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Abstract: We consider the variable selection problem in regression models when

the number of covariates is allowed to increase with the sample size. An approach

of Zheng and Loh (1995) for the fixed design situation is extended to the case

of random covariates. This yields a unified consistent selection criterion for both

random and fixed covariates. By using t-statistics to order the covariates, the

method requires much less computation than an all-subsets search. An application

to autoregressive model selection with increasing order is given. The theory is

supported by some simulation results.
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1. Introduction

Consider the linear regression model

yi = xi,1β1 + · · · + xi,MnβMn + εi, i = 1, . . . , n (1)

which relates a response variable y to a set of covariates {x1, . . . , xMn}. A fre-
quently encountered problem is the selection of a subset of the covariates to keep
in the final model. While it is important not to omit any true covariates (i.e.,
those whose population regression coefficients are nonzero), it is well known that
inclusion of non-true or nuisance covariates generally reduces model prediction
accuracy. Another consequence of selecting only the true covariates is that the
complexity of the final regression model is reduced. This is especially desirable
when the total number Mn of available covariates is large. A good general dis-
cussion of the effect of variable selection on parameter estimation and prediction
is given in Miller (1990). Let

Γ = {i | βi �= 0, 1 ≤ i ≤ Mn} (2)

be the index set of the true covariates (also called the true model). Then the
variable selection problem is equivalent to estimating Γ, which in this article is
assumed to be independent of n.
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When the covariates are assumed to be nonrandom, many selection criteria
have been proposed and studied. These include the FPE criterion (Thomp-
son (1978), Shibata (1984), Zhang (1992)), cross-validation (Burman (1989),
Zhang (1993), Shao (1993)) and bootstrap methods (Efron (1983), Zheng and
Loh (1994)). Although the FPE criterion is inconsistent, it has the advantage
(compared to the resampling methods) of being easy to use and fast to compute.
A class of consistent criteria that retain the simple form of the FPE is developed
in Zheng and Loh (1995).

In this paper, we consider the variable selection problem when the covariates
are random. Random covariates arise in many regression applications where the
values of the covariates can only be observed and are not controllable. The
importance of variable selection in this case is clearly recognized by Breiman
and Spector (1992), who argue that models with random covariates typically
have substantially higher prediction errors than the fixed design counterparts
and hence more is gained by variable selection. Other distinctions between the
two different models can be found in Thompson (1978).

The traditionally recommended criterion for random design models is the
Sp method (Hocking (1976), Thompson (1978), Linhart and Zucchini (1986)).
Let Θ be the set of the indices of variables in a particular model. Then the Sp

method selects the model Γ̂Sp which minimizes

Sp(Θ) = (n − |Θ|)−1(n − |Θ| − 2)−1RSS(Θ)

over all submodels Θ ⊆ Ω = {1, . . . ,Mn}. Here |Θ| is the cardinality of Θ and
RSS(Θ) is the residual sum of squares for model Θ fitted by the least squares
method. The justification for the Sp criterion is that, under joint normality
of covariates and the regression error, n−1(n − 2)(n + 1)Sp(Θ) is an unbiased
estimator of the expected square prediction error for model Θ. In spite of this,
the estimator Γ̂Sp is generally not consistent for the true model Γ in the sense
that

lim
n→∞P (Γ̂Sp = Γ) �= 1 (3)

(see Breiman and Freedman (1983) for a different conclusion under the setting
when the true model contains infinitely many covariates). Although certain
statisticians are aware of this deficiency of the Sp criterion, a rigorous proof
has not been given in the literature. We give a sketch of it in the Appendix.
The proof also shows that the Sp criterion is able to eliminate underfitting but
not overfitting models. A similar conclusion can be drawn for the FPE criterion,
which estimates the true model by minimizing

FPE(Θ) = RSS(Θ) + λ|Θ|σ̂2, Θ ⊆ Ω, (4)
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where λ is a positive constant and

σ̂2 = (n − Mn)−1RSS(Ω) (5)

is the usual estimate of the error variance σ2 based on the full model.
To search for a viable solution, we study the class of criteria proposed in

Zheng and Loh (1995) and show that they remain consistent. This provides a
unified consistent variable selection approach to both the fixed and the random
design situations. Our method is developed in Section 2, where we first consider
the simple situation when the covariates are pre-ordered such that the true co-
variates are indexed before the nuisance covariates. It is then generalized to the
unordered case by use of t-statistics to order the covariates. In both instances,
we allow Mn to grow with the sample size n. This flexibility is important since
in many applications the number of covariates is usually not small relative to n;
(see e.g., Huber (1981) and Bickel and Freedman (1983)).

