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Abstract: After a brief review of several information-based and prediction-based

model selection criteria, we extend Rissanen’s accumulated prediction error crite-

rion and Wei’s Fisher information criterion (FIC) from linear to general stochastic

regression models, which include ARMA models and nonlinear ARX models in time

series analysis as special cases. Strong consistency of these model selection criteria

is established under certain conditions and the FIC is also shown to be an asymp-

totic approximation to some Bayes procedure. The special case of ARMA models

is then studied in detail, and theoretical analysis and simulation results show that

the FIC compares favorably with other procedures in the literature.
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1. Introduction

There is a large literature on the determination of the orders p and q of
ARMA models

yt = a1yt−1 + · · · + apyt−p + εt + b1εt−1 + · · · + bqεt−q, (1.1)

in which the εt are unobservable random disturbances that are assumed to form a
martingale difference sequence satisfying certain assumptions. The recent mono-
graph by Choi (1992) gives a comprehensive survey and an extensive bibliog-
raphy on the subject. As pointed out by Choi, representative works include
Anderson’s (1963) multiple hypothesis testing, Akaike’s (1969, 1974) final pre-
diction error (FPE) and information criterion (AIC), the Box-Jenkins (1976)
pattern identification methods based on the autocorrelation and partial autocor-
relation functions, Parzen’s (1975) criterion based on the autoregression transfer
function (CAT), the Bayesian information criterion (BIC) of Akaike (1977) and
Schwarz (1978), the penalty function methods of Hannan and Quinn (1979), and
Rissanen’s (1986a,b) minimum description length and predictive least squares
principles.
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In the case q = 0, (1.1) is a special case of stochastic regression models of
the form

yt = θTxt + εt, (1.2)

in which {εt} is a martingale difference sequence with respect to an increasing
sequence of σ-fields Ft generated by the current and past observations and xt

is Ft−1-measurable. The parameter vector θ belongs to Rκ with unspecified
dimension κ that has to be estimated from the data. Wei (1992) recently analyzed
Rissanen’s predictive least squares criterion in the stochastic regression model
(1.2) under the weakest assumptions to date on the regressors xt, and showed that
predictive least squares can be approximated by the residual sum of squares plus
a penalty term that involves log det (

∑n
i=1 xixT

i ). He called this approximation
the FIC (Fisher information criterion) and discussed its advantages as a model
selection criterion.

In Section 2 we derive the FIC as an asymptotic approximation to a Bayes
procedure for estimating κ. We also extend the FIC and the predictive least
squares criterion from (1.2) to more general stochastic regression models that
include nonlinear models

yt = gt(θ) + εt, (1.3)

where θ is an unknown parameter and gt(θ) is Ft−1-measurable, and prove their
strong consistency under certain conditions. The general stochastic regression
model (1.3) includes as special cases both (1.2), with gt(θ) = θTxt, and (1.1), with
θ = (a1, . . . , ap, b1, . . . , bq)T and gt(θ) = (yt−1, . . . , yt−p, εt−1(θ), . . . , εt−q(θ))θ for
t > max( p, q), where εi(θ) = yi − (yi−1, . . . , yi−p , εi−1(θ), . . . , εi−q(θ))θ.

In Section 3 we consider the ARMA model (1.1) and discuss certain basic
issues concerning order and parameter estimation. Some asymptotic results and
simulation studies are presented in this connection. They shed new light on the
intricacies of order estimation in ARMA models and illustrate the usefulness of
the concepts of Kullback-Leibler information and prediction errors, which have
also played basic roles in Akaike’s (1969, 1974) seminal work on model selection
methodology. Some simulation studies are presented in Section 4.

2. Prediction- and Information-Based Model Selection Criteria in
General Stochastic Regression Models

Consider the linear stochastic regression model (1.2). If the parameter vector
θ is known, then the minimum variance predictor of yn+1 given the current and
past observations xi, yi(i ≤ n) is θTxn+1, and the optimal prediction error is εn+1.
When θ is unknown but its dimension κ is known, the least squares predictor of
yn+1 is θ̂T

nxn+1, where θ̂n is the least squares estimate of θ based on xi, yi(i ≤ n),
and the prediction error is εn+1 − (θ̂n − θ)Txn+1. Hence

E(yn+1 − θ̂T
nxn+1)2 = E(ε2n+1) + E{(θ̂n − θ)Txn+1}2. (2.1)
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Assume that with probability 1,

E(ε2n+1|Fn) = σ2 (positive and nonrandom) for all n, (2.2)

lim
n→∞n−1

n∑
i=1

xixT
i = Vκ (nonrandom and positive definite). (2.3)

Then
√
n(θ̂n−θ) converges in distribution to a normal random vector with mean

0 and covariance matrix σ2V −1
κ (cf. Theorem 3 of Lai and Wei (1982)). Hence

under uniform integrability conditions, limn→∞ n Cov(θ̂n − θ) = σ2V −1
κ . When

E(xnxn) → Vκ and xn+1 is independent of Fn, this implies that nE{xT
n+1(θ̂n −

θ)}2 → σ2κ, which reduces (2.1) to

E(yn+1 − θ̂T
nxn+1)2 = σ2 + n−1σ2κ+ o(n−1). (2.4)

Suppose that κ is also unknown, and that one has a nested family of K
candidate stochastic regression models, the kth model of which is specified by
(1.2) with θ ∈ Rk and xt replaced by xt,k ∈ Rk, so that xt,h is an h×1 subvector
of xt,k if h ≤ k. Let θ̂n,k = (

∑n
i=1 xi,kxT

i,k)
−1 ∑n

i=1 xi,kyi. Thus, the kth model
is incorrectly specified if k < κ. The idea behind Akaike’s FPE criterion to
estimate κ is to first replace σ2 in (2.4) by (n − k)−1 ∑n

i=1(yi − θ̂T
n,kxi,k)2 and

then to choose the k that minimizes this modified version of the right hand side
of (2.4) up to o(n−1) terms. Specifically, since (1 − k/n)−1 = 1 + k/n + o(n−1),
the FPE criterion minimizes over 1 ≤ k ≤ K

FPE(k) = (1 + 2k/n)σ̂2
n(k), where σ̂2

n(k) = n−1
n∑

i=1

(yi − θ̂T
n,kxi,k)2. (2.5)

Let xt = (xt1, . . . , xtκ)T and let Xn = (xij)1≤i≤n,1≤j≤κ. Let cj(Xn) denote
the jth column vector of Xn and let ĉj(Xn) denote the projection of cj(Xn) into
the linear space spanned by the other column vectors of Xn. Letting ‖u‖2 =∑n

i=1 u
2
i for u = (u1, . . . , un)T , define

s2n(j) = ‖cj(Xn) − ĉj(Xn)‖2, 1 ≤ j ≤ κ. (2.6)

From (2.3), it follows that s2n(j)/n converges a.s. to some positive constant.
Hence by Theorem 3.1 of Wei (1992),

lim
n→∞ σ̂2

n(k) > σ2 = σ̂2
n(κ) a.s. for k < κ, (2.7)

and therefore the FPE criterion eventually chooses some k ≥ κ with probability 1.
However, the FPE criterion is typically not consistent and its limiting distribution
on {κ, κ + 1, . . . ,K} has been found in certain cases (cf. Sections 3.3 and 3.9 of



288 TZE LEUNG LAI AND CHANG PING LEE

Choi (1992)). This difficulty with the FPE arises from the delicate (second-order)
asymptotic formula for E(yn+1−θ̂T

nxn+1)2 on which it is based. In the case where
(xi, εi) are i.i.d. random vectors, instead of using an asymptotic approximation
to E(yn+1 − θ̂T

nxn+1)2, one can estimate this mean squared prediction error by
the jackknife (or other resampling methods such as the bootstrap), leading to
the cross-validation method and its variants for model selection. However, for
serially correlated (xi, yi), the cross-validation approach has difficulties and also
tends towards overfitting (cf. Section 3.8.3 of Choi (1992)).

