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INFORMATION CRITERIA FOR MULTIPLE DATA SETS

AND RESTRICTED PARAMETERS

Richard M. Dudley and Dominique Haughton

Massachusetts Institute of Technology and Bentley College

Abstract: In this paper, we extend information criteria for model selection to

the case of K independent data sets corresponding to different true parameters

θ1, . . . , θK and to situations where some of the models may have the same dimen-

sion and may include boundaries. New criteria are introduced: SBICR, which

combines criteria from different data sets, and IBICR, which treats one data set at

a time. We apply the criteria to a set of 2 × 2 contingency tables (mosquito data)

and to some data on baseball players’ performance. Consistency results are given

for the criteria under some assumptions. The best model will be the smallest one

containing all the θi. A model mj is called competitive if the vector θ(K) of true pa-

rameters is in the closure of the set m
(K)
j of φ(K)’s where mj is the best model. We

find that, under reasonable assumptions, for submodels of an exponential family, if

for all competitive mj , m
(K)
j is not too thin close to θ(K), the SBICR procedure is

asymptotically close to Bayes procedures. This article extends results in Haughton

(Ann. Statist. 1988, Sankhyā 1989) and Poskitt (J. Roy. Statist. Soc. Ser. B 1987).

Key words and phrases: BIC, Jeffreys’ prior, model selection.

1. Introduction

For choosing between models mj of different dimensions kj , some penalties
have been proposed to be subtracted from the maximum log likelihood, yield-
ing what are called information criteria. Akaike (1974) defined a criterion AIC
in which the penalty is the dimension kj . Schwarz (1978) gave a criterion BIC
for exponential families with penalty function (kj/2) log n where n is the sample
size. BIC was based on the leading terms in an asymptotic expansion of posterior
probabilities. Haughton (1984), Propositions 3.4 and 3.5.1, and (1988), Propo-
sition 2.2 and Theorem 2.3, carried the expansion to more terms, given also in
Theorem 4.1(B) below, and extended the validity of the expression to smoothly
curved submodels of exponential families. Poskitt (1987), Corollary 2.2, inde-
pendently obtained a similar expansion for models which are open subsets of a
Euclidean space, under some regularity conditions (which hold only locally for
some exponential families), for data whose law may be in none of the models
compared, and allowing for a general utility function.



266 RICHARD M. DUDLEY AND DOMINIQUE HAUGHTON

Shibata (1976) and Hannan (1980) for ARMA processes, and Woodroofe
(1982) under some general regularity conditions, showed that the AIC criterion
is not consistent: in other words, as the size n of the data set increases, the prob-
ability of choosing the wrong model doesn’t necessarily approach 0. The Schwarz
criterion BIC is consistent, as proved for curved submodels of exponential fami-
lies in Haughton (1988), Proposition 1.2 and Remark 1.2, (1989), Proposition 1;
(see also Woodroofe (1982) section 8).

We now propose to extend BIC in two ways.
• First, we consider a situation in which a single model must be selected in

the presence of several independent data sets, for which the true parameters may
be different. In this case, applying BIC separately to each data set could lead to
conflicting choices of a model. Let θk be the true parameter for the kth data set,
k = 1, . . . ,K. We aim to define criteria to help us find the best model, namely
the smallest model (in the sense of inclusion) containing all of θ1, . . . , θK .

• Our second extension applies to models in which some parameters are
restricted. Consider for example a model m1 with a real parameter θ, −∞ <

θ <∞, two submodels of m1, say m2 with θ ≥ 0 and m3 with θ ≤ 0, and a “null
hypothesis” model m4 with θ = 0. Application of AIC or BIC in such a case
can lead to unfortunate results. Suppose the estimate of one of the parameters
is not in m2, only by a small margin and only for one of several data sets. Then
AIC and BIC will favor m1 over m2 since the penalty functions are the same.
Yet the model m2 is in a sense more parsimonious than m1. We propose that
there should be some penalty for removing restrictions as well as for raising the
dimension. Section 2.2 treats “quartets” of models such as these and gives an
application.

If there is only one data set, with one true parameter θ, then in this example
it must be either in m2 or m3, so m1 cannot be the best model. But suppose
there are two independent data sets with parameters θ1, θ2. Then in the plane
of possible parameters, the set where m2 is the best model is the first quadrant,
where m3 is the best model is the third quadrant, and wherem1 is the best model
is the union of the second and fourth quadrants, where θ1 and θ2 have different
signs (Figure 1).

The extension of BIC to situations with multiple data sets and possibly
restricted parameters is fairly complex. Yet such situations arise quite naturally
as illustrated in our examples in Section 2. We propose two new model selection
criteria, SBICR and IBICR. Let us first define SBICR:
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Figure 1. Projections of m(2)
1 , m2

2, m2
3 onto the space of means for two data

sets.
Note that m(2)

1 is not too thin near (0, 0). • = m2
4.

Let m1, . . . ,mJ be a set of models (subsets of a parameter space). Let
mK
j := mj × · · · ×mj (to K factors). Let Nj be the union of all mK

r such that

mr ⊂ mj strictly, and m
(K)
j := mK

j \ Nj . Then mK
j is the set where all the

parameters are in the model mj, and m(K)
j is the set where mj is the best model

(assumptions (3.0) and (3.1) below imply that there is a unique best model).
Also, let bj, j = 1, . . . , J , be non negative numbers called bonuses. Suppose we
are given K independent data sets, consisting of n1, . . . , nK observations. For
each j, find the supremum of the overall log likelihood (for all observations) over
m

(K)
j , subtract the summed BIC penalty (kj/2)

∑K
k=1 log(nk), and add bj. Choose

the model for which the resulting quantity is largest, or make any choice among
those tied for largest. We will call this procedure SBICR or SBICR({bj}Jj=1).
We will define bonuses based on Jeffreys priors, if finite, in (1.3) below and other
bonuses in Section 2.2. Let SBIC∗ be SBICR with bonuses bj = (K/2)kj log(2π).
For one data set, SBIC∗ will be called BIC∗ (see Haughton, Haughton, and
Izenman (1990)).