We apply our method to estimation of the true dimension of an autoregres-
sive (AR) process in Section 3. Our results permit the selection process to include
increasing-dimensional AR models. The latter is useful in practice because the
true dimension is often unknown. Some simulation results to support the asymp-
totic theory are reported in the last section, followed by an appendix containing
all the technical details.

2. A Class of Consistent Criteria

The inconsistency of the Sp and FPE criteria is not unusual. A similar
phenomenon also exists for the FPE selection criterion in fixed design regression
(Zhang 1992). As argued by Zheng and Loh (1995), the major source of the
FPE’s deficiency lies in the insufficient amount of penalty it places on λ|Θ|σ̂2 for
model complexity. They show that replacement of λ|Θ|σ̂2 in (4) by a penalty
term of the form hn(|Θ|)σ̂2 leads to a consistent selection criterion.

We now extend this approach to regression model (1) with high dimensional
random covariates. Although modification of the Sp criterion could be an alter-
native, the current approach has the advantage of providing a unified variable
selection criterion that is consistent for both random and fixed design cases. An-
other feature of our method is that, by using the regression t-statistics to order
the covariates, one only needs to search Mn instead of all 2Mn subsets of covari-
ates for the true model. The computational savings are substantial when there
are large numbers of covariates.

To fix some additional notation, rewrite model (1) as yi = x′
iβ + εi, i =

1, . . . , n, where x′
i = (xi,1, . . . , xi,Mn) and β′ = (β1, . . . , βMn), the dependence

on n being understood. For any submodel Θ let βΘ be the sub-vector of β

with components βk, k ∈ Θ. Similarly, we let xi,Θ and XΘ = (x1,Θ, . . . ,xn,Θ)′
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denote the corresponding ith design sub-vector and design matrix respectively.
Note that the projection matrix PΘ = XΘ(X′

ΘXΘ)−X′
Θ is invariant for any

generalized inverse (X′
ΘXΘ)−. Throughout, we drop the subscript Θ whenever

Θ = Ω, the full model.
The following minimum assumptions will be in effect in this section.

(A1) x1, . . . ,xn are i.i.d. with finite second moment and are independent of ε =
(ε1, . . . , εn)′, which are i.i.d. with mean 0 and variance σ2.

(A2) E(x1x′
1) is nonsingular. (This implies that E(x1,Θx′

1,Θ) is nonsingular for
every Θ.)

Condition (A2) is necessary to ensure that β uniquely minimizes the expected
square error function f(b) = E(yi − x′

ib)2.

2.1. The pre-ordered case

Consider first the special case when the covariates are pre-ordered such that
the true covariates are indexed before the nuisance covariates. That is, the true
β in (1) takes the form β′ = (β1, . . . , βk0 , 0, . . . , 0) for some k0 independent of
n and βi �= 0, i ≤ k0. Then searching for the true model Γ defined by (2) is
equivalent to estimating the unknown k0. For ease of notation, we shall denote
Θk = {1, . . . , k} and Θ0 = ∅. Note that |Θk| = k. We also write RSSk for
RSS(Θk) and Pk for PΘk

.
Define

k̂0 = arg min
0≤k≤Mn

{RSSk + hn(k)σ̂2}, (6)

where σ̂2 is defined in (5) and hn(k) is a nonnegative function.
We impose the following conditions on hn and Mn.

