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Abstract: Model selection is a key component in any statistical analysis. In this

paper we discuss this issue from the point of view of robustness and we point out

the extreme sensitivity of many classical model selection procedures to outliers and

other departures from the distributional assumptions of the model. First, we focus

on regression and review a robust version of Mallows’s CP as well as some related

approaches. We then go beyond the regression model and discuss a robust version

of the Akaike Information Criterion for general parametric models.
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1. Introduction

Model selection is a key component in any statistical analysis. Typically the
choice of the final model(s) is an iterative procedure based on subject matter
knowledge and on formal selection criteria. In this paper we focus on the robust-
ness issue of the latter. Classical model selection procedures are based on classical
estimators and tests. Consider for instance Mallows’s CP (Mallows (1973)), a
powerful selection procedure in regression. The CP statistic is an estimate of a
measure of adequacy for prediction and one tries to find submodels of the full
model with CP values close to p or smaller than p (the number of parameters
in submodel P ). Since the CP statistic is based on least squares estimation, it
is very sensitive to outliers and other departures from the normality assumption
on the error distribution.

Whereas in the past 30 years many robust alternatives to the classical es-
timation procedures have been devised (see for instance Huber (1981); Hampel,
Ronchetti, Rousseeuw and Stahel (1986)), the associated model selection problem
has been somewhat neglected. On the other hand, the need for robust selection
procedures is obvious because one cannot estimate the parameters robustly and
apply unmodified classical selection procedures. This state of affairs is perhaps
one of the reasons for the widespread false prejudice that “a ‘robustnik’ (‘robust-
nitsa’) never changes his (her) model” (see Hampel (1991)).
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The paper is organized as follows. In Section 2, we discuss robust model
selection for regression. We review a robust criterion for prediction and its esti-
mated version which leads to a robust CP statistic. The robust model selection
procedure based on this statistic can be used with a large variety of robust estima-
tors for the parameters, including M-estimators, GM-estimators (e.g. bounded
influence estimators), and one-step M-estimators with a high breakdown start-
ing point. The robust RCP allows us to choose the best models which fit the
majority of the data by taking into account the presence of outliers and possible
departures from the normality assumption on the error distribution. Other pro-
posals available in the literature will also be reviewed. In Section 3 we consider
general parametric models and discuss a robust version of the Akaike Information
Criterion with an application to autoregressive models. In Section 4 we focus on
model choice via testing of non-nested hypotheses and in Section 5 we mention
two main research directions.

2. Regression Models

2.1. Mallows’s CP

Mallows’s CP (Mallows (1973)) is a powerful technique for model selection in
regression. The CP statistic is defined by CP = RSSP/σ̂

2 −n+2p, where RSSP

is the residual sum of squares for submodel P , p is the dimension (the number
of parameters) of submodel P , n is the number of observations, and σ̂2 is an
estimate of the error variance σ2 which is usually computed in the full model.
CP is an estimate of a measure of adequacy for prediction given by the scaled
sum of squared errors. If submodel P is correct then CP will tend to be close
to p or smaller than p. Therefore, a simple plot of CP versus p will point out
immediately the better submodels.

Since the CP statistic is based on least squares estimation (via RSSP and σ̂2),
it is very sensitive to outliers and other departures from the normality assumption
on the error distribution. The following simple example shows the drastic effect
of contamination on the model selection procedure.

We consider bivariate data and in this case there is no need for a model
selection procedure. Our purpose is only to highlight the problem which appears
in more complex situations. Two observations were generated at each xi accord-
ing to yij = −xi + eij , i = 1, . . . , 19, j = 1, 2, where the eij are i.i.d. normally
distributed with expectation 0 and variance (.1)2. The two observations corre-
sponding to x10 = 0 are then set equal and moved between –1.5 and 3.0. Figure
1 shows the situation.

For each of the 10 values of y we recompute the CP statistic for the straight
line (β0 + β1x) and for the parabola (β0 + β1x + β2x

2). The full model is β0 +
β1x + γz, where z = 1 if x = 0 and z = 0 otherwise. Table 1 gives the values
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of the classical CP statistic and for comparison those of the robust version RCP

which is discussed in subsection 2.2.
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Figure 1. Sensitivity analysis on model selection. Data and positions for bogus points.

Table 1. Values of the CP and RCP statistics for the straight line (β0 +β1x)
and the parabola (β0 + β1x+ β2x

2) for different values of y10,1 = y10,2.