We now define our second criterion IBICR. Consider as previously a set
{bj}Jj=1 of bonuses. First suppose there is just one data set. For each j, after
finding the supremum of the log likelihood over mj and subtracting the BIC
penalty function, the bonus bj will be added to form a new criterion function
BICR = BICR({bj}Jj=1) for model choice. Bonuses will be called consistent if
bi > bj whenever mi ⊂ mj strictly and the dimensions of mi and mj are the
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same. Then the criterion will favor smaller models of a given dimension, as long
as the unknown parameters θk are estimated to be in or near the smaller model.
We will always take bonuses to be used in IBICR to be consistent. Now assume
we have K data sets. For the kth data set separately, apply BICR to choose
a model mj(k). Then take the smallest model including all the mj(k), assuming
such a model exists. We call this the individual BICR or IBICR procedure.

When all models are smoothly curved submodels of the natural parameter
space Θ of an exponential family, with no boundary except at the boundary
of Θ, and have distinct dimensions, under the assumptions of Haughton (1988),
Proposition 2.2 and Theorem 2.3, and when Jeffreys priors are proper on models,
we propose to specify the bonuses bj as follows (we give an application in Section
2.1):

Suppose we are given a prior
∑
j αjµj where µj is concentrated on mj and

has a density fj. Let postx(mj) be the posterior probability that mj is the best
model (the smallest model containing the true parameter θ). If x is a vector of
observations i.i.d. (Pθ) for some θ ∈ Θ, and if the true parameter θ is in mj , we
have:

log postx(mj) = T (n, j) +Ax +Op(n−1/2) (1.1)

(Haughton (1984, 1988), Poskitt (1987)) where Ax does not depend on j and

T (n, j) = logαj + L̂j − 1
2
kj log(n/(2π)) + log fj(θ

j
n) −

1
2

log det{irs(θjn)}, (1.2)

L̂j is the maximum log likelihood and θ
j
n the maximum likelihood estimator on

mj, irs is the Fisher information matrix of the model mj in a given parameter-
ization η1, . . . , ηkj

for mj near θjn, and fj is the density of µj with respect to
dη1 · · · dηkj

. Let, now, the observations be i.i.d. P , where P need not be in the
exponential family Pφ, φ ∈ Θ. Poskitt (1987) pointed out that (1.1) and (1.2)
can still hold if there is a pseudo-true value θ0 in the interior of mj, where the
Kullback-Leibler information I(Pθ, P ) has a unique maximum over mj at θ = θ0
(see Sawa (1978)).

The (non-normalized) Jeffreys measure M := Mj has density (det irs)1/2. In
any region of mj where two parameterizations apply, Mj does not depend on
the choice of parameterization (Jeffreys (1946), Kass (1989), pp. 199-200). If
0 < M(mj) < ∞ then Mj/M(mj) is known as the Jeffreys prior on mj. Taking
it as µj, we define a bonus

bj := Kcj where cj := c(mj) :=
1
2
kj log(2π) − logMj(mj), (1.3)

which does not depend on the observations or sample size(s). We call the resulting
criterion SBICJ (J for Jeffreys); for one data set we call it BICJ.
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If the αj are all equal, K = 1, and the Jeffreys prior is finite and has density
fj, then BICJ(mj)−BICJ(mi) ≡ BIC(mj)−BIC(mi)+cj−ci ≡ T (n, j)−T (n, i)
for any i, j, just as desired, and likewise for multiple data sets and SBICJ (since
model dimensions are distinct, SBICJ is the sum of the BICJ’s for each data set).
In fact, SBICR with any constant bonuses corresponds to the use of Jeffreys
priors for some αj. In this sense Jeffreys priors fit well with SBICR, despite
arguments made against Jeffreys and other fixed priors on other grounds e.g. by
Good (1965), pp. 45-46. Here (1.1) would apply, under the given conditions on
models, for θ ∈ mi∩mj but also more generally: in Table 1, Columns 5-6 indicate
that the “Op(n−1/2)” error in (1.1) is small in practice.

When some of the models may have the same dimension, and/or Jeffreys
priors are improper, strategies for choosing bonuses will depend on the specific
problem. We propose, in Section 2.2, bonuses for positive and negative halves of
the real line, and give an application to baseball data.

A large part of the paper is devoted to SBICR. In Section 3 we give a list of
assumptions, then state a consistency fact for SBICR under these assumptions.
Then in Section 4, Theorem 4.1 shows that under further assumptions, SBICR
acts approximately as a Bayes procedure. Part (E) of the theorem covers, notably,
cases where a true parameter is on the boundary of a model and/or at least two
models have the same dimension.

It follows from Theorem 3.2 that the IBICR is consistent even when sample
sizes are so different that for some k and r, nk � log(nr), when SBICR and
Bayes procedures may not be consistent as shown in Example 4.2 at the end of
the paper. On the other hand, as stated in Theorem 4.1, the SBICR is closer to
Bayes procedures for priors of a kind to be described in Section 4.

Theorem 4.1 relies on the new concepts of competitive, fully competitive, and
well competitive models, defined in Section 4. A model mj is competitive if the
true vector of parameter vectors θ(K) = (θ1, . . . , θK) is in the closure of the set
m

(K)
j . In Theorem 4.1(A), we show that non competitive models are selected

by SBICR only with exponentially decreasing probabilities as the sample sizes
get large. Roughly speaking, a model is well competitive if m(K)

j is not too thin
near θ(K) (see Figure 1). For well competitive models, we find that the difference
between SBICR criteria for two models equals the difference between the logs
of their posterior probabilities (for suitable priors) plus Op(1) (see Theorem 4.1
(E)). Fully competitive models (defined in Section 4) are competitive models
where, near θ(K), mK

j is a manifold and Nj is a union of lower dimensional sets.
For fully competitive models, we get a closer agreement between SBICR and the
Bayes procedure.

We assume in Section 4 that models are (possibly curved) submodels of an
exponential family. This assumption is needed in the proofs of parts (A), (B)
and (E) of the main Theorem 4.1.
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No proofs are given in the paper, except for a brief sketch of the proof of
Theorem 4.1. A longer version of the paper with complete proofs is available
from either author, on-line or in hard copy.

2. Two Applications

2.1. Contingency tables: mosquito data

A study of the effectiveness of an insect electrocuting device against
mosquitoes gives data (Nasci, Harris and Porter (1983), Table 4; Rasmussen
(1992), pp. 161, 382) that can be arranged into five 2 × 2 contingency tables:(

31 49
94 90

)
,

(
44 151
146 172

)
,

(
129 30
194 219

)
,

(
15 12
54 60

)
,

(
11 17
39 21

)
.