(B1) Mn/n → 0 as n → ∞.
(B2) hn(k) is nondecreasing in k with hn(0) = 0 and lim infn hn(k+1)/hn(k) > 1

for any k ≥ 1.
(B3) For each k ≥ 1, hn(k)/Mn → ∞ as n → ∞.
(B4) For each k ≥ 1, n−1hn(k) → 0 as n → ∞.

Theorem 1. Under conditions (A1), (A2) and (B1)–(B4), k̂0 →P k0 as n → ∞.

Remark.
1. The two most important conditions here are (B3) and (B4), which act in op-

posite directions. The appropriate growth rate of hn(k) is between Mn and n.
Thus the number of covariates plays a critical role, in the sense that a heav-
ier penalty function hn is required when there are many nuisance covariates.
Note also that the existence of hn satisfying (B3) and (B4) is guaranteed by
(B1).
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2. As a direct application of Theorem 1, we have that the BIC criterion (with
hn(k) = k log n) is consistent if Mn = o(log n). Furthermore, if Mn =
o(log log n) then setting hn(k) = k log log n in (6) leads to consistency of the
φ criterion of Hannan and Quinn (1979). On the other hand, if Mn is large
compared to n, the performance of these two criteria can be inadequate and
a heavier penalty is called for; see the simulation results in Section 4.

3. Because Mn may increase with n, the assumptions of Theorem 1 are not suffi-
cient for the asymptotic existence of (X′X)−1 unless some additional moment
conditions are imposed (see Section 2.2). However, it is always true that
tr(P) = rank(X) ≤ Mn a.s. On the other hand, since X′

k0
Xk0 has fixed di-

mension k0, it is of full rank for large n a.s. Thus Theorem 1 allows for the
presence of collinear nuisance covariates.

2.2. The general case

For the general case when the regression covariates are not pre-ordered, a
natural approach is to first order them consistently and then apply criterion (6).
An appealing property of this approach is that it involves much less computation
than an all-subsets search.

Let β̂ = (β̂1, . . . , β̂Mn)′ be the least squares estimators based on the full
model and let

Ti = σ̂−1β̂i{ith diagonal element of (X′X)−1}−1/2, i = 1, . . . ,Mn,

be the corresponding t-statistics. We assume the following conditions, which
imply that with probability tending to one, (X′X)−1 exists and therefore β̂ is
unique. Similar conditions are used by Mammen (1993) to study the asymp-
totic behavior of bootstrap linear contrasts in increasing-dimension linear mod-
els.
(C1) The minimum eigenvalue κn of E(x1x′

1) is bounded away from zero, i.e.,
κn ≥ κ > 0 for some κ > 0.

(C2) For some η > 0, n−1M1+η
n → 0 and

sup
n

sup
‖d‖=1

E|d′[E(x1x′
1)]

−1/2x1|4[2/η] < ∞, (7)

where [2/η] is the smallest integer greater than or equal to 2/η.
Note that the smaller Mn is, the weaker the moment condition (7) becomes.

Further, if x1 has a zero mean normal distribution as assumed in Thompson
(1978), then d′[E(x1x′

1)]
−1/2x1 is a standard normal random variable and η can

be chosen to be arbitrarily small.
The proposed variable selection procedure goes as follows:



316 XIAODONG ZHENG AND WEI-YIN LOH

Step 1. Sort the covariates in order of decreasing absolute values of the t-
statistics:

|Ti1 | ≥ |Ti2 | ≥ · · · ≥ |TiMn
|.

Step 2. Apply criterion (6) to the ordered covariates i1, i2, . . . , iMn . That is,
estimate the true model Γ by

Γ̂ = {i1, . . . , ik̂∗}, (8)

where k̂∗ = arg min0≤k≤Mn{RSS∗(k)+hn(k)σ̂2} and RSS∗(k) is the residual sum
of squares for model {i1, . . . , ik}.

The ordering procedure using t-statistics was proposed, under the name
“tK,i-directed search”, in Daniel and Wood (1980), Chapter 6 as a possible tool
for reducing computation in stepwise regression. However, no theoretical justifi-
cation for consistency was given there. For a discussion of model selection after
ordering of covariates by t-tests, see An and Gu (1985). The following theorem
is a generalization of a theorem of Zheng and Loh (1995) from the fixed design
case with a fixed number of covariates to the random design situation with the
number of covariates allowed to depend on n.