Instead of using estimates and/or approximations of the “final” mean squared
prediction error E(yn+1− θ̂T

nxn+1)2, Rissanen (1986b) used the accumulated pre-
diction error

APE(k) =
n∑

i=m

(yi − θ̂T
i−1,kxi,k)2, (2.8)

which he also calls “predictive least squares”, abbreviated as PLS by several
authors. The m in (2.8) refers to some fixed initial sample size. Since PLS
is often used to abbreviate the completely different concept of “partial least
squares” in the econometrics literature and since model selection is an important
problem in econometrics, we propose to use the abbreviation APE as in (2.8)
instead of PLS. Moreover, APE looks closer to FPE than PLS. Unlike FPE(k),
which is derived as an estimate of a second-order asymptotic approximation (2.4)
to the mean squared prediction error E(yn+1− θ̂T

nxn+1)2 of the next observation,
APE(k) is directly defined from the data and measures the overall performance to
date of using the least squares one-step-ahead predictors when one assumes that
θ has dimension k. The sum in (2.8) provides averaging of the random errors
εi, and (2.8) can be analyzed as in Wei (1992) under much weaker conditions
than (2.3) and other assumptions needed in the asymptotic approximation (2.4)
of E(yn+1 − θ̂T

nxn+1)2.
In the special case of stationary autoregressive models for which xt,k =

(yt−1, . . . , yt−k)T , Hannan et al. (1989) showed that

APE(k) = nσ̂2
n,k + σ2(k log n)(1 + o(1)) a.s. (2.9)

for κ ≤ k ≤ K, where σ̂2
n,k = n−1∑n

i=1(yi − θ̂T
n,kxi,k)2 is a consistent estimate of

σ2. From (2.9), it follows that for κ ≤ k ≤ K,

log(APE(k)/n) = log σ̂2
n,k + (kn−1 log n)(1 + o(1)) a.s. (2.10)

Except for the o(1) term, the right hand side of (2.10) is BIC(k). For the linear
stochastic regression model (1.2), Wei (1992) recently generalized the asymptotic
formula (2.9) to the form

APE(k) = nσ̂2
n,k + σ2(log det

n∑
i=1

xi,kxT
i,k)(1 + o(1)) a.s., (2.11)
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for κ ≤ k ≤ K, under weak conditions on the stochastic regressors xi,k. He
therefore proposed the “Fisher information criterion” which replaces APE(k) by

FIC(k) = nσ̂2
n,k + σ̂2

n,K log det(
n∑

i=1

xi,kxT
i,k) (2.12)

and which chooses the model with the smallest FIC(k). He noted that the Fisher
information criterion for model selection adds to the residual sum of squares a
more natural penalty term, which reflects the amount of information required
to fit the model, than simply some multiple of the number of parameters in the
model as in BIC or AIC.

2.1. General stochastic regression models and accumulated prediction
errors

Consider the general stochastic regression model (1.3), in which θ is an un-
known parameter belonging to the interior of some compact subset Θ of Rκ, {εn}
is a martingale difference sequence with respect to {Fn} such that

sup
n
E(|εn|r|Fn−1) <∞ a.s. for some r > 2, (2.13)

and gt(θ) is Ft−1-measurable. In addition to (1.1) and (1.2), another important
special case of (1.3) is the nonlinear ARX model (autoregressive model with
exogeneous inputs) defined recursively by

yn = fθ(yn−1, . . . , yn−p, un−d, . . . , un−d−q) + εn, (2.14)

where {yn}, {un} and {εn} denote the output, input and disturbance sequences,
respectively, and d ≥ 1 represents the delay. The input ut at time t depends
on the current and past observed inputs and outputs yt, ut−1, yt−1, . . . , y1, u1,

which generate the σ-field Ft. Hence gt(θ) = fθ(yt−1, . . . , yt−p, ut−d, . . . , ut−d−q)
is Ft−1-mesurable. Motivated by applications to the adaptive control problem
of choosing the inputs, when the system parameter θ is unknown, so that the
outputs are as close to certain target values as possible in some long-run aver-
age sense, Lai and Zhu (1991) studied adaptive predictors ŷt+d|t that replace the
unknown parameter θ in the optimal d-step ahead predictor by the least squares
estimate θ̂t of θ at every stage t. In particular, for d = 1, the 1-step ahead adap-
tive predictor ŷt+1|t at stage t is given by ŷt+1|t = fθ̂t

(yt, . . . , yt−p+1, ut, . . . , ut−q).
The performance of these adaptive predictors is measured by their accumulated
prediction errors

∑n
t=1(yt+d − ŷt+d|t)2. In practice, not only is the system pa-

rameter θ unknown, but the system order ( p, q) is usually not known in advance.
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Thus, order and parameter estimation is a fundamental problem in system identi-
fication and is also of basic interest in the related problem of adaptive prediction
and control in the stochastic system (2.14).

In the general stochastic regression model (1.3), suppose that the dimension
of θ is unknown and that one has a family of regression functions {gt,k(λ) : k ≤
κ, t ≥ 1, λ ∈ Θk} in which gt,k(λ) is Ft−1-measurable for every λ ∈ Θk. Unlike
the linear model (1.2) discussed above, we do not assume here that the family of
regression models is nested. Thus, vectors in Θk need not be subvectors of those
in Θk+1. For example, suppose it is known that the dimension of θ does not
exceed 3, so θ has at most three components θ1, θ2, θ3. The one-parameter model
involving only θ1 is not a submodel of the two-parameter model that involves
(θ2, θ3). Moreover, we may have three one-parameter models in this family,
corresponding to θ1, θ2 and θ3 respectively. Therefore, in this example, the family
of candidate regression functions consists of gt,1(θ1), gt,2(θ2), gt,3(θ3), gt,4(θ2, θ3),
etc. We shall make the following assumptions on Θk and gt,k:

(i) Θk is a compact subset of Rd(k) for 1 ≤ k ≤ κ, where the d(k) are positive
integers.

(ii) There exists κ such that the true parameter θ belongs to the interior of Θκ.
(iii) If θ is a subvector of some θ(k) ∈ Θk, then gt,k(θ(k)) = gt,κ(θ) and θ(k)

belongs to the interior of Θk.
(iv) If θ is not a subvector of any λ ∈ Θk, then gt,k(λ) �= gt,κ(θ) for all λ ∈ Θk.
(v) If d(k) = d(κ) but k �= κ, then θ is not a subvector of any λ ∈ Θk.

The term “subvector” above does not mean proper subvector, so θ is a sub-
vector of itself. Assumption (ii) implies that the dimension of θ is d(κ). Assump-
tions (v) and (iv) imply that all other models with the same or lower dimension
are incorrectly specified. Hence all models except that associated with Θκ are
either incorrectly specified or have dimension higher than d(κ). This ensures the
“identifiability” of κ. Let

θ̂
(k)
t = arg minλ∈Θk

k∑
i=1

(yi − gi,k(λ))2 (2.15)

be the least squares estimate (not necessarily unique) of θ(k) ∈ Θk under the
hypothesis that θ is a subvector of θ(k). An obvious generalization of (2.8) to the
present setting is

APE(k) =
n∑

i=m

{yi − gi,k(θ̂
(k)
i−1)}2, (2.16)

where m is some fixed initial sample size. An estimate of κ is given by

κn = arg min1≤k≤K APE(k). (2.17)
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The minimizer of APE(k) in (2.17) may not be unique. In Subsection 2.3 we
show under certain regularity conditions that with probability 1, κn is uniquely
defined (and in fact κn = κ) for all large n.