CP RCP

y10,j st. line (p = 2) parabola (p = 3) st. line (p = 2)
−1.5 413.4 62.2 9.3
−1.0 186.4 35.8 9.3
−0.5 48.9 13.2 9.3

0.0 1.1 2.9 0.2
0.5 42.8 14.1 6.9
1.0 174.0 37.0 6.9
1.5 394.9 63.5 6.9
2.0 705.4 91.3 6.9
2.5 1105.4 119.8 6.9
3.0 1595.0 148.5 6.9

Let us first look at the fourth row of Table 1. When y10,j = 0, we see from
Figure 1 that the 38 points form an almost straight line. Both the classical CP
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and the robust RCP consider the straight line (p = 2) as an appropriate model.
This is what we expect in this situation. When we move y10,j away from 0, the
classical CP rejects the straight line and indicates the need for a model with an
additional parameter (the full model with the dummy variable z). Of course,
among the models with three parameters, the model with a dummy variable is
better than the quadratic model. This shows the high sensitivity of the classical
CP selection procedure. Indeed, a very small change in the observations at
x = 0 has already the effect of changing the selected model. On the other hand,
the robust RCP still considers the straight line as an appropriate model. This
provides very useful information. It says that a robust straight line is a good
model for the majority of the data and that the additional parameter suggested
by the classical procedure is due to a (few) outlier(s). The weights associated
with the robust fit will highlight these points. In this way, the statistician has
the choice between a number of competing models (in this case just two: the
full model with a dummy variable (p = 3) fitted by least squares and a straight
line (p = 2) fitted by a robust procedure). In general this choice will depend on
subject matter and on the region where he or she wants to make the prediction.

2.2. A robust version of mallows’s CP

Consider the linear model yi = xT
i β+εi, where xT

i is the ith row of the design
matrix X. An M-estimator β̂P for model P with p parameters is the solution of
the equation ∑

i

η(xi, (yi − xT
i β)/σ)xi = 0, (2.1)

for some function η(x, r). Define the weights ŵi = w(xi, (yi − xT
i β̂P )/σ) =

η(xi, (yi − xT
i β̂P )/σ)/((yi − xT

i β̂P )/σ) and the rescaled mean squared weighted
prediction error

ΓP =
1
σ2

E
[∑

i

ŵ2
i (ŷi − Eyi)2

]
, (2.2)

where ŷi = xT
i β̂P is the fitted value for submodel P , and E[yi] is the expected

value under the full model, which is assumed correct. The weights in (2.2)
carry valuable diagnostic information. They are different for each model since
an observation can be outlying with respect to one model and have full weight
in another. The weighting scheme has the effect of downweighting the outlying
observations with respect to model P and limiting their influence on ΓP and
therefore on the model selection procedure.

Ronchetti and Staudte (1994) define a robust version of CP as follows:

RCP =
WP

σ̂2
− (UP − VP ), (2.3)
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where WP =
∑

i ŵ
2
i r

2
i =

∑
i ŵ

2
i (yi − ŷi)2 is the weighted residual sum of squares,

and σ̂2 is a robust and consistent estimator of σ2 in the full model given by
σ̂2 = Wfull/Ufull. VP and UP are constants given by VP = tr( RM−1QM−1 ) and
UP −VP = E‖η‖2−2 tr( NM−1 )+tr( LM−1QM−1 ), where M = E[η′(x, ε)xxT ]
with η′ denoting the derivative of η with respect to its second argument, Q =
E[η2(x, ε)xxT ], ‖η‖2 =

∑
1≤i≤n η

2(xi, εi), N = E[η2η′xxT ], L = E[w′ε(w′ε +
4w)xxT ] = E[((η′)2 + 2η′w − 3w2)xxT ], and R = E[w2xxT ].

If model P holds, σ̂2 ≈ WP /UP and RCP ≈ VP . Therefore, models with
values of RCP which are close to VP or smaller than VP will be preferred to
others, and a plot of RCP versus VP will aid in this selection. Mallows (1973), p.
665, pointed out that in the classical CP plot the variance of the slope of the line
joining the points (p,Cp) and (d,d), where d is the number of parameters in the
full model, is 2/(d−p). In our experience the variability of the RCP line is a little
greater, so 2/(d − p) can be used as a rough lower bound for the variability of
RCP . The plot of RCP versus VP can be easily integrated in existing computer
packages. It is recommended to plot the classical CP versus p next to the robust
plot, so that it is clear which models are suggested by both procedures. For
Huber type estimators VP is a fixed multiple (≈ 1) of the dimension p of the
subset P , and VP ≈ p. However, for estimators whose weight function depends
on the explanatory variables, such as the Mallows’ type estimators, the value
of VP could vary for different models of the same dimension. Examples can be
found in Ronchetti and Staudte (1994) and Sommer and Staudte (1995).