Theorem 2. Suppose conditions (C1)–(C2) and the assumptions of Theorem 1
hold. Then

lim
n→∞P (min

i∈Γ
|Ti| > max

i�∈Γ
|Ti|) = 1 (9)

and criterion (8) is consistent for Γ, i.e., limn P (Γ̂ = Γ) = 1.

3. Autoregressive Model Selection

The proposed criterion in Section 2.1 can be applied to model selection in
time series. We shall discuss this application in the framework of autoregressive
processes.

Let {yi, 1−Mn ≤ i ≤ n} be an autoregressive process of order Mn (AR(Mn))
satisfying

yi = β1yi−1 + · · · + βMnyi−Mn + εi, i = 1, . . . , n, (10)

where εi are i.i.d. with mean zero and variance σ2. Assume that the true model
is AR(k0), that is, βk0 �= 0, βj = 0, j > k0 and k0 is independent of n.

The literature on the subject of estimating k0 is extensive. See, for example,
Akaike (1974), Hannan and Quinn (1979), Hannan (1980), Rissanen (1986) and
Wei (1992). Choi (1992) gives a comprehensive survey. All existing results require
a good guess of an upper bound M ≥ k0 and a search for the true model over
AR(p), 0 ≤ p ≤ M . They also treat M as fixed. This formulation is not very
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practical, however. Since k0 is unknown, it is conceivable that the upper bound
should be larger than a small fraction of n. To guarantee that M ≥ k0, it is
therefore necessary and more natural to consider the problem in such a way that
M = Mn may increase with n. We give a consistent theory for this case here.
The result depends on the study of increasing-dimensional AR models.

Rewrite model (10) as yi = x′
iβ + εi, where x′

i = (yi−1, . . . , yi−Mn). Then
all the previous notation applies. For instance, k̂0 is defined in (6), where RSSk

is the residual sum of squares of the AR(k) model fitted by the least-squares
method. To avoid some technicalities, we also assume that the process {yi} is
stationary and normally distributed with zero mean. Stationarity implies that
x1, . . . ,xn have the same distribution, that the characteristic equation in z

h(z) = 1 −
k0∑

j=1

βjz
j = 0 (11)

has all k0 roots outside the unit circle in the complex plane, and that the auto-
correlation ρk−j = ρj−k between yk and yj satisfies

|ρk−j| ≤ Ca|k−j| (12)

for some constants C > 0 and 0 < a < 1 depending only on k0 and βk0
(Box and

Jenkins (1976), Section 3.2). In addition, we require that
(B1’) M2

n/n → 0.
This condition ensures that the Mn × Mn matrix n−1X′X is a good estimate of
its expectation (c.f. Lemma 1 below). It may be possible to weaken this to a
condition like (C2) in Section 2.2 using graph theory (Mammen (1993), Lemma
1). Such an improvement is quite minor however and in practice a moderately
large value Mn satisfying (B1’) should provide a satisfactory upper bound on the
true model dimension.

Theorem 3. Under conditions (B1’) and (B2)–(B4) in Section 2.1, k̂0 →P k0.

4. A Simulation Study

To compare the finite-sample performance of the variable selection proce-
dures, we carried out a simulation experiment with 1,000 trials and sample size
n = 300 per trial.

For ordinary regression, we used the models (i) Γ = {2, 4, 5}, (ii) Γ = {k2; k =
1, . . . , 5} and (iii) Γ = {2k + 7; k = 3, . . . , 12}, with Mn = 5, 30 and 60, respec-
tively. Each βk, k ∈ Γ, was set equal to 1. The covariates were generated by
a Mn-variate zero mean normal distribution with the (i, j)th entry of the co-
variance matrix being 2−|i−j|. The distribution of εi was standard normal. For
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criterion (8), we used hn(k) = kn0.3 for Mn = 5 and hn(k) = kn0.7 for Mn = 30
and 60. For the latter two values of Mn, the covariates were pre-ordered by
their t-statistics for all four selection criteria because an all-subsets search was
impractical. The simulation was coded in FORTRAN using a singular value
decomposition subroutine and carried out on a SUN SPARCstation 20.