2.2. Bayesian selection procedures and Fisher information criterion

While it is straightforward to extend the APE criterion (2.8) to general
stochastic regression models (1.3), extension of the Fisher information criterion
(2.12) to (1.3) is much less obvious. We shall use a Bayesian approach similar
to that of Schwarz (1978) who derived the BIC as an asymptotic approximation
to the Bayes procedure for estimating the dimension of the natural parameter
of an exponential family based on i.i.d. observations. We first extend Schwarz’s
argument to derive Wei’s FIC in linear stochastic regression models from similar
Bayesian considerations. Suppose that in the regression model (1.2) the εt are
i.i.d. normal random variables with mean 0 and known variance σ2 and that all
finite-dimensional distributions of the regressor sequence (xi,k)i≥1 do not depend
on θ for every k ≤ K, assuming the nested case in which xi,h is an h×1 subvector
of xi,k if h ≤ k. The dimension κ of the regression parameter θ is unknown and
we put a prior probability density function p(·) on the set {1, . . . ,K} of possible
values of κ such that p(k) > 0 for every 1 ≤ k ≤ K. The conditional (prior)
distribution of θ given κ = k is assumed to have a continuous and everywhere
positive density function f(·|k) with respect to Lebesgue measure on Rk. With
this specification of the distribution of the εt and the prior distribution of the
parameters κ and θ, the Bayes rule (with respect to the 0-1 loss) for selecting k is
to choose the k with the highest posterior probability, or equivalently, to choose
the k that minimizes

pn(k) := −2 log
{
p(k)

∫
Rk

exp[−
n∑

i=1

(yi − λTxi,k)2/2σ2]f(λ|k)dλ
}
. (2.18)

To analyze the FIC, Wei (1992) assumed among other conditions that
λmin(

∑n
i=1xi,kxT

i,k) → ∞ a.s. for k = K (and therefore also for all k ≤ K), where
we use λmin(A) and λmax(A) to denote the minimum and maximum eigenvalues of
a symmetric matrix A. Under this assumption, application of Laplace’s method
(cf. Jensen (1995)) to the integral in (2.18) yields

pn(k)=−2 log{ p(k)f(θ̂n,k|k)(2πσ2)k/2}+
{
nσ̂2

n,k/σ
2+log det(

n∑
i=1

xi,kxT
i,k)

}
+o(1).

(2.19)
Ignoring the O(1) summand −2 log{p(k)f(θ̂n,k|k)(2πσ2)k/2}+ o(1) in (2.19) and
replacing σ2 in the other summand by σ̂2

n,K , we obtain the FIC(k) in (2.12).
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To extend the FIC to the general stochastic regression models of Subsection
2.1, we shall make the additional assumption that analogous to the linear case
above, there is a known K∗ for which θ is a subvector of θ(K∗) ∈ ΘK∗. Modifica-
tion of the preceding argument leads to the following definition of FIC in general
stochastic regression models:

FIC(k) = nσ̂2
n,k + σ̂2

n,K∗ log det
{ n∑

i=1

(∇gi,k(θ̂(k)
n ))(∇gi,k(θ̂(k)

n ))T
}
, (2.20)

where σ̂2
n,k = n−1 ∑n

i=1[yi − gi,k(θ̂
(k)
n )]2 is an estimate of the common variance σ2

of the i.i.d. normal εi. The main steps are outlined below.
First, analogous to (2.19), define pn(k) := −2 log{ p(k) ∫

Rk exp[−∑n
i=1(yi −

gi,k(λ))2/2σ2] f(λ|k)dλ}, and note that the function Sn(λ) :=
∑n

i=1(yi−gi,k(λ))2

has minimum value σ̂2
n,k at λ = θ̂

(k)
n . Assuming gi,k to be twice continuously

differentiable, note that ∇Sn(λ) = −2
∑n

i=1(yi − gi,k(λ))∇gi,k(λ) and

∇2Sn(λ)/2 =
n∑

i=1

(∇gi,k(λ))(∇gi,k(λ))T −
n∑

i=1

(yi − gi,k(λ))∇2
i,k(λ), (2.21)

where ∇g(λ) and ∇2g(λ) denote the gradient vector and Hessian matrix of g at
λ. Therefore if λmin(∇2Sn(θ̂(k)

n )) → ∞ a.s., then we can again apply Laplace’s
method to show that (2.19) holds with ∇2Sn(θ̂(k)

n ) replacing
∑n

i=1 xi,kxT
i,k. In

fact, for normal εi, the least squares estimate θ̂(k)
n is the same as the maximum

likelihood estimate and ∇2Sn(θ̂(k)
n ) is the same as the observed Fisher information

matrix. Hence this argument leads to replacing
∑n

i=1 xi,kxT
i,k in (2.12) by the

observed Fisher information matrix, i.e.,

FIC1(k) = nσ̂2
n,k + σ̂2

n,K∗ log det∇2Sn(θ̂(k)
n ). (2.22)

A difficulty of using (2.22) in finite samples, however, is that ∇2Sn(θ̂(k)
n ) need

not be nonnegative definite in view of (2.21). A commonly used method to
avoid this difficulty in regression models, as in the Gauss-Newton instead of the
Newton-Raphson method of computing the minimum of Sn(θ), is to discard the
second term on the right hand side of (2.21), thus approximating ∇2Sn(θ̂(k)

n )/2 by
the nonnegative definite matrix

∑n
i=1(∇gi,k(θ̂k

n))(∇gi,k(θ̂(k)
n )T . Moreover, under

certain regularity conditions (e.g. Klimko and Nelson (1978), p. 631; Lai (1994),
Theorem 2), it follows from martingale theory that the second term on the right
hand side of (2.21) is of a smaller order of magnitude than the first term, so
the preceding argument indeed leads to minimizing FIC(k) as defined in (2.20)
as an approximate Bayes procedure. Further refinements of this model selection
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procedure for sample sizes usually encountered in practice will be discussed in
Section 3.

In the preceding derivation of the FIC by Bayesian arguments, we started
with the assumption of known σ2. If we remove this assumption and put a prior
distribution on σ2 whose density function (with respect to Lebesgue measure on
(0,∞)) satisfies certain regularity conditions, then we can again use Laplace’s
method as before and obtain instead of FIC(k) the following variant thereof:

FIC2(k) = log σ̂2
n,k + n−1 log det

{ n∑
i=1

(∇gi,k(θ̂(k)
n ))(∇gi,k(θ̂(k)

n ))T
}
. (2.23)

2.3. Consistency of FIC and APE criterion in stochastic regression
models

In view of the assumptions (i)-(v) for the family of candidate stochastic
regression models in Subsection 2.1, it is convenient to use the following notation
in the sequel:

I = {1 ≤ k ≤ K : θ is a subvector of some θ(k) ∈ Θk}. (2.24)

The analysis of APE and FIC in these general stochastic regression models is
much more difficult than in the linear models considered by Wei (1992). The least
squares estimates (2.15) typically do not have tractable closed-form expressions
and their consistency requires stronger assumptions than those of Lai and Wei
(1982) in the linear case. In particular, assuming the gt,k to have continuous
partial derivatives ∂gt,k/∂λj , ∂

2gt,k/∂λi∂λj(i �= j), . . . , ∂kgt,k/∂λ1, . . . , ∂λk, Lai
(1994) showed that θ̂(k)

t is a strongly consistent estimate of θ(k)(k ∈ I) under the
following:

Condition (Ak). For every λ �= θ(k), there exist 1 < pλ < 2 and an open ball
B(λ) in Θk, centered at λ, such that

inf
φ∈B(λ)

n∑
i=1

{gi,k(φ) − gi,k(θ(k))}2 → ∞ a.s.,

max
1≤r≤k

1≤j1<···<jr≤k

n∑
i=1

∫
φ∈B(λ;j1,...,jr)

[∂rgi,k(φ)/∂φj1 · · · ∂φjr ]
2dφj1 · · · dφjr

+
n∑

i=1

[gi,k(λ) − gi,k(θ(k))]2 = O
(
{ inf

φ∈B(λ)

n∑
i=1

[gi,k(φ) − gi,k(θ(k))]2}pλ

)
a.s.,

where B(λ; j1, . . . , jr) denotes the r-dimensional sphere {φ ∈ B(λ) : φj = λj for
j /∈ {j1, . . . , jr}}.
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We next establish strong consistency of the APE-based estimate (2.17) of
κ under certain assumptions, which include for k ∈ I the following analogue
of conditions (2.11)-(2.13) of Lai and Zhu (1991) in their analysis of adaptive
predictors in the nonlinear ARX model (2.14) when p and q are known. Let
‖(aij)1≤i,j≤k‖ = max1≤i,j≤k |aij |.
Condition (Bk). There exists in Θk a neighborhood Uk of θ(k) such that

n∑
i=1

sup
φ∈Uk

(‖∇gi,k(φ)‖2 + ‖∇2gi,k(φ)‖2) = O(n) a.s.

Moreover, n−1∑n
i=1(∇gi,k(θ(k)))(∇gi,k(θ(k)))T converges a.s. to a positive definite

matrix and

sup
‖φ−θ‖≤δ

n−1
n∑

i=1

‖∇2gi,k(φ) −∇2gi,k(θ)‖ = O(δ) a.s. as n→ ∞ and δ → 0.

