is given
by Ŷt+1 = −m̂(k)−∑k

i=1 âi(k)Yt+1−i. Furthermore, let R̂(k) = (r̂ij , 1 ≤ i, j < k)
be the estimator of R(k), where r̂ij = r̂z

ij − N−2 ∑
Zt+1−i

∑
Zt+1−j and r̂z

ij the
sample covariance of Zt−i and Zt−j .

Under assumptions A1, A2, and A4, the penalty function Qn(k) is given
by the formula (Lemma 2.1, Karagrigoriou (1995)):

Qn(k) = ‖â(k) − a‖2
R + (m̂(k) + µ

k∑
i=0

âi(k))2, â0(k) = 1

and the quantity asymptotically equivalent to the expectation of Qn(k) is given
by (Lemma 3.6, Karagrigoriou (1992)):

Ln(k) = kN−1σ2 + ‖γ‖2
R + N−1(σm(k)/m)2, (4.3)

provided that assumptions A0−A4 hold, where ‖ · ‖R is defined in section 2.
In addition to the assumptions A0−A4, we now impose the following as-

sumption on the parameters of the process (4.1):
A5.

∑∞
k=1 (

∑∞
j=k+1 |aj |)2 < ∞.

The following result is stated without proof. The proof under the Gaussian
assumption is given in Karagrigoriou (1995) but stands as is in the present set-
up.

Lemma 4.1. Under assumptions A0−A5 and for the process (4.2) the following
statements hold:

(i) max
1≤k≤Kn

∣∣∣(∑n−1
t=Kn

εt+1,k)2

N2Ln(k)

∣∣∣ P−→ 0 and (ii) max
1≤k≤Kn

( n−1∑
t=Kn

εt+1,k

N

)2 P−→ 0.

Furthermore, for any divergent sequence k = kn (kn ≤ Kn), we have

(iii) Nk−1
(
m̂(k) + µ

k∑
i=0

âi(k)
)2 P−→ 0.

Lemma 4.2. Under assumptions A0−A5, for the process (4.2) and for any
divergent sequence k = kn (kn ≤ Kn), we have

Nk−1‖â(k) − a(k)‖2
R

P−→ σ2

Proof. Let Zt = (Zt, Zt−1, . . . , Zt+1−k)′,

B =
∑ Ztεt+1

N
, Bk =

∑ Ztεt+1,k

N
, W =

∑ Zt

N
, Ek =

∑ εt+1,k

N
,
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c1 = R̂−1(k)Bk, and c2 = R̂−1(k)WEk. Note that â(k)−a(k) = c2−c1. By Lem-
mas 3.2 and 3.3 the convergence of P [|Nk−1||c1||2R−σ2| ≥ ε] to zero is equivalent
to the convergence of E[N ||B||2R−1(k) − kσ2]2/k2ε2 to zero. Simple calculations
show that the above expectation tends indeed to zero since, by Lemma 3.1, it is
equal to (2kσ4 + O(N−3))/ε2k2.

Furthermore, ||c2||2R tends to zero by the boundedness of ||R|| and ||W||,
Lemma 4.1 (ii) and the fact that ||Ek||2 is of order O(N−1). The result is obtained
by the squeezing theorem applied to the inequality:

∣∣∣ 2∑
i=1

‖ci‖2
R − 2‖c1‖R‖c2‖R

∣∣∣ ≤ ‖â(k) − a(k)‖2
R ≤

2∑
i=1

‖ci‖2
R + 2‖c1‖R‖c2‖R.

Lemma 4.3. Under assumptions A0−A4,
(i) σ̂2

k − σ2 P−→ 0

(ii)
∑k

j=0 |âj(k) − aj(k)| P−→ 0, for 1 ≤ k ≤ Kn

(iii) If lim kn = ∞ then ‖R − R‖ → 0, uniformly in kn ≤ k ≤ Kn.

Proof. (i) Let s2
k =

∑
ε2
t+1,k/N and σ2

k = Es2
k. Using the triangular inequality

we have:
|σ̂2

k − σ2| ≤ |σ̂2
k − s2

k| + |s2
k − σ2

k| + |σ2
k − σ2|. (4.4)

The last term tends to zero since σ2
k → σ2 (Grenander and Szergö (1958)). It

can easily be shown that the first term of the R.H.S. of (4.4) equals

‖â(k) − a(k)‖2
R̂(k)

+
( n−1∑

t=Kn

εt+1,k

N

)2
.

By adding and subtracting the term kσ2/N , we have:

|σ̂2
k − s2

k| ≤
k

N
|N
k
‖â(k) − a(k)‖2

R̂(k)
− σ2| + |kσ2/N | +

( n−1∑
t=Kn

εt+1,k

N

)2
.

Using Lemma 4.1 (ii), Lemma 4.2 and assumption A3 the first term of the
R.H.S of (4.4) converges to 0. For the second term of the R.H.S. of (4.4) using
Chebychev’s inequality we have that P [|s2

k − σ2
k| ≥ ε] ≤ ε−2Var (s2

k). By the
definition of s2

k the Var (s2
k) = op(1) and thus the second term tends also to 0.

(ii) Using simple properties of ‖ · ‖ we have:

k∑
j=0

|âj(k) − aj(k)| =
k∑

j=0

√
(âj(k) − aj(k))2

≤ [k‖â(k) − a(k)‖2]1/2 ≤ [k‖â(k) − a(k)‖2
R]1/2‖R−1‖1/2.
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Using the same argument as in part (i) and the fact that the norm of R−1 is
bounded we have the result.

(iii) The result follows from (Shibata (1981)) Lemma 2.3 and previous results.