For AR model selection, we tested two cases: Mn = 5 and 30. For Mn = 5,
the true model was AR(1): yi = −0.3yi−1 + εi, and hn(k) = kn0.3. For Mn = 30,
the true model was AR(10): yi = 0.2yi−10 + εi, and hn(k) = kn0.7. For both
cases, εi were i.i.d. N(0,1). Initial values yt, t = 1 − Mn, . . . , 0, were set to zero.

Table 1. Estimated probabilities of correct model selection based on 1,000
trials; n = 300. The proposed criterion (8) is given in the last column of the
table.

Mn True model Γ Sp AIC BIC Proposed
5 {2, 4, 5} 0.533 0.502 0.916 0.971

30 {k2, k = 1, . . . , 5} 0.377 0.365 0.754 0.929
60 {2k + 7, k = 3, . . . , 12} 0.159 0.173 0.362 0.892
Est. max. standard error 0.016 0.016 0.015 0.010

Table 1 summarizes the results for ordinary regression, which include those
for the Sp, the AIC (i.e., the FPE with λ = 2) and the BIC criteria. The Sp and
AIC criteria have fairly low probabilities of correct model selection. The BIC
criterion performs better for small and moderate values of Mn, but it is poor
when there are many nuisance covariates (Mn = 60). This shows the necessity
for placing a heavier penalty on model complexity. The best procedure is clearly
our proposed criterion (8).

Table 2. Estimated probabilities of correct AR model selection based on 1,000
trials; the proposed criterion (6) is given in the last column of the table.

Mn AIC BIC Proposed
5 0.554 0.898 0.956

30 0.296 0.790 0.914
Est. max. S.E. 0.016 0.012 0.009

Table 2 gives the corresponding results for AR model selection. Again the
proposed method is best.
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Appendix

Proof of (3).
We only give an outline. The notation defined in Section 2 is used. As-

sume conditions (A1) and (A2) and that Mn = M is independent of n. Then
asymptotic expansions give

Sp(Θ) =

{
n−2ε′ε + n−2{2σ2(|Θ| + 2) − ε′PΘε} + oP (n−2), Θ ⊇ Γ
n−2ε′ε + n−1β′ΣΘβ + oP (n−1), Θ �⊇ Γ.

(13)

Here ΣΘ = CΘdiag(0,ΨΘ)C′
Θ, where

ΨΘ = E(x1,Θcx′
1,Θc) − E(x1,Θcx′

1,Θ)[E(x1,Θx′
1,Θ)]−1E(x1,Θx′

1,Θc)

is positive definite (Seber (1984), Exercise 2.20), Θc is the complement of Θ, and
CΘ is a permutation matrix such that x1 = CΘ(x′

1,Θ,x′
1,Θc)′ and C−1

Θ = C′
Θ

(see, e.g., Golub and Van Loan (1989), Section 3.4.1).
For each Θ �⊇ Γ, we have β′ΣΘβ = β′

ΘcΨΘβΘc > 0 and ε′PΘε = OP (1).
Consequently, limn P (Γ̂Sp = Θ) = 0 for every Θ �⊇ Γ, i.e., the Sp criterion
eliminates underfitting models Θ �⊇ Γ.

On the other hand, if the true model is not the full model one can choose a
Θ ⊃ Γ. Suppose additionally that the εi are normally distributed. Then

lim
n

P (Γ̂Sp = Γ) ≤ lim
n

P [σ−2ε′(PΘ − PΓ)ε ≤ 2(|Θ| − |Γ|)]
= P [χ2

|Θ|−|Γ| ≤ 2(|Θ| − |Γ|)] < 1.

This proves the inconsistency of the Sp criterion when Mn does not depend on
n and the εi are normal. The general case when Mn may grow with n follows
similarly.