Each table is for a different experimental time period. The first row gives num-
bers of female mosquitoes electrocuted. The second gives numbers of female
mosquitoes approaching human bait. The columns are for different back yards,
called “Site 1” and “Site 2”, which in fact varied by design among 6 adjoining
yards, so that no systematic effects are to be expected based on the labels “1” and
“2”. We compare the independence (between rows and columns) model m2 = I2

and the three-dimensional full multinomial model m1 = M4, where each table
gives a data set. Here for M4, {nij}2

i,j=1 are multinomial (N ; p11, p12, p21, p22),
for any pij > 0 whose sum is 1. Let pi· = pi1 + pi2 and p·i = p1i + p2i, i = 1, 2,
and similarly for ni·, n·i. The independence submodel I2 is the 2-dimensional
surface where pij = pi·p·j for each i, j. Here the maximized log likelihood (for all
five data sets together) on m

(5)
j is the same as on m5

j , so the SBICR is the sum
of five BIC criteria (one for each data set) plus a bonus bj .

Let Mm be the multinomial family of all laws {pi}mi=1 on a finite set of m
points with pi > 0 for all i. The Jeffreys prior probability on Mm is (cf. Kass
(1989)) a particular Dirichlet distribution dJm := π−m/2Γ(m/2)(Πm

i=1pi)
−1/2dp1

dp2 · · · dpm−1 for pi > 0, p1+p2+· · ·+pm−1 < 1 where pm ≡ 1−p1−p2−· · ·−pm−1

(see e.g. Johnson and Kotz (1972), Chapter 40, Sec. 5). The Jeffreys measure
of Mm is M(Mm) = πm/2/Γ(m/2) and so, since Mm has dimension m − 1,
c(Mm) = log Γ(m/2)+ (m− 1)(log 2)/2− (log π)/2. Thus c(M4) = (log(8/π))/2
and M(I2) = π2 so c(I2) = log(2/π). Since the MLEs are simple to find for
M4 and I2, the SBICJ applies easily to choosing between these models for any
number of data sets. Note that in this case SBIC∗ and SBICJ coincide since
M(M4) = π2 = M(I2). By the way, Jeffreys (1961), pp. 259 ff. selects between
M4 and I2 for one 2 × 2 contingency table based on uniform, not “Jeffreys”
(1946) priors.

The posterior probability of I2 vs. M4 for Jeffreys (1946) priors is r/(r+ 1)
where r = (N + 1)[Π2

i=1Γ(ni· + 1
2)Γ(n·i + 1

2)]/{[Π2
i=1Π

2
j=1Γ(nij + 1

2)]N !}, from
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normalization of other Dirichlet distributions (cf. Good (1976), (5.1) and (2.7)
for φ(k)dk = dδ1/2(k) (k ≡ 1/2)). So we can illustrate how BICJ and SBICJ
approximate Bayes procedures (with Jeffreys priors). We omit the details of the
calculations but give results in Table 1:

Table 1. Results for mosquito data

Col. 2 3 4 5 6 7
# X2 p-val(χ2) p-val(hyp.) postJ(I2) postBICJ(I2) postBIC(I2)

1 3.404 0.06503 0.08643 0.5398 0.5385 0.7453
2 28.26 1.063 · 10−7 1.072 · 10−7 3.867 · 10−6 3.856 · 10−6 9.664 · 10−6

3 54.49 1.560 · 10−13 5.097 · 10−14 2.068 · 10−12 2.061 · 10−12 5.166 · 10−12

4 0.5856 0.4441 0.5817 0.7813 0.7794 0.8986
5 5.145 0.02331 0.04185 0.2255 0.2228 0.4181

Legend: # = identifying number for each 2×2 table; X2 = chi-squared statis-
tic; p-val(χ2) is its p-value by the χ2

1 distribution; p-val(hyp.) is the 2-sided
p-value 2H , H = the hypergeometric tail probability < 1/2; postJ(I2) = Jef-
freys posterior probability of I2 (vs. M4); postBICJ(I2) = its approximation
via BICJ, calculated as r/(r + 1), where r = exp(BICJ(I2) − BICJ(M4));
postBIC(I2) = its approximation via BIC.

We note that: BICJ = BIC∗ gives a very satisfactory approximation, in terms of
relative as well as absolute error, to the Jeffreys posterior probabilities (Columns
5, 6). For the second and third tables, which are far from independence, we see
(1.1) working for “pseudo-true” values (Poskitt (1987)). The approximation via
BIC (column 7) is too large by a factor about (2π)1/2 in the odds ratio r, due to
lacking the BIC* correction constant. The chi-squared p-value is not such a good
approximation to the hypergeometric one (columns 3,4). The p-values of the “null
hypothesis” I2 are substantially smaller than its posterior probabilities. This is
a known phenomenon: Berger and Mortera (1991) show that often p-values are
much smaller than posteriors for the null hypothesis under all priors in a large
class. The BIC∗ correction does make the discrepancy smaller than for BIC itself.
Independence is clearly rejected, for the second and third tables, by any method
shown, and for the five tables, SBICJ(M4) = −26.959, SBICJ(I2) = −66.165.

The results show that p11 < p1·p·1 for the second table and p11 > p1·p·1 for
the third. So, the labeling of varying sites as 1 or 2 (columns of the matrices) does
not “explain” (and was not intended to) the directions of observed effects. (They
may be explained by large differences between species of mosquitoes: Nasci et
al. (1983), Table 3.)
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2.2. Quartets of models: baseball data

Consider a family of distributions depending on a parameter vector (θ1, θ2),
a model m1 where θ1 is unrestricted, and models m2, m3, and m4 where θ1 ≥ 0,
θ1 ≤ 0, and θ1 = 0 respectively. Given K data sets, we propose bonuses bj := bjK
for the quartet m1, m2, m3, m4 of models as follows: b1K = 0, b2K = b3K =
K log 2 + log(1 + 2−K), b4K = K log π.