Note that when the weights are identically 1, WP becomes the residual sum
of squares of a least squares fit, VP = p, UP = (n − p), and RCP reduces to
Mallows’s CP .

2.3. Other results

In subsection 2.2 we discussed a direct robustification of Mallows’s CP . A
different approach is to look at Mallows’s CP as a special case of Akaike’s In-
formation Criterion (Akaike (1973)) applied to regression models. Following this
idea, Ronchetti (1982, 1985) proposed to apply to regression a robust version
of Akaike’s Criterion. This will be discussed in subsection 3.1 in the framework
of general parametric models. We will then come back to the special case of
regression.

A paper related to the results of subsection 2.2 is Léger and Altman (1993).
The authors approach the problem from a diagnostic point of view. They argue
that, whereas the influence of individual cases on the parameters of the selected
model is often assessed as part of the model building process, such conditional
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measures fail to evaluate the influence of the cases on the variable selection pro-
cess. Hence they extend influence measures based on distances between predicted
values to model selection problems in a manner that accounts for the selection
process. Such influence measures are useful diagnostic tools which complement
Cook’s and other similar distances. They help to identify influential observations
in the model selection but are not used to downweigh such observations in the
process in order to achieve a robust model selection and a robust estimation of
the parameters.

Antoch (1986, 1987) developed an algorithm to perform variable selection by
using a robust estimator for the parameters. The basic idea is to compute the
α−trimmed least squares estimators suggested by Koenker and Bassett (1978)
for all possible submodels and to compare them with the same estimator ob-
tained in the full model. Then, the submodels which lead to estimates which are
“undistinguishable” from that of the full model are considered acceptable.

Other related papers are Sommer and Huggins (1996), Shi and Tsai (1996),
and Qian and Künsch (1996).

3. A Robust Akaike Criterion

3.1. General parametric models

In this subsection we discuss a robust version of the Akaike Information
Criterion for a general parametric model {Pθ | θ ∈ Θ} (cf. Ronchetti (1982,
1985)). Consider n iid observations z1, . . . , zn and denote by Lp the log-likelihood
of the model with p parameters. Akaike’s Criterion amounts to choosing the
model that minimizes −2Lp+2p. This procedure may be viewed as an extension of
the likelihood principle and is based on a general information theoretic criterion.
In fact 2Lp − 2p is a suitable estimate of the expected entropy of the model and
by the Akaike Criterion the entropy will be, at least approximately, maximized
(cf. Akaike (1973)). The criterion can be generalized by replacing 2p by αp for a
given fixed α (cf. Bhansali and Downham (1977)). The Akaike Criterion is based
on the computation of the log-likelihood function at the maximum likelihood
estimator for θ. Since it is well known that maximum likelihood estimators are
nonrobust for many important parametric models, we prefer to use general M-
estimators (Huber (1981)).

A general M-estimator is defined as the minimum with respect to θ of the
objective function

∑
i τ(zi, θ), for a given function τ , and satisfies the first order

condition ∑
i

ψ(zi, θ) = 0, (3.1)
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where ψ(z, θ) = ∂τ(z, θ)/∂θ. If we choose τ(z, θ) = − log pθ(z), where pθ is the
density of Pθ, the objective function equals minus the log-likelihood function, ψ is
the score function, and the corresponding M-estimator is the maximum likelihood
estimator. Also (2.1) defines an M-estimator for regression based on a special
function ψ which takes into account the structure of the regression model.

In order to derive the Akaike Criterion based on a general M-estimator, it
is helpful to look at such an estimator as a maximum likelihood estimator with
respect to an underlying density pθ(z) proportional to exp(−τ(z, θ)). (Of course,
this is true only when the function τ satisfies certain conditions but this does not
affect the result below.) Then, we can write the usual Akaike Criterion based on
this density and we obtain the following robust version

AICR ( p;αp, τ) = 2
∑

i

τ(zi, θ̂) + αp, (3.2)

where θ̂ is the general M-estimator defined by (3.1), αp = 2 tr(M−1Q),M =
−E[∂ψ/∂θ], Q = E[ψψT ]. This choice of αp follows from the asymptotic equiva-
lence of the Akaike Criterion given in Stone (1977).