Proof of Theorem 1.

Define k̃0 = arg mink0≤k≤Mn{RSSk + hn(k)σ̂2}. The proof proceeds in two
steps.
1. k̃0 →P k0. For k ≥ k0, the residual sum of squares reduces to RSSk = ε′ε −

ε′Pkε. Condition (B1) implies that E{ε′Pε/(n − Mn)} ≤ σ2Mn/(n − Mn) =
o(1) and hence

σ̂2 = ε′εn−1(1 − Mn/n)−1 − ε′Pε/(n − Mn) = σ2 + oP (1). (14)

By condition (B2) and the fact that (PMn − Pk) is idempotent a.s., we have
for k > k0,

RSSk + hn(k)σ̂2 − RSSk0 − hn(k0)σ̂2

≥ σ̂2[hn(k0 + 1) − hn(k0)] − ε′(PMn − Pk0)ε.
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Therefore,

1 − P (k̃0 =k0)≤1−P{min
k>k0

[RSSk+hn(k)σ̂2−RSSk0−hn(k0)σ̂2] > 0}
≤ P [ε′(PMn − Pk0)ε≥ σ̂2{hn(k0 + 1)−hn(k0)}]
≤ P [ε′(PMn−Pk0)ε > {hn(k0 + 1)−hn(k0)}σ2/2]+P (|σ̂2−σ2|≥σ2/2)

≤ 2[hn(k0+1)−hn(k0)]−1σ−2E{ε′(PMn−Pk0)ε}+o(1) (15)

≤ 2[1 − hn(k0)/hn(k0 + 1)]−1[Mn/hn(k0 + 1)] + o(1)

→ 0, (16)

where (15) follows from the Markov inequality and (14), and (16) is a conse-
quence of conditions (B2) and (B3).

2. k̂0 − k̃0 = oP (1). Using RSSj = ε′(I−Pj)ε+β′X′(I−Pj)Xβ +2ε′(I−Pj)Xβ

and Pk0Xβ = Xk0βk0
= Xβ a.s., we get

P (|k̂0 − k̃0| �= 0) ≤
k0−1∑
j=0

P (k̂0 = j)

≤
k0−1∑
j=0

P{RSSj + hn(j)σ̂2 ≤ RSSk0 + hn(k0)σ̂2}

≤
k0−1∑
j=0

P{−2ε′(I − Pj)Xβ ≥ ‖(I − Pj)Xβ‖2 − hn(k0)σ̂2}

≤
k0−1∑
j=0

P{−2ε′(I − Pj)Xβ

≥ ‖(I − Pj)Xβ‖2 − hn(k0)(3/2)σ2} + k0P (|σ̂2 − σ2| > σ2/2)

=
k0−1∑
j=0

P{−2‖(I − Pj)Xβ‖−1ε′(I − Pj)Xβ

≥ ‖(I − Pj)Xβ‖ − (3/2)hn(k0)σ2‖(I − Pj)Xβ‖−1} + o(1)

≤
k0−1∑
j=0

P{−2‖(I − Pj)Xβ‖−1ε′(I − Pj)Xβ

≥ (nδ)1/2 − (3/2)hn(k0)σ2(nδ)−1/2}+
k0−1∑
j=0

P (‖(I −Pj)Xβ‖2 < nδ)+o(1)

=
k0−1∑
j=0

Rj1 +
k0−1∑
j=0

Rj2 + o(1)

for any constant δ > 0.
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It remains to show that Rj1 and Rj2 both converge to zero. By the Markov
inequality and condition (B4),

Rj1 ≤ 4(nδ)−1[1 − 3σ2hn(k0)/(2nδ)]−2

E{‖(I − Pj)Xβ‖−2ε(I − Pj)Xββ′X(I − Pj)ε}
= 4σ2(nδ)−1[1 − 3σ2hn(k0)/(2nδ)]−2

E{‖(I − Pj)Xβ‖−2tr(I −Pj)Xββ′X′(I − Pj)}
= 4σ2(nδ)−1[1 − 3σ2hn(k0)/(2nδ)]−2

→ 0.