A rationale for the bonuses is as follows. Suppose the prior is 1
4

∑4
j=1 µ

K
j

where µj is a probability measure onmj having a density fj, dµj=fj(θ1, θ2)dθ1dθ2
for j = 1, 2, 3, dµ4 = f4(θ2)dθ2. Suppose that for j = 2, 3, fj(θ1, θ2) = 2f1(θ1, θ2)
for θ1 ≥ 0 and θ1 ≤ 0 respectively, where fj is 0 for other θ1 in each case.
The prior probabilities γj of m(K)

j are then γ2 = γ3 = 1
4 (1 + 2−K), γ1 = 1

4(1 −
21−K), γ4 = 1/4. The prior probability densities gj on m

(K)
j , normalized to

integrate to one on m
(K)
j , are the product of f1 over the coordinates times 2K

for j = 2 or 3, or times (1 − 21−K)−1 for j = 1. Bonuses appear to be most
important in distinguishing between models on the boundary between m(K)

1 and
m

(K)
j , for j = 2 or 3, so that the maximum likelihood estimators for m(K)

1 and

m
(K)
2 or m(K)

3 coincide. In that case,

log γj + log gj − log γ1 − log g1 = K log 2 + log(1 + 2−K) = bjK − b1K

as desired. It should however be noted that the higher order asymptotics of
posterior probabilities need special treatment on the boundaries of models such
as m2 and m3, but we do not deal with that problem in the present paper.

To define a suitable bonus for m4, we take as prior on m4 the conditional
µ4 = µ1|{θ1 = 0}, yielding f4 = f1(0, ·)/

∫∞
−∞ f1(0, θ2)dθ2. Then the normalized

prior density g4 on m(K)
4 (= mK

4 ) equals the product of K copies of f4. Defining
as above b4K − b3K := log γ4 + log g4 − log γ3 − log g3, we get b4K − b3K =
−K log

∫
f1(0, θ2)dθ2− log(1+2−K)−K log 2. Let us now take f1(θ1, θ2) to be of

the form f1(θ1, θ2) = h1(θ1)h2(θ2) where h1, h2 are any proper prior densities for
θ1, θ2. Then b4K − b3K = −K log(2h1(0))− log(1+2−K). If we choose h1 to be a
Cauchy density, then b4K − b3K = K log(π/2) − log(1 + 2−K), so b4K = K log π.

An example of such a quartet of models is as follows. Chatterjee et al. (1995)
analyze data (given on a diskette) on a set of some 162 cases of major league
baseball players who became free agents at the end of a season with one team, say
in year “fy” (free agent year), and were hired by and played for another team the
following year (“ny” or “next year”). Let S be a statistic measuring a player’s
performance, Sfy and Sny its values in the given years, and Xi := Sny − Sfy
for the ith case. Chatterjee et al. (1995) then model the Xi as N(µ, σ2) and give
alternative theories based on players’ psychology favoring models m2 (µ ≥ 0) or
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m3 (µ ≤ 0). Let m4 (µ = 0) be the null hypothesis that the change of teams
via free agency makes on average no difference in S. For multiple data sets we
can also consider the model m1 (where µ is unrestricted), which will be the best
model if m2 holds for some data sets and m3 for others, as for the mosquito data.

In the 162 cases on the diskette, only several batting statistics are given and
(thus) no pitchers are included. We re-examined the data and adjoined a new
statistic “TPR” from Thorn and Palmer (1995), a large compendium of baseball
data. TPR (Total Player Rating) includes offensive contributions besides hitting
(getting on base by bases on balls, stealing bases) and defense (fielding). TPR
ranges from -2.0 to 2.0 for average players with extremes of perhaps -5 to +8.
For three cases where players had changed teams twice consecutively, so that one
“ny” became the next “fy”, we kept the first but not the second overlapping pair
of years. We also dropped 9 cases where, according to Thorn and Palmer (1995),
the player had not in fact changed teams between the years with data on the
diskette, and/or the data years were not consecutive and the player had played
in the intervening year. Chatterjee et al. (1995) omitted from their analysis cases
where fy or ny = 1981, a strike-shortened season, but both batting average (BA)
and TPR compare players to others in the same season, so we included the 1981
cases.

Pietrusza (1995) says that for fy = 1985, 1986 and 1987, most free agents
wanted by their current teams received no offers from competing teams. We thus
separated the data into two sets, one for these years and another for 1976 ≤
fy ≤ 1984, and omitted data for the year fy = 1988. The number of times at
bat in a season ranged from 4 and 6 for two players (who had no hits, giving
outlier batting averages .000) to over 600 for another. Thus players’ skills were
observed with very different variances for different players. We adjusted for this
as follows. For the ith case in the kth data set, k = 1, 2, let abfki (resp. abnki) be
the number of times at bat in fy (resp. ny). Let τki = (abf−1

ki + abn−1
ki )1/2. Then

we assume that Ski, which equals Sny−Sfy for S = BA or TPR, for the (k, i) case,
are independent N(µk, σ2

kτ
2
ki) for some µk and σ2

k (which also depend of course
on which statistic, BA or TPR, we consider). Let κk := (nk/

∑nk
i=1 τ

−2
ki )1/2. The

least-squares and maximum likelihood estimate of µk is µ̂k = κ2
k

∑nk
i=1 Ski/(nkτ

2
ki).

So for each k, Xki := µ̂k +κk(Ski− µ̂k)/τki are approximately i.i.d. N(µk, κ2
kσ

2
k).

We applied SBICR, IBICR, and a 1-sample t-test for each k, to the variables
Xki.

Chatterjee et al. (1995), p. 103 found that (without normalization) batting
average was significantly lower, by .011, in ny than in fy. Table 2 gives our
results, for the normalized Xki. Ȳ , the sample mean of the Xki for a fixed k, was
used in forming the t-statistic. The differences |Ȳ − µ̂k| were small: less than
0.0028 for the first three data sets and 0.016 for TPR, 85 ≤ fy ≤ 87. For batting
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average, 85 ≤ fy ≤ 87, BICR and the t-test chose m3: free agents on average
did worse in ny than in fy, an effect apparently due more to team management
decisions than to players’ psychology; in the other three cases BICR chose m4,
saying that players did equally well before and after becoming free agents. Thus
IBICR chooses m3 for batting average and m4 for TPR. SBICR selects m4 for
both statistics.