If we apply (3.2) to the linear model of subsection 2.2 by using Huber’s
estimator (Huber (1981)), that is τ(z, β) = ρc((y − xTβ)/σ), where ρc(r) =
r2/2 if |r| ≤ c and ρc(r) = c |r| − c2/2 otherwise , (3.2) gives the robust cri-
terion for regression proposed by Ronchetti (1982, 1985) (cf. also Hampel,
Ronchetti, Rousseeuw and Stahel (1986), p. 366, formula (7.3.14)). In this
case αp = 2pE[ψ2

c ]/E[ψ′
c], where ψc(r) = ∂ρc(r)/∂r = max(−c,min(r, c)). By

a different way, Hampel (1983) obtained in this case the slightly different value
αp = p(E[ψ2

c ]/E[ψ′
c] + E[ψ2

c ]/(E[ψ′
c])

2) which differs little from 2p for the usual
values of c between 1.3 and 1.6.

Härdle (1987) investigated the properties of a selection criterion for regression
which is asymptotically equivalent to AICR and showed that it is asymptotically
optimal in the sense of Shibata (1981).

Hurvich and Tsai (1990) developed a small sample criterion for the selec-
tion of least absolute deviations regression models. Their criterion provides an
exactly unbiased estimator for the expected Kullback-Leibler information when
the underlying distribution of the errors is double exponential. This selection
procedures performs better than the usual normal-based Akaike criterion and
the robust criterion AICR based on τ(z, β) =

∣∣∣y − xTβ
∣∣∣.

Machado (1993) investigated the robustness properties of the Schwarz (1978)
criterion defined by the minimization of −2Lp + p log(n), where Lp is the log-
likelihood of the model with p parameters and n is the sample size. He proposed a



334 ELVEZIO RONCHETTI

robustification of this criterion which corresponds to (3.2) with the same penalty
as in the classical case, that is αp = p log(n).

3.2. Autoregressive models

Martin (1980) and Behrens (1991) adapted (3.2) to autoregressive models.
Their robust criterion is based on M-estimators φ̂ = (φ̂1, . . . , φ̂p)T for autore-
gressive models defined by

∑n
t=p+1 ρ(Zt−1,p, ût,p) = min, or by the first order

conditions
∑n

t=p+1 ψ(Zt−1,p, ût,p)Zt−1,p = 0, where Zt−1,p = (zt−1, . . . , zt−p)T ,
ût,p = (zt − φ̂TZt−1,p)/s, ψ(z, u) = ∂ρ(z, u)/∂u, and s is a scale estimate. Then,
the robust model selection criterion is defined by

RAIC(p) =
n∑

t=p+1

ρ(Zt−1,p, ût,p) + αp. (3.3)

Martin (1980) chooses αp = 2(p + 2)/(n − 1) and Behrens (1991) chooses essen-
tially α(p) = tr(M̃−1Q̃), where M̃ = E[ψ′

tZt−1,pZ
T
t−1,p] , Q̃ = E[ψ2

tZt−1,pZ
T
t−1,p]

, ψt(z, u) = ψ(Zt−1,p, ut,p), and ψ′(z, u) = ∂ψ(z, u)/∂u. A comparison of (3,2)
and (3.3) shows that Behrens’s choice of αp is the natural extension of AICR to
autoregressive models. Actually, she shows that this criterion is asymptotically
optimal in the sense of Shibata (1981). Martin (1980) presents a few examples
which show the performance of the robust criterion in the presence of a small
amount of outliers in the data.

4. Model Choice VIA Testing of Non-Nested Hypotheses

Assume under the hypothesis a model F 0
α (with density f0(z;α)) and under

the alternative a model F 1
β (with density f1(z;β)), where α and β are p x 1 and

q x 1 parameter vectors respectively. Cox (1961, 1962) proposed the following
statistic

UCox = n−1
∑

i

log

[
f0(zi; α̂)
f1(zi; β̂)

]
−

∫
log

[
f0(z; α̂)
f1(z;βα̂)

]
f0(z; α̂)dz, (4.1)

where βα̂ is the pseudo maximum likelihood estimator defined as the solution in
β of

∫ ∂
∂β log f1(z;β)f0(z; α̂)dz = 0.

Two modifications of UCox have been proposed by Atkinson (1970) (β̂ is replaced
by βα̂) and by White (1982) (βα̂ is replaced by β̂). In these three cases

√
nUCox

is asymptotically normal.
The tests based on these statistics are widely used as model selection criteria

in a variety of situations including, for instance, the statistical analysis of income
distributions. It is well known that they suffer from two major problems, namely
the lack of accuracy of the asymptotic approximation of the sample distribution
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of the test statistic (Atkinson (1970), Godfrey and Pesaran (1983) and the lack of
robustness against misspecifications of the underlying distributions Hall (1985)).
The following tables taken from Victoria-Feser (1997) illustrate these problems.
Table 2 compares the exact finite sample level of the Cox and Atkinson tests
(obtained by simulation) with the asymptotic approximation for samples of size
200. It is clear that the accuracy of the latter is poor. Table 3 shows the actual
levels (obtained by simulation) of the same tests in the presence of a contaminated
underlying distribution. The lack of robustness appears very clearly even for
small amounts of contamination. Similar results are found for other situations
and are reported in Victoria-Feser (1997).