Theorem 1. Assume that the martingale difference sequence {εt} satisfies
(2.13) and limn→∞E(ε2n|Fn−1) = σ2 > 0 a.s. Suppose that for k /∈ I,

inf
φ∈Θk

n∑
i=1

[gi,k(φ) − gi,κ(θ)]2/ log n→ ∞ a.s., (2.25)

and that (Ak) and (Bk) hold for k ∈ I. Then κ̂n → κ a.s.

Proof. For k ∈ I, under (Ak) and (Bk), the same arguments as those in the
proof of Theorem 1 of Lai and Zhu (1991) can be used to show that

n∑
i=m

{gi,k(θ(k)) − gi,k(θ̂
(k)
i−1)}2 ∼ σ2d(k) log n a.s., (2.26)

recalling that d(k) is the dimension of the vector θ(k). Since gi,k(θ(k)) and
gi,k(θ̂

(k)
i−1) are Fi−1-measurable, it follows from (1.3), (2.16) and Lemma 2(iii)

of Lai and Wei (1982) that with probability 1,

APE(k) =
n∑

i=m

ε2i + (1 + o(1))
n∑

i=m

{gi,k(θ(k)) − gi,k(θ̂
(k)
i−1)}2. (2.27)

Combining (2.26) and (2.27) yields

APE(k) −
n∑

i=m

ε2i ∼ σ2d(k) log n for k ∈ I, (2.28)
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with probability 1. For k /∈ I, it follows from (1.3), (2.16) and Lemma 2(iii) of
Lai and Wei (1982) that with probability 1,

{
APE(k) −

n∑
i=m

ε2i

}
/ log n = (1 + o(1))

n∑
i=m

{gi,κ(θ) − gi,k(θ̂
(k)
i−1)}2/ log n→ ∞,

(2.29)
by (2.25). By assumption (v) in Subsection 2.1, κ is the unique minimizer of
d(k) for k ∈ I. Hence from (2.28) and (2.29), the desired conclusion P{κ̂n =
κ for all large n} = 1 follows.

Under the assumptions of Theorem 1, it can be shown that

n∑
i=1

[yi − gi,k(θ̂(k)
n )]2 =

n∑
i=1

ε2i +O(log log n) a.s. (2.30)

for k ∈ I by using arguments analogous to (2.26), (2.29) and (3.14) of Lai
and Zhu (1991). Combining (2.30) with (2.28) again yields (2.9) with k re-
placed by d(k) and with σ̂2

n,k = n−1 ∑n
i=1[yi − gi,k(θ̂

(k)
n )]2, thus extending the

result of Hannan et al. (1989) to general regression models satisfying the as-
sumptions of Theorem 1. Note that the nested family of stationary autoregres-
sive models considered by Hannan et al. (1989) indeed satisfies the assump-
tions of Theorem 1. Moreover, under the assumptions of Theorem 1 (see in
particular (Bk)), log det{∑n

i=1(∇gi,k(θ̂
(k)
n ))(∇gi,k(θ̂(k)

n ))T } ∼ d(k) log n a.s., so
APE(k) = FIC(k) + o(log n) a.s. Hence the proof of Theorem 1 also shows the
following.

Corollary. Under the assumptions of Theorem 1, the minimizer of FIC(k) over
1 ≤ k ≤ K converges a.s. to κ.

3. Refinements of FIC and Estimation in ARMA Models with Un-
specified Orders

In this section we study the problem of order and parameter estimation in the
ARMA model (1.1), which is a special case of (1.3), and discuss in this connection
certain variants and refinements of the FIC model selection procedure in (1.3),
for which nonlinearities often lead to computational difficulties and asymptotic
approximations are often inadequate in finite samples. Let

A(z) = 1 − a1z − · · · − apz
p, B(z) = 1 + b1z + · · · + bqz

q. (3.1)

We shall call B(z) the “moving average polynomial” and assume that

A(z) and B(z) have all zeros outside the unit circle. (3.2)
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The (minimal) order ( p0, q0) of the model is defined by the property that ap0 �=
0, bq0 �= 0 and the polynomials A(z) and B(z) are relatively prime (i.e., have no
common zero). It is assumed that there are known upper bounds P ≥ p0 and
Q ≥ q0. Thus, in the notation of Section 2, we have here a finite collection of
K = PQ+P+Q models with unknown parameters θ(k) = (a1, . . . , ap, b1, . . . , bq)T

for 1 ≤ k = k( p, q) ≤ K, so that d(k) = p + q. We shall use σ̂2
n( p, q),FIC( p, q),

etc., to denote σ̂2
n(k( p, q)),FIC(k( p, q)), etc.

As pointed out in Section 1, there is an extensive literature on estimation
of ( p0, q0). In particular, Hannan (1980) showed that the BIC procedure that
chooses ( p, q) to minimize log σ̂2

n( p, q) + ( p + q)n−1 log n over p ≤ P, q ≤ Q

is strongly consistent if E(ε2n|Fn−1) = σ2 > 0 a.s. and supnE|εn|r < ∞ for
some r > 4. To circumvent the computational complexity in the (nonlinear)
least squares estimates of θ needed for the evaluation of σ̂2

n( p, q), particularly
in the overparameterized case p > p0 and q > q0, Hannan and Rissanen (1982)
proposed a three-stage procedure for estimating p0, q0 and the parameter vector
θ. At the first stage, an autoregressive model of order kn is fitted, with kn

determined by the BIC, and the estimated autoregressive coefficients ãn(j) are
used to estimate εt by ε̃t = yt − ∑kn

j=1 ãn(j)yt−j . At the second stage, least
squares regression of yt on yt−1, . . . , yt−p, ε̃t−1, . . . , ε̃t−q is carried out, first along
the diagonal p = q (= 1, . . . ,max{P,Q}) to give σ̃2

n( p, p) = (residual sum of
squares)/n and to give BIC( p, p) with minimizer p̃, and then for ( p̃, q) and ( p, p̃)
with 0 ≤ q ≤ Q and 0 ≤ p ≤ P . Minimizing the BIC( p̃, q) and BIC( p, p̃) thus
computed gives an estimate ( p̂, q̂). The third stage assumes the order ( p̂, q̂) and
estimates the ARMA parameters by using a one-step Gauss-Newton iteration to
solve the (nonlinear) least squares normal equations, initializing at the regression
estimates obtained in the second stage. This procedure, however, does not give
consistent estimates of ( p0, q0). Hannan and Kavalieris (1984) proposed two
ideas, and Huang and Guo (1990) and Bhansali (1991) proposed two other ideas
to modify the second stage. Huang and Guo (1990) also applied their idea to
nostationary ARMAX models.

An important advantage of the Hannan-Rissanen method is that recursive al-
gorithms are available for the linear regression calculations in the first two stages,
as provided by Hannan and Rissanen (1982) and Franke (1985). Moreover, the
use of the method of scoring in the third stage which consists of a one-step
Gauss-Newton iteration initialized at the second-stage parameter estimate yields
great computational savings over the nonlinear least squares algorithms used in
Hannan (1980) and Dunsmuir and Hannan (1976). Motivated by certain statisti-
cal and computational considerations, we introduce the following modifications,
labeled (A)–(D), of the Hannan-Rissanen method.
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(A) For selecting the order of the approximating (high-order) autoregressive
model during the first stage, we use the FIC and impose a lower bound hn on
the order of the autoregressive models to choose from. Thus, the first stage uses
FIC(k, 0) to choose kn from a set of integers between hn and Hn, as will be
discussed further in Theorem 2 and the simulation studies below.