Table 2. Change in batting average or TPR with free agency

n Ȳ t p-value (S)BICR(mj) − (S)BICR(m4) IBICR

j = 1 j = 2 j = 3

BA: fy < 85 110 0.001 0.153 0.879 -2.385 -2.396

BA: fy = 85, 86, 87 28 -0.021 -3.186 0.004 -1.712 2.756

SBICR, IBICR -1.826 -4.685 -0.229 m3

TPR: fy < 85 110 -0.082 -0.534 0.595 -2.396 -2.253

TPR: fy = 85, 86, 87 28 -0.479 -1.530 0.138 -1.712 -0.549

SBICR, IBICR -5.142 -4.696 -3.389 m4

Legend: TPR = total player rating (Thorn and Palmer (1995)), BA = batting
average, fy = last two digits of free agency year, Ȳ = sample mean of
normalized (see text) changeXki in statistic (BA or TPR) from before to after
free agency. All other tabulated statistics are also based on Xki. (S)BICR =
BICR in BA and TPR rows, =SBICR in “SBICR, IBICR” rows.

The following is in response to a referee’s comment. Suppose that for each
player and year we treat the times at bat as a data set, consisting of a “1” for
each hit and a “0” for each out. We would then have 2·(110+28) = 276 data sets,
of sample sizes abfki, abnki, k = 1, i = 1, . . . , 110; k = 2, i = 1, . . . , 28, with an
i.i.d. assumption only within each of the 276. The theory would need an extension
(which is possible) to cover hypotheses relating parameters for different data sets
(with the same k, i: same player in two different years). Let abfk (resp. abnk)
for k = 1, 2 be the sample means of the numbers abfki (resp. abnki). These four
numbers, and the corresponding sample medians, are all between 250 and 350.
On average, then, the sample sizes are large enough, but two individual sample
sizes abn1i = 6, abn2j = 4 for some i and j would be too small for asymptotics.
So, we have preferred the above variance stabilization approach.

3. Consistency

In this section, we introduce assumptions for consistency of SBICR and
IBICR. We then state Theorem 3.1 (on consistency of SBICR) and Theorem
3.2 (on consistency of IBICR). Let (X,S) be a measurable space and Θ a pa-
rameter space, so that for each φ ∈ Θ, a probability measure Pφ is defined on
(X,S). Let mj, j = 1, . . . , J , be subsets of Θ, to be called models, with mi 	= mj



INFORMATION CRITERIA FOR MULTIPLE DATA SETS 275

for i 	= j. We assume that on each mj a measure µj is defined (e.g., a prior),
finite on compact sets and strictly positive on non-empty open sets. Suppose
that for each k = 1, . . . ,K, we have a parameter θk ∈ Θ and i.i.d. observations
Xk

1 , . . . ,X
k
nk

with distribution Pθk
. We assume that

(3.0) For some (unknown) j, all the θk are in mj;
(3.1) For any i, j, mi ∩mj is empty or mi ∩mj = mr for some r = 1, . . . , J.

Since there are finitely many models, (3.0) and (3.1) imply that there is a
best model: a unique smallest model containing all of θ1, . . . , θK .

Schwarz (1978) writes about the “true” model, which apparently means the
best model in our sense, the smallest one containing the true parameter. Like-
wise, the “model that is a posteriori most probable” (Schwarz (1978)) or has
highest posterior probability (Haughton (1988)) really means the model having
the highest posterior probability of being the best or true model, as opposed to
the posterior probability of the model as a subset of the parameter space, which
can include other models. In past work, these other models had lower dimensions;
here, they may have the same dimension.

In this paper, we consider only the simple loss function which is 0 when the
best model is chosen and 1 otherwise. We assume that each Pφ has a density
f(y, φ) with respect to some σ-finite measure ν on (X,S). Let A be a subset of
Θ. Let f(A,n) := f(x,A, n) := sup{∏n

i=1 f(xi, φ) : φ ∈ A}, for x = (x1, . . . , xn),
the maximum likelihood over A for n observations x1, . . . , xn.

In what follows, when we say θ is the true parameter, we mean that the
probabilities are taken under Pnθ , in other words for X1, . . . ,Xn i.i.d. Pθ. Below,
as noted, there may be different true parameters for different data sets. We next
have an assumption in probability, followed by a strong (almost sure) form:

(3.2) If θ is the true parameter, and θ ∈ mj for a modelmj, then for any neighbor-
hood U of θ, if A is the complement of U , then for some c > 0, 1

n log(f(A,n)) <
ess.supv∈U∩mjE log(f(·, v))−c, with probability converging to 1 as n→ ∞, where
the essential supremum is with respect to µj.
(3.2′) Assumption (3.2) still holds if “with probability converging to 1 as n→ ∞”
is replaced by “almost surely for n large enough.”

Assumption (3.2′) holds for exponential families (e.g. Haughton (1988), proof
of Proposition 1.2, and Haughton (1989), proof of Proposition 1, Case 1).

For any v, as is well known, we have Eθ(log(f(·, v)/f(·, θ))) ≤ 0 since
log x ≤ x − 1, x ≥ 0, and so Eθ log f(·, v) ≤ Eθ log f(·, θ). Thus by the law
of large numbers, if (3.2) holds, log f({θ}, n) > nc+ log f(A,n) with probability
converging to 1 as n→ ∞, or eventually a.s. if (3.2′) holds. It follows that under
(3.2), if θ is in a model m1 and not in the closure of a model m2, then as n→ ∞,
log(f(m2, n)/f(m1, n)) < −cn with probability converging to 1.
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Two alternate, related assumptions are:
(3.3) If θ is the true parameter then as n→ ∞, log(f(Θ, n)/f ({θ}, n)) = Op(1).
(3.3′) For the true θ, as n→ ∞, log(f(Θ, n)/f ({θ}, n)) = o(log n) almost surely.

Assumptions (3.3) and (3.3′) also hold for exponential families (e.g. Haughton
(1988), proof of Proposition 1.2, and Haughton (1989), proof of Proposition 1,
Case 2 respectively, with O(log log n) in place of o(log n)). Under (3.3), if θ
belongs to models m1 and m2, then as n → ∞, log(f(m2, n)/f(m1, n))=Op(1).
Our next assumptions are:
(3.4) For each i 	= j, if a point in the closure of mi is in mj , then it is in mi.
(3.5) If mj ⊂ mi of the same dimension and mj is the best model, no parameter
θr is in the closure of mi\mj .