Table 2. Asymptotic nominal level and finite sample level (%) of the Cox
and Atkinson test (Pareto against exponential)

As. Level Finite Sample (Cox) Finite Sample (Atk.)
1 1.2 2.0
3 2.0 2.4
5 2.7 2.9
10 4.1 4.5

Table 3. Actual levels (in %) of the Atkinson statistic with contamination
(Pareto against exponential)

Amount of Nominal levels (in %)
contamination 1% 3% 5% 10%

0% 2.1 3.1 3.5 5.2
1% 2.9 3.7 5.4 10.3
2% 5.2 7.3 8.9 10.9
3% 6.3 8.7 10.3 14.7
4% 9.4 12.5 14.5 18.3
5% 10.3 15.4 17.1 21.9
6% 13.1 18.5 22.5 27.6
7% 15.1 20.7 23.5 29.9

The nonrobustness of these tests can be explained easily by computing the
influence function of their level. This function describes the bias on the level of
a small amount of contamination in the underlying distribution of the observa-
tions (cf. Hampel, Ronchetti, Rousseeuw and Stahel (1986), Ch. 3). Victoria-
Feser (1997) shows that the level influence function of these tests is in general
unbounded. This explains the large bias which appears in Table 3. It is due to
two factors: the nonrobustness of the test statistic and the nonrobustness of the
parameter estimation ( unboundedness of the influence function of the maximum
likelihood estimator α̂).
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Since Cox’s test can be viewed as a parametric scores test for a compound
model, Victoria-Feser (1997) derived a robust version by using results on robust
tests for general parametric models obtained by Heritier and Ronchetti (1994).
Table 4 shows the remarkable stability of the robust test under contamination.
As a side effect, the robust version clearly also improve the accuracy of the
asymptotic approximation of the sample distribution.

Table 4. Actual levels (in %) of the robust Atkinson statistic with contami-
nation (Pareto against exponential)

Amount of Nominal levels
contamination 1% 3% 5% 10%

0% 1.3 3.5 5.5 10.2
1% 1.8 3.1 5.3 10.3
2% 0.6 2.5 4.6 10.1
3% 1.2 3.3 5.1 10.3
4% 1.7 4.2 6.0 12.6
5% 0.5 2.3 4.5 10.3
6% 1.4 3.6 5.4 10.7
7% 0.9 3.2 5.4 9.4

5. Conclusions

In this review we discussed the robustness issue in the selection of a statistical
model and summarized the basic concepts which can be applied in order to ro-
bustify the classical selection procedures. Much work remains to be done. Three
main directions appear to be important. The first one concerns robust model
selection in time series. Some results for autoregressive models are discussed in
subsection 3.2. It seems important to develop a robust selection procedure for
general ARMA models. The second one is related to the use of cross-validation
and other resampling techniques as model selection procedures. It appears im-
portant to integrate the robustness aspect in this type of procedures. A first step
in the framework of linear models is given by Ronchetti, Field and Blanchard
(1997) who robustify a least squares selection procedure based on cross-validation
proposed by Shao (1993). The third one is an extensive numerical comparison
by Monte Carlo of different robust model selection procedures. Results for a
few special situations can be found in Härdle (1987), Hurvich and Tsai (1990),
Behrens (1991), and Machado (1993).

Acknowledgements

The author would like to thank the Editor, the Associate Editor, and two
Referees for their helpful comments.



ROBUSTNESS ASPECTS OF MODEL CHOICE 337

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.

In 2nd International Symposium on Information Theory (Edited by B. N. Petrov and F.
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Härdle, W. (1987). An effective selection of regression variables when the error distribution is

incorrectly specified. Ann. Inst. Statist. Math. 39, 533-548.

Heritier, S. and Ronchetti, E. (1994). Robust bounded-influence tests in general parametric

models. J. Amer. Statist. Assoc. 89, 897-904.
Huber, P. J. (1981). Robust Statistics. John Wiley and Sons, New York.

Hurvich, C. M. and Tsai, C. L. (1990). Model selection for least absolute deviations regression

in small samples. Statist. Probab. Lett. 9, 259-265.

Koenker, R. and Bassett, G. Jr. (1978). Regression quantiles. Econometrica 46, 33-50.
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