(B) In the second stage of the Hannan-Rissanen procedure, one may en-
counter numerical difficulties in the least squares estimate when the matrix∑n

i=Hn+1 xi( p, q)xT
i ( p, q) is nearly singular or severely ill-conditioned, where

xi( p, q) = (yi−1, . . . , yi−p, ε̃i−1, . . . , ε̃i−q)T . Note that if we replace xi( p, q) by
x∗

i ( p, q) = (yi−1, . . . , yi−p, εi−1, . . . , εi−q)T , then for p > p0 and q > q0, there
is multicollinearity in the regressors since yi−1 = a1yi−2 + · · · + ap0yi−p0−1 +
εi−1 + · · · + bq0εi−q0−1, and the matrix

∑n
i=max ( p,q)+1 x∗

i ( p, q)x
∗T
i ( p, q) is sin-

gular. We therefore drop the model ARMA( p, q) from further consideration if
either

∑n
i=Hn+1 xi( p, q)xT

i ( p, q) is not invertible or
{
( p + q)−1tr[

n∑
i=Hn+1

xi( p, q)xT
i ( p, q)]−1

}

×
{

max[n, ( p + q)−1tr(
n∑

i=Hn+1

xi( p, q)xT
i ( p, q))]

}δ
> 1, (3.3)

in which we take 0 < δ < 1.
(C) Unlike the Hannan-Rissanen method, order selection for the ARMA

model is not performed on the basis of the second-stage results. We only use
the second-stage parameter estimates to initialize the one-step Gauss-Newton
iteration for the third stage. To avoid numerical difficulties when the estimated
moving average polynomial B̂(z) at the end of the second stage is unstable (i.e.,
has zeros inside or on the unit circle), we also perform a stability check (cf.
Kucera (1979)) on the B̂(z) obtained in the second stage and drop those models
from further consideration if their estimated moving average polynomials are
unstable.

(D) The third stage of the Hannan-Rissanen approach is now used both for
parameter estimation and order selection based on the FIC. For those models not
deleted by (B) and (C) at the end of the second stage, we compute the third-stage
parameter estimates first along the diagonal p = q(= 1, . . . ,max{P,Q}). We also
perform a stability check on the estimated moving average polynomial obtained
at the third stage. We use the third-stage estimate as the parameter estimate
(â1, . . . , âp, b̂1, . . . , b̂p)T if it passes the stability check and use the second-stage
estimate otherwise. Define

FIC( p, q)=
n∑

i=max( P,Q)+1

e2t ( p, q)+σ̂
2
n,Hn

log det
{ n∑

i=max( P,Q)+1

ζi( p, q)ζT
i ( p, q)

}
,

(3.4)
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where σ̂2
n,Hn

is the same as that used in (2.23) for the FIC of the first stage,

ei( p, q) = yi − â1yi−1 − · · · − âpyi−p − b̂1ei−1( p, q) − · · · − b̂qei−q(p, q), (3.5)

ζi( p, q) + b̂1ζi−1( p, q) + · · · + b̂qζi−q( p, q)

= (yi−1, . . . , yi−p, ei−1( p, q), . . . , ei−q( p, q))T. (3.6)

Stability of the polynomial 1 + b̂1z + · · · + b̂qz
q ensures that the ei( p, q) defined

recursively by (3.5) do not grow at an exponential rate. We first find the mini-
mizer p̃ of FIC ( p, p) over 1 ≤ p ≤ max(P,Q) and then minimize the FIC over
( p̃ + j, q) and ( p, p̃ + j) with 0 ≤ q ≤ p̃ + j, 0 ≤ p ≤ p̃ + j and ( p, q) �= (0, 0),
for j ∈ {0, 1,−1}. The advantages of including also ( p̃± 1, q) and ( p, p̃± 1) will
be illustrated in the simulation study in Section 4. If all models on the diagonal
(1 ≤)p = q(≤ max(P,Q)) are deleted by (B) or (C), we set p̃ = 1 and still
apply the preceding search algorithm (with p̃ = 1). In the unlikely event that
all models in this search are deleted by (B) or (C), we use the first-stage result
AR(kn) as the selected model.

Consistency of this modification of the inconsistent Hannan-Rissanen method
is established in the following.

Theorem 2. Assume that (3.2) holds for the ARMA model (1.1), in which
{εn} is a martingale difference sequence such that E(ε2n|Fn−1) = σ2 > 0 and
supn E|εn|r < ∞ a.s. for some r > 4. Then for the above modification of the
Hannan-Rissanen method with

hn = cn log n < Hn ∼ (log n)ρ , in which ρ > 1 and cn → ∞, (3.7)

(see (A) above),( p̂, q̂) → ( p0, q0) and
√
n(θ̂ − θ) has a limiting N(0, σ2V −1

p0,q0
)

distribution as n→ ∞, where θ̂ = (â1, . . . , âp, b̂1, . . . , b̂q)T ,

Vp,q = lim
n→∞E(znzT

n ) and

zn + b1zn−1 + · · · + bqzn−q = (yn−1, . . . , yn−p, εn−1, . . . , εn−q)T , (3.8)

in which we set bj = 0 if j > q0.

Proof. By (3.2), yt = εt +
∑∞

j=1 αjεt−j with αj tending to 0 exponentially fast.
By the conditional Borel-Cantelli lemma, the assumption E(ε2n|Fn−1) = σ2 a.s.
for all n implies that εt = o(

√
t) a.s. Hence there exists 0 < β < 1 such that

(
∑

j≥hn
|αj | supi≤n |εi|)2 = o(nβhn) a.s. Since hn/ log n→ ∞, this implies that

n∑
t=Hn+1

( ∑
j≥hn

|αjεt−j |
)2

= o(n2βhn) → 0 a.s. (3.9)
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For hn ≤ k ≤ Hn and Hn < t ≤ n, let xt,k = (yt−1, . . . , yt−p)T be the regressors
and ε̃t,k = yt−xT

t,k(
∑n

i=Hn+1 xi,kxT
i,k)

−1 ∑n
i=Hn+1 xi,kyi be the residuals obtained

by fitting an AR(k) model to the data during the first stage of the procedure.
From (3.9) together with Lemma 4.2 and the proof of Theorem 2.2 of Huang and
Guo (1990), it follows that

max
hn≤k≤Hn

n∑
t=Hn+1

(ε̃t,k − εt)2 = O(H2
n(log n)(log log n)3) a.s., (3.10)

which implies that for p ≤ P and q ≤ Q, with probability 1,

∥∥∥
n∑

i=Hn+1

xi( p, q)xT
i ( p, q) −

n∑
i=Hn+1

x∗
i ( p, q)x

∗T
i ( p, q)

∥∥∥
= O((log n)2ρ+1(log log n)3) = o(nδ), (3.11)

where xi( p, q) and x∗
i ( p, q) are defined in (B). As noted in (B), the matrix∑n

i=Hn+1 x∗
i ( p, q)x

∗T
i ( p, q) is singular for p > p0 and q > q0. On the other

hand, n−1tr(
∑n

i=Hn+1 x∗
i ( p, q)x

∗
i ( p, q)) converges a.s. to a positive constant,

while tr(A−1) ≥ λmax(A−1) = 1/λmin(A) for any positive definite symmetric
matrix A. Hence by (3.11),

P
{ n∑

i=Hn+1

xi( p, q)xT
i ( p, q) is singular or (3.3) holds, for all large n

}

= 1 if p > p0 and q > q0. (3.12)

As shown by Hannan (1980), for p < p0 or q < q0,

lim inf
{

inf
c1,...,cp,d1,...,dq

n−1
n∑

i=1

[yi − c1yi−1 − · · · − cpyi−p − d1εi−1(c,d) − · · ·

−dqεi−q(c,d)]2
}
> σ2 a.s., (3.13)

in which εt(θ) is defined in Section 1, c = (c1, . . . , cp) and d = (d1, . . . , dq).
Let p∗ = max( p0, q0). For ( p, q) = ( p∗, q) or ( p, p∗) with q0 ≤ q ≤ p∗ and
p0 ≤ p ≤ p∗, defining ai = 0 if i > p0 and bj = 0 if j > q0, the polynomials
zpA(z−1) and zqB(z−1) are still relatively prime, and therefore the matrix Vp,q

defined in (3.8) is positive definite (cf. Hannan (1973)) and

lim
n→∞n−1

n∑
i=1

ζi( p, q)ζT
i ( p, q) = Vp,q a.s., (3.14)

n∑
i=1

e2i ( p, q) = nσ2 +O(log log n) a.s., (3.15)
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where ei( p, q) and ζi( p, q) are defined in (3.5) and (3.6), as can be shown by
standard arguments and noting from (3.10) that the second-stage estimates con-
verge a.s. to (a1, . . . , ap, b1, . . . , bq)T at the rate o(n−

1
2
+ε), for every ε > 0. It

follows from (3.14) that log det(
∑n

1 ζi( p, q)ζ
T
i ( p, q)) ∼ ( p + q) log n a.s. More-

over, by (3.10), the σ̂2
n,Hn

in (3.4) converges a.s. to σ2. Therefore it follows
from (3.12)-(3.15) that P{( p̂, q̂) = ( p0, q0) for all large n} = 1, and the limiting
normal distribution of

√
n(θ̂ − θ) then follows by standard arguments.