To handle Rj2, note that k0 and j are independent of n. Thus

n−1‖(I − Pj)Xβ‖2 = n−1‖(I − Pj)Xk0βk0
‖2

= β′
k0
{(n−1X′

k0
Xk0) − n−1X′

k0
Xj[n(X′

jXj)−]n−1X′
jXk0}βk0

= β′
k0

Ξjβk0
+ oP (1),

where, for j < k0,

Ξj = E(xk0x
′
k0

) − E(xk0x
′
j)[E(xjx′

j)]
−1E(xjx′

k0
).

Taking δ = (1/2)minj<k0 β′
k0

Ξjβk0
, which is necessarily positive (see the proof

of (3)), leads to P (‖(I − Pj)Xβ‖2 ≥ nδ) → 1 for j < k0. This implies
Rj2 = o(1) and hence completes the proof.

Proof of Theorem 2.

It suffices to prove (9). Let ξ denote the maximum eigenvalue of A′A and
let ‖A‖ = ξ1/2 denote the matrix 2-norm of A. Further, let ei be the Mn-
dimensional unit vector with its ith component equal to 1. By Lemma 1 of
Mammen (1993) and condition (C2), ‖B‖ = oP (1), where

B = [E(x1x′
1)]

−1/2(n−1X′X)[E(x1x′
1)]

−1/2 − I.

Therefore by Theorem 10.3.1 of Campbell and Meyer (1979), with probability
tending to one, B+I and consequently X′X are invertible. Without loss of gener-
ality we therefore assume that (X′X)−1 exists. Write Ti = σ̂−1β̂i[e′i(X

′X)−1ei]−1/2

and β̂ = (X′X)−1X′y = β + (X′X)−1X′ε.
If i �∈ Γ, then βi = 0 and β̂i = e′i(X

′X)−1X′ε. By first conditioning on X,
we see that E(σ̂Ti) = 0 and

E(σ̂2T 2
i ) = E{[e′i(X′X)−1ei]−1E[ε′X(X′X)−1eie′i(X

′X)−1X′ε|X]}
= σ2. (17)
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Therefore by condition (C2),

P [max
i�∈Γ

σ̂|Ti| ≥ n
1

2(1+η) ] ≤
∑
i�∈Γ

P (σ̂|Ti| ≥ n
1

2(1+η) )

≤
∑
i�∈Γ

E(σ̂2T 2
i )n−1/(1+η) ≤ σ2Mnn−1/(1+η) = o(1). (18)

On the other hand, if i ∈ Γ,

σ̂Ti = βi{e′i(X′X)−1ei}−1/2 + e′i(X
′X)−1X′ε{e′i(X′X)−1ei}−1/2

= βi{e′i(X′X)−1ei}−1/2 + OP (1), (19)

by (17). Since ‖B‖ = oP (1), we have

e′i(n
−1X′X)−1ei = e′i{E(x1x′

1) − [E(x1x′
1) − n−1X′X]}−1ei

= e′i[E(x1x′
1)]

−1/2(I + B)−1[E(x1x′
1)]

−1/2ei

= e′i[E(x1x′
1)]

−1/2(I +
∑
j≥1

(−1)jBj)[E(x1x′
1)]

−1/2ei

= e′i[E(x1x′
1)]

−1ei + Ri,

where (c.f. Mammen (1993) or Golub and Van Loan (1989), Section 2.3)

|Ri| =
∣∣∣e′i[E(x1x′

1)]
−1/2

∑
j≥1

(−1)jBj [E(x1x′
1)]

−1/2ei

∣∣∣
≤ ‖[E(x1x′

1)]
−1/2‖2 · ‖

∑
j≥1

Bj‖

≤ ‖[E(x1x′
1)]

−1/2‖2 · ‖B‖(1 − ‖B‖)−1 = oP (1)

by (C1). Equality (19) implies that, for i ∈ Γ,

σ̂n−1/2Ti = βi{e′i[E(x1x′
1)]

−1ei + oP (1)}−1/2 + oP (1)
= βi{e′i[E(x1x′

1)]
−1ei}−1/2 + oP (1).