(3.5′) If mj is the best model, no parameter θr is on the boundary of mj .
(3.6) For all r, k, we have nr, nk → ∞ in such a way that log(nr) = o(nk).
(3.7) There is a largest model, including all the others.

Theorem 3.1. For K independent data sets with true parameters θ1, . . . , θK ,
suppose (3.2) and (3.3) hold for θ = θk for all k = 1, . . . ,K. Suppose that the
finite set of models satisfies (3.1) and (3.4), and that (3.0), (3.5) and (3.6) hold.
Then a best model mj exists, and SBICR chooses mj with probability converging
to 1, for any {bi}Ji=1. Or if instead of (3.2) and (3.3) we assume (3.2′) and (3.3′),
then almost surely SBICR chooses the best model for all n1, . . . , nK large enough
and such that log(nr)/nk is small enough for all r, k.

Note. In the quartet of models R, R+, R−, {0} mentioned above, under as-
sumption (3.5), if R+ or R− is the best model, then no true parameter is 0.

The IBICR procedure, as defined in the introduction, is consistent, as follows:

Theorem 3.2. Under the conditions of Theorem 3.1, without (3.6), for any
consistent choice of bonuses, IBICR eventually chooses the best model mj with
probability converging to 1. If (3.2′) and (3.3′) hold for θ = θk for all k =
1, . . . ,K, then almost surely IBICR chooses the best model for all n1, . . . , nK
large enough.

4. Bayes Model Choice and Asymptotic Expansions

In this section, we introduce the assumptions and definitions to be used in
Theorem 4.1, where we show that SBICR and Bayes procedures are close under
reasonable conditions.

Suppose we are given a prior probability distribution µ on Θ. We assume
that
(4.1) µ(

⋃J
j=1mj) = 1, µ(mj) > 0 for all j = 1, . . . , J, and µ(mi) < µ(mj)

whenever mi ⊂ mj with i 	= j.
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We also assume we are given probabilities α1, . . . , αJ with α1 + · · ·+αJ = 1
and probability measures µj on Θ such that
(4.2) µj(mj) = 1 for each j and µ =

∑J
j=1 αjµj.

(Here µj is not in general the conditional distribution of µ given mj since a
model may overlap with or include others.) Then, we assume that the prior
probability for (θ1, . . . , θK) on ΘK is

∑J
j=1 αjµ

K
j where µKj is the distribution for

which θ1, . . . , θK are i.i.d. µj. Thus θ1, . . . , θK can be generated by first choosing
a value of j with probabilities αj , then taking the θi to be i.i.d. (µj). Note,
however, that then mj is not necessarily the best model: it may happen that the
values of θ1, . . . , θK all belong to some smaller model mi, although this will be
unlikely for large K.

The set of pairs (mj , µj) of models mj with priors µj satisfying (4.2) will
be called compatible if whenever mi ⊂ mj , if ki < kj , then µj(mi) = 0, while if
ki = kj , then µj(mi) > 0 and µi is the conditional distribution of µj given mi.

Now, given a probability measure Q on ΘK , the probability for it that all the
θk are in mj is Q(mK

j ). Recall that Nj is the union of all mK
r such that mr ⊂ mj

strictly, and m
(K)
j := mK

j \ Nj. Then the probability that mj is the best model

is Q(m(K)
j ) = Q(mK

j ) −Q(Nj).
Given the observations Xk

i , i = 1, . . . , nk, i.i.d. Pθk
, let x(k) :=(Xk

1 , . . . ,X
k
nk

),
k = 1, . . . ,K. Let gk(x(k), φ) := gk((Xk

1 , . . . ,X
k
nk

), φ) :=
∏nk
j=1 f(Xk

j , φ). We then
have a posterior probability for θ(K) = (θ1, . . . , θK). The probability that mj

is the best model can be evaluated more explicitly and simply when Q is a
posterior distribution for a prior distribution

∑J
i=1 αiµ

K
i and the (mi, µi) are

compatible. Let φ(K) := (φ1, . . . , φK), x = (x(1), . . . , x(K)), and let hK(x, φ(K)) =∏K
k=1 gk(x

(k), φk) be the likelihood function for a sample x of observations. Then
the posterior distribution is νx :=

∑J
i=1 αihK(x, ·)µKi /Dx where the denominator

Dx is the total mass of the measure in the numerator, and for a function g ≥ 0
and measure µ, gµ is the measure given by (gµ)(A) :=

∫
A g dµ for measurable

sets A. The posterior probability that mj is the best model is νx(m
(K)
j ), for which

all terms in the sum give 0 except for the jth and the set Ij of those i such that
mj ⊂ mi with µi(mj) > 0 and i 	= j. By compatibility we can also omit the i in
Ij, leaving only the i = j term, if we replace αj by βj := αj +

∑{αi[µi(mj)]K :
i ∈ Ij}, so that

νx(m
(K)
j ) = βj

∫
m

(K)
j

hK(x, φ(K))dµKj (φ(K))/Dx. (4.3)

We now turn to assumptions on the structure of the models mj as subsets
of Θ. We recall the notion of C∞ manifold imbedded in Rd (Spivak (1979),
pp. 38, 65). Let Rd be a Euclidean space. A set m ⊂ Rd will be called a C∞
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manifold-with-boundary of dimension k ≤ d imbedded in Rd if, for k ≥ 1, for
each point φ of m, there is a neighborhood V of φ in m and an open set U
containing 0 in Rk such that there is a C∞ 1-1 function ξ from U into Rd with
derivative k× d matrix of full rank k everywhere on U , with ξ(0) = φ, such that
ξ is a homeomorphism onto its range ξ(U) and such that ξ−1(V ) is either (a) U ,
in which case we say φ is in the “interior” of m, or (b) U ∩ {x : x1 ≥ 0}, in
which case we say φ is on the “boundary” of m (e.g. Spivak (1965), p. 113). If
the boundary is empty, a manifold-with-boundary is called a manifold. If k < d,

the “interior” of an imbedded manifold-with-boundary m differs from its usual
topological interior in Rd, which is empty. For example, in R2, {(x, y) : y = 0,
x ≤ 1} is a manifold-with-boundary whose boundary is the point (1, 0).

For k = 0, we define a manifold of dimension 0 to be a finite set. A 0-
dimensional connected manifold is a single point. We define the boundary of a
finite set to be empty. We will assume:
(4.4) For some d, each mj is a C∞ kj-dimensional connected manifold-with-boun-
dary imbedded in Rd, kj ≥ 0.