We next discuss certain insights that the preceding study of order and pa-
rameter estimation in ARMA models provides for corresponding problems in
more general stochastic regression models of the type considered in Section 2.
First, computation of the least squares estimates in nonlinear regression models
becomes very difficult when the dimension of the parameter is large, since one has
to search for the minimizer of the sum of squares function over a large parameter
space. This difficulty is further magnified by the need to perform such minimiza-
tion tasks for each of a large number of competing models. It is therefore highly
desirable to have a good but simple preliminary estimate so that one can use
it to initialize the search for the minimizer of the sum of squares function and
thereby limit the number of iterations to some manageable number. In the case
of ARMA models, a key idea underlying the Hannan-Rissanen procedure is to use
the second-stage estimate as a preliminary estimate and to refine it with a one-
step Gauss-Newton iteration. The second-stage estimate is linear least squares
for which the unobservable εt in the actual regressor is replaced by the resid-
uals ε̃t obtained by performing linear regression in a high-order approximating
autoregressive model, noting that a stationary ARMA model can be expressed
as an AR(∞) model. Another useful idea to reduce computational burden is to
devise a systematic scheme to choose models adaptively for evaluation of the FIC
(or BIC, or other criterion used), instead of directly computing the criterion for
all candidate models and performing a complete search for the model that mini-
mizes the criterion. For ARMA models, this idea is used in the Hannan-Rissanen
method and modifications thereof. Strictly speaking, such computational short-
cuts lead to procedures that are not the same as those involving exact least
squares estimates and complete search for the model with the minimum FIC (or
other criterion). However, as Theorem 2 shows for the ARMA case, they have
the same large-sample statistical properties as their computationally prohibitive
counterparts.

As pointed out in (B) above, overfitting may lead to computational difficul-
ties because the matrix C(k)

n :=
∑n

i=1(∇gi,k(θ̂
(k)
n )) (∇gi,k(θ̂

(k)
n ))T may become sin-

gular or severely ill-conditioned. This also poses difficulties for the FIC because
the penalty term in FIC(k) is a multiple of log det(C(k)

n )(= sum of log-eigenvalues
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of C(k)
n ). Since a sufficiently small eigenvalue of C(k)

n has a large negative loga-
rithm, the FIC may even give negative penalty to an overfitted model that has
severely ill-conditioned C

(k)
n . To address this shortcoming of the FIC, we can

modify it by removing from further consideration models whose C(k)
n are singular

or severely ill-conditioned, as in (B) above.

4. Simulation Studies and Discussion

We first report a simulation study on the performance of the preceding mod-
ification of the Hannan-Rissanen procedure (abbreviated by MHR in the sequel),
and of three different modifications of the Hannan-Rissanen procedure given by
Hannan and Kavalieris (1984), Huang and Guo (1990) and Bhansali (1991). The
simulation study considers the following six ARMA models:
(I) yt = 0.5yt−1 + εt + 0.8εt−1,
(II) yt = −0.64yt−1 − 0.7yt−2 + εt + 0.8εt−1,
(III) yt = −0.2yt−1 + 0.05yt−2 + 0.01yt−3 + εt − 0.7εt−1,
(IV) yt = 0.33yt−1 + 0.16yt−2 + εt + 0.39εt−1 + 0.28εt−2 + 0.11εt−3,
(V) yt = 1.05yt−1 − 0.25yt−2 + εt − 0.1εt−1 + 0.05εt−2,
(VI) yt = −0.7yt−1 + εt − 1.1εt−1 + 0.3εt−2,
in which ε1, ε2, . . . are i.i.d. N(0, 1) random variables and the initial conditions
are given by y0 = y−1 = · · · = ε0 = ε−1 = · · · = 0. It is assumed that upper
bounds P = 4 and Q = 4 are known a priori. Taking n = 500, 100 independent
realizations of (y1, . . . , yn) were generated. To each data set (y1, . . . , yn), we
applied five different order and parameter estimation procedures, labelled MHR,
HK, B, and HuG. The MHR procedure is the same as the preceding modified
version, with modifications (A)–(D), of the Hannan-Rissanen procedure. To fit
a high-order autoregressive model during the first stage of the procedure, we
picked a reasonable range of 11 to 22 parameters to be estimated from n = 500
observations (so log n = 6.2), i.e., we chose hn = 11 and Hn = 22 in (A). In
addition, we took δ = 0.6 in (3.3). The results are reported in Tables 1–3. We
have also tried several other values of hn (ranging from 7 to 11), Hn (ranging
from 20 to 30) and δ (ranging from 0.5 to 0.7), and have obtained similar results.

The HK procedure represents the following modification of the Hannan-
Rissanen procedure by Hannan and Kavalieris (1984) (cf. the procedure ( p̃(1),
q̃(1)) on p. 275 there). The first stage uses the AIC for selecting the order of an
approximating autoregressive model. Moreover, order selection is performed us-
ing the BIC after repeating the second stage with the residuals ε̃t obtained from
the first stage replaced by those obtained from the second stage. The B proce-
dure represents the modification of the Hannan-Rissanen procedure by Bhansali
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(1991), who used the FPE criterion to select the order of an approximating au-
toregressive model during the first stage and estimated the order at the second
stage by minimizing the “corrected final prediction error”

FPEC( p, q) = σ̃2
n( p, q)

{
1 + n−1kn( p+ q)[1 + max

p′≤P,q′≤Q

q′∑
j=1

b̂2j( p
′, q′)]

}
,

where kn is the order of the AR(kn) model chosen at the first stage and b̂j( p′, q′)
represents the least squares estimate of bj obtained at the second stage for the
ARMA ( p′, q′) model (cf. Sections 1 and 5 of Bhansali (1991)). The HuG
procedure is the following modification of the Hannan-Rissanen procedure by
Huang and Guo (1990). The first stage fixes a relatively high order H(= Hn) =
[c(log n)α], with α > 1 and c > 0, for the approximating autoregressive model
instead of choosing the order by BIC. Moreover, instead of the (Fn-measurable)
residuals ε̃t obtained in the first stage, the second stage uses the Ft-measurable
estimate ε∗t = yt−ψT

t,H(
∑t

i=H+1 ψi,Hψi,H)−1 ∑t
i=H+1 yiψi,H of εt, n ≥ t ≥ H+m,

where ψi,H = (yi−1, . . . , yi−H)T . Furthermore, instead of the BIC, the order
selection criterion at the second stage is based on the penalty function

CIC( p, q) = nσ̃2
n( p, q) + ( p + q)cn,

cf. Huang and Guo (1990), p. 1735. The procedure terminates with the second
stage and uses the second-stage estimates to estimate the parameters of the
selected model, instead of going to the third stage. Here, for n = 500, we took
H = 10, cn = H log n and m = 90.

The results of the simulation study are given in Tables 1-3. Each table
presents for two of the models the frequency distributions of the selected orders
of the four procedures in 100 simulations. In addition, it gives the simulated
value of the final prediction error

Ên+1 := E(yn+1 − ŷn+1)2

= σ2 +E(ŷn+1 − a1yn − · · · − ap0yn−p0 − b1εn−1 − · · · − bq0εn−q)2, (4.1)

where σ2 = 1 and ŷn+1 is the adaptive predictor of yn+1 that replaces the un-
known parameters in the minimum variance predictor by their estimates based
on y1, . . . , yn. To assess the accuracy of a parameter estimate θ̂p̂,q̂, we use
the expected Kullback-Leibler information number KL:= EI(θp0,q0, θ̂p̂,q̂), where
θp0,q0 = (a1, . . . , ap0 , b1, . . . , bq0)

T and for λ = (a′1, . . . , a′p, b′1, . . . , b′q)T ,

I(θp0,q0, λ)= lim
n→∞E{log[f(εn)/f(yn−a′1yn−1−· · ·−a′pyn−p−b′1εn−1−· · ·−b′qεn−q)]},

(4.2)
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in which f denotes the common density function of the εn (which are standard
normal). Note that if the ARMA( p0, q0) model has good lower-order ARMA
approximations, then the fitted ARMA ( p̂, q̂) model may still be very close to
the actual ARMA( p0, q0) model despite a substantial Euclidean distance between
θ̂p̂,q̂ and the true parameter. A natural “distance” between estimated and true
parameters of ARMA models and of more general stochastic dynamical systems
is the Kullback-Leibler divergence of the estimated parameter from the true one,
instead of the Euclidean distance.