Note that the first term on the right side of the last equality is bounded away
from zero because by condition (C1), e′i[E(x1x′

1)]
−1ei ≤ κ−1 < ∞. Since Γ is

independent of n, it follows that

P (min
i∈Γ

σ̂|Ti| ≥ n
1

2(1+η) ) → 1, η > 0.

This and (18) yield (9).

Proof of Theorem 3.

The method used to prove Theorem 1 still works here with some technical
modifications to accommodate dependency among observations. We follow the
two steps there with the same definition of k̃0.
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1. k̃0 →P k0. As in the proof of Theorem 1, (c.f. the inequality before (15)), we
have

1−P (k̃0 = k0)≤P [ε′PMnε>{hn(k0 + 1)−hn(k0)}σ2/2]+P (|σ̂2−σ2|≥σ2/2),

which converges to zero if we can show that (c.f. (14))

ε′PMnε = Op(Mn). (20)

Write the autocovariance matrix E(x1x′
1) = ΣMn = γ0(σij)1≤i,j≤Mn where

γ0 = var(y1) and σij = ρ|i−j| is the autocorrelation defined in (12). It is
known that ΣMn is nonsingular for all 1 ≤ Mn ≤ n (Hannan (1973)). Let
B = Σ−1/2

Mn
(n−1X′X)Σ−1/2

Mn
− I. From Lemma 1 below, ‖B‖ = oP (1).

Now (20) becomes

ε′PMnε = n−1(Σ−1/2
Mn

X′ε)′(I + B)−1(Σ−1/2
Mn

X′ε)

= n−1(Σ−1/2
Mn

X′ε)′{I +
∑
j≥1

(−B)j}(Σ−1/2
Mn

X′ε)

= n−1‖Σ−1/2
Mn

X′ε‖2 + R,

where (c.f. the proof of Theorem 2)

|R| ≤ n−1‖Σ−1/2
Mn

X′ε‖2‖B‖(1 − ‖B‖)−1 = n−1‖Σ−1/2
Mn

X′ε‖2 · oP (1).

It thus suffices to establish that

n−1‖Σ−1/2
Mn

X′ε‖2 = OP (Mn). (21)

Recall that εi is independent of {yi−k, k ≥ 1} and hence of x′
i = (yi−1, . . .,

yi−Mn) for a stationary AR(k0) process, and that each yj can be written as a
linear combination of {εt, t ≤ j} (Box and Jenkins (1976)). Therefore

E(X′εε′X) = E
{ n∑

i=1

xiεi

n∑
j=1

εjx′
j

}
=

n∑
i=1

E(ε2
i xix′

i) = nσ2ΣMn ,

where each E(xiεiεjx′
j) = 0 for i �= j by first conditioning on {εt, t ≤

max(i, j) − 1}. The expectation of the left hand side of (21) is thus

n−1E{ε′XΣ−1
Mn

X′ε} = n−1tr{Σ−1
Mn

E[X′εε′X]} = σ2Mn.

This proves (21).
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2. k̂0 − k̃0 = oP (1). As in Step 2 of the proof of Theorem 1,

P (|k̂0 − k̃0| �= 0) ≤
k0−1∑
j=0

P{n−1RSSj − n−1RSSk0 ≤ n−1[hn(k0) − hn(j)]σ̂2}.

(22)
It follows from Potscher (1989), proof of Lemma 3.3 that for each j < k0,

lim inf
n

{n−1RSSj − n−1RSSk0} > 0, a.s.

Condition (B4) and the fact that σ̂2 →P σ2 imply that (22) converges to zero.

Lemma 1. Suppose that the conditions of Theorem 3 hold. Then
1. The minimum eigenvalue λMn of ΣMn satisfies λMn ≥ λ > 0 for some constant

λ independent of n.
2. ‖B‖ = oP (1).

Proof. The proof makes use of Toeplitz forms in Grenander and Szego (1984),
Chapters 5 and 10 and is available from the first author.
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