Lemma 4.4. Under assumptions A0−A4 and for any divergent sequence k, the
following statements hold as n → ∞:

(i)
σ̂2

k − σ2√
Ln(k)

P−→ 0, (ii)
‖â(k) − a‖2

R

Ln(k)
P−→ 1, and (iii)

m̃2

Ln(k)
P−→ 0

where m̃ = m̂(k) + µ
∑

âi(k).

Proof. (i) It can be easily seen that

(σ2
k − σ2) + (σ̂2

k − s2
k)√

Ln(k)
=

‖â(k) − a‖2
R√

Ln(k)
+

( ∑
εt+1,k

)2

N2
√

Ln(k)

≤
√

Ln(k)
(Qn(k)

Ln(k)
+ max

k

( ∑
εt+1,k

)2

N2Ln(k)

)
which converges to zero by Lemma 4.1 (i), Theorem 3.1, and the fact that Ln(k)
converges to zero. Furthermore,

P
[
max

|s2
k − σ2

k|√
Ln(k)

≥ ε
]
≤ 1

ε4

Kn∑
k=1

E
[ (s2

k − σ2
k)

4

Ln(k)2
]
≤ N2

ε4σ4

Kn∑
k=1

1
k2

Var
(∑

ε4
t+1,k

N4

)
which tends to 0. Using the triangular inequality, the result is immediate.

(ii) Let W = ‖â(k) − a‖2
R/Ln(k). Then, using (4.3), we have:

W − 1 =
‖â(k) − a(k)‖2

R − ‖γ‖2
R

kσ2

N + ‖γ‖2
R + 1

N (σm(k)
m )2

− 1 ≤
N
k ‖â(k) − a(k)‖2

R − σ2 − 1
k (σm(k)

m )2

σ2

which converges to zero by Lemma 4.2 and the facts that k is a divergent sequence
and m(k) tends to m. The result follows from Lemma 4.3 (iii).

(iii) Using the formula for Ln(k) we have m̃2/Ln(k) ≤ (Nm̃2)/(kσ2) which
tends to zero by Lemma 4.1 (iii).

Theorem 4.1. Under assumptions A0−A4, and for any divergent sequence k

we have
L−1

n (k) · |Q̃n(k) − 2
σ̂2

k

Qn(k)| P−→ 0

If, in addition, assumption A5 is satisfied, then

Q̃n(k̂)
Ln(k∗

n)
P−→ 2/σ2, n → ∞
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where k̂ is the order selected by Sn(k) and k∗
n the sequence that minimizes Ln(k).

Proof. Consider the following known fact which holds for any spectral function
f(·) and any type of estimators (see Shibata (1981) for details) :

1
Ln(k)

|Q̃n(k) − 2
σ̂2

k

Qn(k)|

≤ 1
Ln(k)

{(σ2 − σ̂2
k

σ2

)2
+

2
σ̂2

k

m̃2 +
‖â(k) − a‖2

R

σ4

×
(
|a − â(k)|2F ∗ + 4|a − â(k)|F ∗12σ̂k + 2|σ2 − σ̂2

k|(2 +
σ2

σ̂2
k

)
)}

,

where F ∗ = max−π≤λ≤π f̂k(λ), |a− â(·)| =
∑k

j=0 |âj(·)−aj(·)|+∑∞
j=k+1 |aj |, and

Qn(k) = ‖â(k)− a‖2
R

+ m̃2. By Lemmas 4.3 and 4.4 the above quantity tends to
0. By Lemma 4.3 (iii),

L−1
n (k) · |Q̃n(k) − 2

σ̂2
k

(‖â(k) − a‖2
R + m̃2)| P−→ 0

and the proof of the first assertion is established. Combining Theorem 3.1 and
the fact that k∗

n minimizes Ln(k) over 1 ≤ k ≤ Kn, we have

Ln(k̂)/Ln(k∗
n) −→ 1. (4.5)

For the second part, we have

Q̃n(k)
Ln(k∗

n)
=

1
Ln(k)

{
Q̃n(k) − 2

σ̂2
k

Qn(k) +
2
σ̂2

k

Qn(k)
}
· Ln(k)
Ln(k∗

n)
·

Replacing k by the divergent sequence k̂ (see Karagrigoriou (1995)) and using
Theorem 3.2, the first part of this theorem, and (4.5) we have the asymptotic
efficiency of the spectral density estimate.

Remark 4.1. Applying Theorem 3.3 to the zero mean nongaussian AR(∞)
process {Zt}, we conclude that Theorem 4.1 holds for all AIC−like criteria men-
tioned in Collorary 3.1, namely, AIC, FPE, FPEα, AICC , and S′

n(k).

5. Discussion

Under assumptions A1-A4, the asymptotic efficiency of Sn(k) as well as that
of AIC−like criteria is assured as long as the moments up to the 16th order exist,
which is the only condition imposed on the true error distribution. Furthermore,
even from the spectral density point of view, the asymptotic efficiency of AIC-
like criteria is assured provided that the parameters of the process satisfy certain
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conditions. Note that the fact that this asymptotic result holds even for the
nongaussian case is due to the use of a linear predictor in our criterion as well as
to the use of the least squares estimators of the parameters of the fitted process.
In conclusion, we can safely say that, provided that the moments up to the 16th
order exist, the LSE’s (i.e. the Gaussian MLE’s) and consequently the AIC-like
criteria derived under the Gaussian assumption can be used in the nongaussian
case without affecting the asymptotic efficiency. The significance of Theorems
3.2, 3.3, and 4.1 lies in the fact that the Gaussian maximum likelihood estimators
can be used, even if the true error distribution is not necessarily Gaussian, as
long as the object of the analysis is to select a finite order process with optimal
predictive performance.
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