The ARMA models (I) and (II) are the same as those in Bhansali’s (1991)
simulation experiments 1 and 2, which also showed 100% correct order selection
rate for the B procedure but which showed the “corrected BIC” criterion of Han-
nan and Kavalieris to have correct order selection rates of 82% and 75% for the
two models. Note that Hannan and Kavalieris (1984) proposed two modifications
of the Hannan-Rissanen method, one of which was the corrected BIC criterion
and the other of which was used in our simulation study as the HK procedure.
In Table 1, both the MHR and HK procedures show correct order selection rates
of over 95% and have Ê501 − σ2 and KL values comparable to those of the B
procedure. The HuG procedure also shows 100% correct order selection rate for
the ARMA models (I) and (II). However, it does not use the third stage of the
Hannan-Rissanen procedure to refine the second-stage estimates and this resulted
in its substantially larger Ê501 and KL values than those of the other procedures.

Table 1. Frequencies of selected orders in ARMA(1,1) model (I) and ARMA
(2,1) model (II) for the MHR, HK, B and HuG procedures. Also given are
the simulated values of Ê501 in (4.1) and KL:= EI(θp0,q0 , θ̂p̂,q̂), and their
standard errors in parentheses.

ARMA(1,1) ARMA(2,1)

( p, q) MHR HK B HuG MHR HK B HuG

(1,0) 0 0 0 0 0 0 0 0

(1,1) 97 98 100 100 0 0 0 0

(1,2) 0 0 0 0 0 0 0 0

(2,0) 0 0 0 0 0 0 0 0

(2,1) 3 1 0 0 97 96 100 100

(2,2) 0 0 0 0 3 1 0 0

(2,3) 0 0 0 0 0 1 0 0

(3,1) 0 1 0 0 0 0 0 0

(3,2) 0 0 0 0 0 1 0 0

(4,4) 0 0 0 0 0 1 0 0

Ê501 − σ2 .0042 .0040 .0032 .0220 .0059 .0061 .0059 .0162

(.0011) (.0010) (.0006) (.0032) (.0009) (.0009) (.0010) (.0028)

KL .0029 .0028 .0026 .0043 .0031 .0033 .0028 .0048

(.0003) (.0003) (.0003) (.0004) (.0004) (.0004) (.0003) (.0005)
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Table 2. Frequencies of selected orders in ARMA(3,1) model (III) and
ARMA(2,3) model (IV) for the MHR, HK, B and HuG procedures. Also
given are Ê501 and KL, and their standard errors in parentheses.

ARMA(3,1) ARMA(2,3)

( p, q) MHR HK B HuG MHR HK B HuG

(0,1) 0 1 11 88 0 0 0 0

(0,2) 1 0 0 0 0 0 0 0

(1,0) 0 0 0 8 22 30 58 100

(1,1) 89 97 89 4 0 0 0 0

(1,2) 7 1 0 0 77 66 41 0

(2,1) 3 1 0 0 0 0 0 0

(2,2) 0 0 0 0 1 4 1 0

Ê501 − σ2 .0040 .0041 .0083 .0737 .0128 .0134 .0226 .0287

(.0006) (.0007) (.0024) (.0096) (.0027) (.0026) (.0034) (.0035)

KL .0031 .0032 .0062 .0357 .0066 .0077 .0113 .0167

(.0003) (.0004) (.0011) (.0018) (.0006) (.0006) (.0006) (.0001)

Table 3. Frequencies of selected orders in ARMA(2,2) model (V) and ARMA
(1,2) model (VI) for the MHR, HK, B and HuG procedures. Also given are
Ê501 and KL, and their standard errors in parentheses.

ARMA(2,2) ARMA(1,2)

( p, q) MHR HK B HuG MHR HK B HuG

(1,0) 18 23 48 100 0 0 0 0

(1,1) 3 68 51 0 0 6 98 100

(1,2) 15 7 0 0 74 42 0 0

(1,3) 0 0 0 0 0 0 0 0

(2,0) 64 0 1 0 0 0 0 0

(2,1) 0 2 0 0 26 47 2 0

(2,3) 0 0 0 0 0 1 0 0

(3,1) 0 0 0 0 0 1 0 0

(3,2) 0 0 0 0 0 2 0 0

(3,3) 0 0 0 0 0 1 0 0

Ê501 − σ2 .0086 .0112 .0168 .0233 .0067 .0343 .7079 .0954

(.0017) (.0017) (.0030) (.0034) (.0011) (.0186) (.2165) (.0152)

KL .0056 .0075 .0100 .0153 .0069 .0117 .1515 .0311

(.0005) (.0005) (.0005) (.0001) (.0007) (.0013) (.0445) (.0005)

In the ARMA(3, 1) model of Table 2, no procedure chose the true order
(3, 1) and the MHR, HK and B procedures each chose the lower order (1, 1) in
over 85% of the 100 simulations. In spite of this, all three procedures gave
small values of Ê501 − σ2 and KL. This can be explained by the fact that
yt = −0.2yt−1 + εt − 0.7εt−1 is a very good approximation to the ARMA(3, 1)
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model (III). The HuG procedure chose the order (1, 1) only 4% of the time and
concentrated on the even lower order (0, 1), but its Ê501−σ2 and KL values were
over 10 times of those of the MHR procedure. The choice cn = H log n in the
penalty term of CIC( p, q), therefore, appears to be too large for this model. The-
orem 2.3 of Huang and Guo (1990) actually requires cn to be considerably larger
than H log n, which makes undermodeling even more severe and further deteri-
orates the performance. Although the penalty function method of Huang and
Guo (1990) gives the correct order as n → ∞, there are practical difficulties in
choosing cn even for n as large as 500. The results of Table 2 on the ARMA(2, 3)
model (IV) are somewhat surprising. No procedure chose the correct order (2, 3),
and the HuG procedure chose only (1, 0) while the other three procedures chose
mostly from {(1, 0), (1, 2)}. The zeros of A(z) = 1 − 0.33z − 0.16z2 are −3.736
and 1.673, and those of B(z) = 1 + 0.39z + 0.28z2 + 0.11z3 are −2.552 and
0.003±1.887

√−1, and therefore the zeros of A(z) differ substantially from those
of B(z). In spite of this, there are many good lower-order ARMA approximations
to the model (IV). This is reflected in Table 2 by the small KL numbers for the
MHR and HK procedures.

The presence of good lower-order approximations to the ARMA( p0, q0) model
(1.1) implies that the positive definite matrix W ( p0, q0) is nearly singular, where

W ( p, q) = Eπ{(yp, . . . , y1, εq, . . . , ε1)T (yp, . . . , y1, εq, . . . , ε1)}, (4.3)

and π denotes the stationary distribution of (y0, . . . , y−p0+1, ε0, . . . , ε−q0+1)T un-
der the true ARMA( p0, q0) model. For the ARMA(2, 3) model (IV), the p + q

eigenvalues of W ( p, q) are listed below:
( p, q) = (2, 3) : 0.0005, 0.2543, 1, 1.5509, 4.7596.
( p, q) = (3, 3) : 0.0001, 0.0139, 0.4778, 1.4429, 1.8695, 6.0437.
( p, q) = (2, 2) : 0.0120, 0.4745, 1.5450, 4.5339.
( p, q) = (2, 1) : 0.0124, 1.4137, 4.1392.
( p, q) = (1, 2) : 0.2522, 1, 3.0305.