Next, we specialize to exponential families. Here Proposition 2.2 of Haughton
(1988) (see also Corollary 2.2 of Poskitt (1987)) will be extended to the case of
multiple independent data sets, and to the case where a model can be included
in another of the same dimension. Specifically, we will make the following as-
sumptions.
(4.5) For k = 1, . . . ,K, let x(k) = (Xk

1 , . . . ,X
k
nk

) where Xk
i , i = 1, . . . , nk, are

i.i.d. random variables from an exponential family in standard form with densities
f(x, θk) = exp(x · θk − b(θk)) with respect to a finite measure ν on Rd.

Let Θ be the natural parameter space of the exponential family. Part of
what we mean by “standard form” is that the interior IntΘ is a non-empty open
set in Rd. Our next assumptions are:
(4.6) Each θk is in IntΘ, k = 1, . . . ,K.
(4.7) The probability law µj on mj is absolutely continuous and has everywhere
strictly positive C∞ density fj with respect to dψ1, . . . , dψkj

for any C∞ param-
eterization (ψ1, . . . , ψkj

) on an open set in mj.

If compatibility and (4.7) hold, and mi ⊂ mj of the same dimension, then
for any parameterization on an open set V ⊂ mj, fi on mi ∩ V is fj restricted
to mi ∩ V and renormalized by a constant multiple. Next, we assume:
(4.8) Each modelmj is included in (or equal to) a modelmi of the same dimension
which is a manifold.

We calculate the posterior probability that the model mj is best, given nk
observations forming the kth data set, k = 1, . . . ,K, and given the prior proba-



INFORMATION CRITERIA FOR MULTIPLE DATA SETS 279

bilities as described above: by (4.3) and (4.5) it equals

νx(m
(K)
j ) = βj

∫
m

(K)
j

exp
[ K∑
k=1

(
nk∑
i=1

Xk
i ) · φk − nkb(φk)

]
dµj(φ1) · · · dµj(φK)/Dx,

where the denominator Dx depends on x and n1, . . . , nK but not on the model
mj. Let n∗ = (n1, . . . , nK), S(n∗, j) := S(n∗, j, x) := log(νx(m

(K)
j )). Recall that

a model mj is competitive if the true θ(K) = (θ1, . . . , θK) is in the closure of
m

(K)
j . Then θ(K) is in the closure of mK

j , so θk is in the closure of mj for all
k. Since θk belongs to some model by (3.0), it must belong to mj by (3.4). So
θ(K) ∈ mK

j . For a 2× 2 contingency table as in Section 2.1, if independence does
not hold, then M4 is competitive and I2 is not; if independence holds, M4 and
I2 are both competitive. In the baseball example in Section 2.2, if all true means
are zero (for several data sets), all models m1, m2, m3, m4 are competitive. If
all true means are positive (in m2), m2 is competitive and m1, m3, m4 are not
competitive.

Definition. A model mj will be called fully competitive if it is competitive
and in the neighborhood of θ(K), mK

j is a manifold and Nj a finite union of
lower-dimensional manifolds or manifolds-with-boundary. Let B∞,2(θ(K), r) :=
{φ : |η(φk) − η(θk)| ≤ r for k = 1, . . . ,K} where η(φk) and η(θk) denote local
coordinates for φk and θk in a parameterization near θk, and |x − y| denotes
the Euclidean distance beween x and y in Rkj . The model mj will be called
well competitive if µKj (B∞,2(θ(K), r)) > 0 for all r > 0 and for some δ > 0

µKj (B∞,2(θ(K), r) ∩m(K)
j ) ≥ δµKj (B∞,2(θ(K), r)) for all r small enough.

Roughly speaking, for a well competitive model mj, in a neighborhood of
θ(K), m

(K)
j will occupy a wedge or cone with strictly positive solid angle at θ(K),

as opposed, for example, to a case where m(K)
j has a sharp “thorn” at θ(K) like

the set 0 ≤ y ≤ x2 at (0, 0). In our examples in Section 2, all competitive
models are fully competitive, except for the baseball data when some true means
are zero; then all competitive models are well competitive (see Figure 1: m1 is
well competitive but not fully competitive in this case). Under a C∞ change
of parameterizations, the Euclidean metric and thus the sets B∞,2(θ(K), r) will
change, but we note that the “well competitive” condition is preserved, possibly
with a different δ.

The best model is always competitive and will be fully competitive under
(3.5′).

The next assumption will be needed for part (E) of the following Theorem
4.1:
(4.9) For some β, 1 < β <∞, ni/nk ≤ β2 for all i, k and ni, nk.
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For any real-valued function f of a vector ψ of m real variables ψ1, . . . , ψm,
let Dψf be the gradient (∂f/∂ψ1, . . . , ∂f/∂ψm). D2

ψf will be the matrix of
second derivatives ∂2f/∂ψi∂ψj . If f is vector-valued, f = (f1, . . . , fd), then Dψf

will mean the d ×m matrix {∂fi/∂ψj}. The implications of the following main
theorem will be discussed after its statement:

Theorem 4.1. Let K independent data sets be given, where the kth consists
of nk observations i.i.d. Pθk

, and assume (3.0), (3.1), (3.4), (3.5), (3.6), (4.1),
(4.2), compatibility of the models, and (4.4) through (4.8) hold. Then the best
model is fully competitive and:
(A) If mi is not competitive then the probability that SBICR chooses it goes to 0
exponentially in nk for some k.
(B) If mj is fully competitive then we have as n1, . . . , nK → ∞:

S(n∗, j) = T (n∗, j) − logDx +
K∑
k=1

Op(n
−1/2
k ), where

T (n∗, j) = log βj +
K∑
k=1

[
nk sup

φ∈mj

(Xk · φ− b(φ)) − 1
2
kj log(

nk
2π

) + log fj(θ
j,k
nk

)

−1
2

log det{irs(θj,knk
)}
]
,

Xk = 1
nk

∑nk
i=1X

k
i , and θ

j,k
nk

is the point of mj, eventually defined and unique
almost surely as n1, . . . , nK → ∞, where the function φ �→ Xk · φ− b(φ) attains
its maximum, k = 1, . . . ,K, and irs is the Fisher information matrix of the
model mj in a parameterization η for mj at θj,knk

. Here fj is the density of µj
with respect to dη1, . . . , dηkj

. The same assertion holds if T (n∗, j) is replaced by
TL(n∗, j) where the information matrix irs is replaced by −Lrs = −D2

ηFk, where
Fk is 1/nk times the kth log likelihood function, i.e. Fk(η) := Xk ·φj(η)−b(φj(η)),
and where φj(η) is the point of mj ⊂ Rd with coordinates η. Also:

SBICR(mj) = T (n∗, j) +Op(1) = TL(n∗, j) +Op(1).

(C) If mγ is competitive, then

S(n∗, γ) ≤ T (n∗, γ) − logDx +Op(1) = SBICR(mγ) − logDx +Op(1)

=
K∑
k=1

[nk sup
φ∈mγ

(Xk · φ− b(φ)) − 1
2
kγ log nk] − logDx +Op(1).

(D) For any model mγ and competitive model mj ,

SBICR(mγ) ≤ SBICR(mj) − 1
2
(kγ − kj)

∑
k

log nk +Op(1).
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If mγ is also competitive then SBICR(mγ) = SBICR(mj)− 1
2(kγ − kj)

∑
k log nk

+Op(1).
(E) For any well competitive model mj , if (4.9) holds,

S(n∗, j) =
K∑
k=1

[nk sup
φ∈mj

(Xk · φ− b(φ)) − 1
2
kj log nk] − logDx +Op(1).

Also, S(n∗, j) = SBICR(mj) − logDx +Op(1).

Brief sketch of the proof

(A) One shows that m(K)
i ⊂ ⋃

kGk where the Gk are such that the overall
(for all K data sets) log likelihood on Gk is less than its value at θ(K) by at
least cknk/2 except on an event with probabilities going to zero exponentially
in min(n1, . . . , nK) (this uses a theorem of Cramér (1938) on tail probabilities
as improved by Petrov (1954)). But by (3.6), the difference in penalty functions
cannot favor mi over the best model mj by more than cknk/3, so (A) follows.

(B) One shows that if mj is well competitive, the posterior probability
νx(m

(K)
j ) defined in (4.3) equals:

(1 −R)βj
∫
mK

j

hK(x, φ(K))dµKj (φ(K))/Dx,

where R is exponentially small in min(n1, . . . , nK) with probabilities going to one
as n1, . . . , nK → ∞. The domain of integration of interest is now the Cartesian
product mK

j , so that the integral on mK
j splits into a product of integrals on

mj. For each integral on mj, one can then apply the results in Haughton (1988)
established by a Laplace expansion method which yields the terms in (B).

(C) By (4.8), mγ is included in a model mi which is a manifold and so that
the dimensions of mi and mγ are equal. One then shows that

νx(m
(K)
j ) ≤ βjCi

∫
mK

i

hK(x, φ(K))dµKi (φ(K))/Dx,

where Ci is a constant. The integral on mK
i is then treated as in (B).

(D) follows easily from (3.3).
(E) The inequality ≤ between the left and right hand sides of (E) follows

easily from (C). The difficulty is to prove the other direction ≥. The key is to
obtain for each k lower bounds on balls of radius C/n1/2

k for the integrand hK in
(4.3); this is done with Taylor expansions, separately for the two cases where the
M.L.E. θ̂k on mj is in the interior of mj, and where θ̂k is on the boundary of mj

(itself a manifold of dimension kj − 1). The volume condition in the definition of



282 RICHARD M. DUDLEY AND DOMINIQUE HAUGHTON

a well competitive model applied to the balls of radius C/n1/2
k yields the terms

in (E).

Comments on Theorem 4.1. Now let’s see why Theorem 4.1 shows that
SBICR procedures are approximations to Bayes procedures for priors satisfying
the given assumptions. Non-competitive models have their probabilities of being
chosen, either by SBICR or Bayes procedures, going to 0 exponentially in some
sample size nk. For fully competitive models, the terms that approach ∞ in both
the SBICR criterion statistic and the logarithm of the numerator of the posterior
probability agree, so that the difference of the statistics is bounded in probability.
Better agreement is possible for specific priors as we saw in Section 2.1.

Clearly, no procedure not depending on priors can fit with all Bayes proce-
dures (for priors of the assumed kind) without having possible errors correspond-
ing to constants added to the logarithms of the posterior probabilities, since the
different logs of (priors and thus the) posterior probabilities themselves can differ
in this way.

Under our assumptions a competitive model other than the best model must
have higher dimension than the best model. Thus the Op(1) bound in Theorem
3.1(D) will be duly dominated by the difference in penalties.

For a well competitive model, under (4.9) Theorem 3.1(E) shows that the
SBICR procedure gives a criterion within Op(1) of deciding on the basis of the
log of the posterior probability that a model is best.

Example 4.1. For models which are not well competitive, the SBICR procedure
may not be very close to a Bayes procedure: let m1 = {(x, y) : y ≥ 0} and m2 :=
{(x, y) : y ≥ x4}, with m3 = {(0, 0)}, and let (0, 0) be the true parameter θ. Then
m1 and m2 are both competitive but not fully so. For any K, m(K)

1 is a rather
thin set near ((0,0),. . . ,(0,0)), so that posterior probabilities of neighborhoods
of θ(K) will be unusually small in relation to maximum likelihood. Here m1 is
competitive but not well competitive.

Example 4.2. It will be shown why condition (3.6) is needed in Theorems
3.1 and 4.1. Let the models consist of normal laws on R2 with unit covariance
matrix having arbitrary mean in R2 for the second model m2 and mean of the
form (µ, 0) for the model m1. Let the prior probability µ1 = N(0, 1) on the x axis
and µ2 = N(0, I) on the plane. Let θ1 = (0, 0) and θ2 = (0, 1). Then m2 is the
best model, and m1 is not even competitive. If log n1 → ∞ faster than n2, then
it can be checked directly that asymptotically the Bayes and SBICR choices of
“best” model will both be m1. In this sense the Bayes and SBICR procedures
are not consistent in such a case of widely different sample sizes. Note that a pair
(θ1, θ2) of which just one is in a model of lower dimension would have probability
0 of occurring under a prior of the assumed kind α1µ

2
1 + α2µ

2
2.
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