Note that nλmin(W (2, 3)) and even nλmin(W (2, 2)), nλmin(W (2, 1)) are quite
small for n = 500. This means that most samples of size 500 do not contain
much information to estimate all the parameters of the ARMA(2, 3) model even
if ε1, . . . , ε500 should have been observable in addition to y1, . . . , y500. For these
samples, it is indeed better to choose lower orders than (2, 3). Since the Hannan-
Rissanen-type procedures in Table 2 first search the order ( p̃, p̃) along the diag-
onal and then among ( p̃, q) and ( p, p̃), it is not surprising to find in Table 2 a
clump of selected orders at (1, 2) (corresponding to p̃ = 2) and another clump at
(1, 0) (corresponding to p̃ = 1). Note that this phenomenon due to small values
of nλmin(W (2, 3)) would disappear with much larger values of n, say n ≥ 106

(for which nλmin(W (2, 3)) ≥ 500), and the MHR procedure should eventually
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select the true order (2, 3) with probability 1 by Theorem 2. On the other hand,
the results of Table 2 show that the MHR procedure can still predict y501 well
and fit an ARMA model with small Kullback-Leibler divergence from the true
model even though it does not have enough information to pick the true order
at n = 500.

The results of Table 3 demonstrate the advantages of including ( p̃±1, q) and
( p, p̃± 1) besides ( p̃, q) and ( p, p̃) in the MHR procedure. In particular, for the
ARMA(2, 2) model (V), each procedure ended up with p̃ = 1 in over 90% of the
100 simulations. Although there is inadequate information to estimate all the
parameters of this ARMA(2, 2) model when n = 500, which resulted in the choice
p̃ = 1 for many samples, there is enough information to estimate the parameters
of an approximating ARMA(2, 0) model, as can be seen from the eigenvalues of
the matrices (4.3) for the model (V) listed below:

( p, q) = (2, 2) : 0.0028, 0.6225, 1.4920, 6.3993.
( p, q) = (2, 0) : 0.5633, 5.9533.
( p, q) = (1, 1) : 0.6209, 3.6375.

By considering p̃ + 1 in addition to p̃, the MHR procedure was able to select
(2, 0) for 60% of the time and to yield considerably smaller Ê501 and KL values
than those of the other three procedures. The ARMA(1, 2) model (VI) in Table
3 is the same as that in Bhansali’s (1991) simulation experiment 11, which also
showed the B procedure to miss completely the true order (1, 2) and to choose
the order (1, 1) most often. Although the MHR procedure again picked p̃ = 1
many times, it was still able to choose the true order (1, 2) at these times because
p̃ + 1 was also considered besides p̃. The relatively large values of Ê501 and KL
for the B procedure were perhaps due to its default option that “an errant root
(of the estimated polynomials Â(z) and B̂(z)) was replaced by its reciprocal”
(Bhansali (1991), p. 91), since such errant roots occurred quite often in fitting
an ARMA(1, 1) model and since replacing the errant roots by their reciprocals
might have resulted in a highly inaccurate estimated transfer function.

Our second simulation study was motivated by the recent work of Pötscher
and Srinivasan (1994) who modified the Hannan-Rissanen method by incorporat-
ing ideas from a different approach due to Pukkila, Koreisha and Kallinen (1990),
abbreviated by PKK in the sequel. Instead of model selection via the BIC or other
similar criterion, the PKK procedure proceeds as follows: For � = 0, 1, . . . , and
p+q = �(p ≥ 0, q ≥ 0), first fit the ARMA( p, q) model to the data and then fit an
auxiliary AR(m) model with 0 ≤ m ≤ m∗ (some prescribed number) to the resid-
uals. Note that AR(0) = ARMA(0, 0) is the white-noise model yt = εt for which
there are no estimated parameters. If BIC(m) for the auxiliary autoregressive
models is minimized at m = 0, then the PKK procedure accepts the white-noise
model for the residuals of the fitted ARMA( p, q) model, stops incrementing �
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and chooses the ARMA( p, q) model. The fitting of ARMA( p, q) models uses a
three-stage procedure whose first two stages are similar to those of Hannan and
Rissanen (1982) and whose third stage uses generalized least squares instead of a
one-step Gauss-Newton iteration. This is computationally much more laborious
than the different methods in the preceding simulation study. Because of this
we chose n = 100 in our second simulation study, as was also chosen in most of
the simulation experiments reported by Pötscher and Srinivasan (1994) and by
PKK. We also took m∗ =

√
n = 10 in the PKK procedures, following Pötscher

and Srinivasan.
In addition to the MHR and PKK procedures, our second simulation study

also considers the following procedure (which will be denoted by PS) proposed
by Pötscher and Srinivasan (1994). PS first chooses the ARMA( p̃, p̃) model such
that BIC(r, r) > BIC(r+1, r+1) for 0 ≤ r < p̃ and BIC( p̃, p̃) ≤ BIC( p̃+1, p̃+1),
and then minimizes BIC( p, q) over the set {( p̃, q) : 0 ≤ q ≤ p̃} ∪ {( p, p̃) : 0 ≤
p ≤ p̃} ∪ { ( p̃ + 1, p̃), ( p̃, p̃ + 1)}. The computation of BIC uses the same three-
stage scheme to fit ARMA( p, q) models as in PKK. Because the PKK and PS
procedures both include the white-noise model ARMA(0, 0) as a candidate model,
we also included it for the MHR procedure in this simulation study, defining
FIC(0, 0) =

∑n
i=1 y

2
i . We chose Hn = 10, hn = 5 and δ = 0.6 for the MHR

procedure (see (A) and (B) in Section 3). The simulation study considers models
(I)–(VI) introduced at the beginning of this section together with the following
AR and MA models:

(VII) yt = 0.5yt−4 + εt,
(VIII) yt = 0.1yt−2 − 0.5yt−4 + εt,
(IX) yt = εt + 0.5εt−4.

Models (VII) and (IX) were also considered in the simulation study of Pötscher
and Srinivasan (1994) whose Table 2 reports that PS completely misses the true
order for these models in 100 simulation runs.

Besides the number of correctly estimated orders (in 100 simulated samples
of size n = 100) on which the simulation studies of PKK and Pötscher-Srinivasan
focused exclusively, we also considered the Kullback-Leibler information number
KL and the final prediction error Ê101 defined in (4.1), as in Tables 1–3 for our
first simulation study. The results show that MHR compares favorably with PS
and PKK and performs much better than the other two procedures in the ARMA
model (II) and in the AR models (VII) and (VIII). Moreover, our simulations
showed MHR to be at least ten times faster than the other two procedures which
require much greater computational effort. The fact that all three procedures
completely miss the correct order for models (III) and (IV) is consistent with
the results of our first simulation study reported in Table 2 and is due to the
presence of good lower-order approximations to the true model.
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Table 4. Kullback-Leibler information number KL, prediction error Ê101,
and frequency #(C) of correctly estimated orders in 100 simulated samples
from ARMA( p, q) models for the MHR, PS and PKK procedures. Standard
errors are given in parentheses.

KL Ê101 − σ2 #(C)

Model MHR PS PKK MHR PS PKK MHR PS PKK

1,1 (I) .0297 .0221 .0321 .0331 .0207 .0273 77 94 90

(.0035) (.0042) (.0061) (.0066) (.0044) (.0059)

2,1 (II) .0320 .1280 .0822 .0668 .2390 .0907 78 80 75

(.0054) (.0249) (.0130) (.0123) (.0685) (.0207)

3,1 (III) .0261 .0330 .0407 .0407 .0439 .0475 0 0 0

(.0022) (.0023) (.0024) (.0070) (.0085) (.0085)

2,3 (IV) .0277 .0249 .0233 .0443 .0420 .0456 0 0 0

(.0025) (.0014) (.0011) (.0068) (.0061) (.0062)

2,2 (V) .0258 .0216 .0210 .0410 .0331 .0324 0 0 0

(.0048) (.0015) (.0015) (.0070) (.0056) (.0055)

1,2 (VI) .0379 .0449 .0546 .0321 .0324 .0488 39 45 17

(.0033) (.0033) (.0027) (.0056) (.0044) (.0077)

4,0 (VII) .0779 .1823 .1081 .0772 .3551 .1829 64 0 51

(.0100) (.0043) (.0107) (.0164) (.0478) (.0361)

4,0 (VIII) .0535 .1736 .0988 .0635 .3617 .1489 69 0 50

(.0069) (.0013) (.0101) (.0103) (.0532) (.0309)

0,4 (IX) .0954 .1305 .1162 .1874 .2741 .2334 17 0 12

(.0062) (.0021) (.0055) (.0301) (.0336) (.0332)
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