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Abstract: A unique feature of panel data is that temporal and cross-sectional varia-

tions are often confounded with one another. Numerous models have been proposed

in the literature to describe different aspects of these variations. This article at-

tempts to integrate model selection into categorical panel data analysis. To this end,

conventional methods are often inappropriate because most of them are designed

to compare submodels that belong to the same parametric class. We introduce

the generalized accumulated prediction error (GAPE) for panel data and propose

to use it as a model selection criterion. Theoretical properties of GAPE will be

discussed. The results are applied to a set of scanner data drawn from marketing

research.
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1. Introduction

Panel data are longitudinal records taken from a group of individuals selected
randomly from a population. In economics and many other social sciences, re-
searchers use longitudinal survey data to monitor and to predict aggregate social
trends (Hsiao (1986)). In medical research, cohorts of subjects are usually fol-
lowed for a long period of time in order to determine or to establish evidence
for causal factors (Diggle, Liang and Zeger (1994)). In marketing research, the
use of consumer panel and the collection of household purchasing records has
been a common practice for decades (Guadagni and Little (1983)). In general,
panel data contain substantially more information than traditional cross-sectional
survey data or aggregate time series data. By looking at individual traces, re-
searchers can study patterns of temporal change in much greater detail. That
aggregate and individual data do not necessarily tell the same story is well docu-
mented in the literature. Table 1 shows an example, known as Simpson’s Paradox,
in which the observed trend at the aggregate level contradicts trends observed
at a disaggregate level (Cohen (1986), Samuels (1993), Benjamini and Krieger
(1992)). See Haccou and Meelis (1994) and Massy, Montgomery and Morrison
(1970) for more applications.
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Table 1. An example of Simpson’s Paradox

Period I Period II
N n n/N N n n/N

Group I 40 10 10/40 90 25 25/90
Group II 60 20 20/60 10 4 4/10
Combined 100 30 30/100 100 29 29/100

From time period I to time period II, the market share of brand A increases
within each of the two consumer groups. When the two groups are combined,
the aggregate market share of brand A decreases (N=number of people buy-
ing; n =number of people buying brand A).

Technically, we can write panel data as (yit,xi, zt), i = 1, . . . , N, t =
1, . . . , T , where i labels individuals and t labels time. Here yit is a response
variable of main interest; xi is a vector of covariates that vary with i (e.g., demo-
graphic attributes that do not change over time); and zt is a vector of covariates
that depend only on t (e.g., environmental variables that have impact on all in-
dividuals). Occasionally, we also observe covariates that depend on both i and t.
The basic goal of panel data modeling is to describe and, hopefully, to understand
the cross-sectional and cross-time variation of the response variable yit. This can
be accomplished, for instance, by building regression models that relate yit to
the observed covariates xi and zt. Unfortunately, for panel data, the two sources
of variation are often confounded with one another. This creates interpretation
problems since models that seem entirely different can fit the data equally well.

To illustrate, suppose, in the absence of any covariate, that yit, t = 1, . . . , T ,
are i.i.d. random variables following the normal distribution N(θi, σ

2). In other
words, we assume that the observations from a given individual are not correlated
over time. The population heterogeneity is reflected through variations in θi. In
the spirit of the empirical Bayes method, let us assume that θi, i = 1, . . . , N ,
are i.i.d. random variables following a normal distribution N(µ, τ2). It is then
straightforward to verify that the unconditional joint distribution of (yi1, . . . ,yiT )
is multivariate normal N(µJ, σ2I + τ2JJ ′), where I is the identity matrix and
J = (1, . . . , 1)′ is a T -dimensional column vector. Thus unconditionally, the
yit’s are correlated over time. What appears to be a temporal correlation at the
aggregate level is actually the side effect of population heterogeneity. Likewise for
categorical panel data, the order of dependence in a Markov chain would appear
to be higher when cross-sectional heterogeneity is present (Massy, Montgomery
and Morrison (1970), Haccou and Meelis (1994)).

Ideally, a model for panel data should address both temporal and cross-
sectional variations. However, a survey of the current literature quickly re-
veals that the modeling of cross-sectional variation receives much more attention
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than the modeling of temporal variation. Moreover, models that deal with non-
observable heterogeneity (e.g., random-effects and state-space models) dominate
the field. Most of these latent variable models ignore temporal correlation by
assuming that variables observed at different points of time are independent of
each other. Technical convenience is clearly not the main reason for such seem-
ingly unrealistic assumptions. In practice, cross-sectional variation is often a
more dominant data feature than temporal variation, especially when the panel
record is “short”. Even for “long” panel records, it is not clear whether one can
improve a model in any way simply by relaxing assumptions of independence
(e.g., mixtures of independence models). The confounding problem described
earlier plays an important role in this dilemma. In other words, it is intrinsi-
cally impossible to separate temporal and cross-sectional variations by means of
modeling techniques.

Of considerable practical importance therefore is the problem of model selec-
tion, the goal being to assess the merits of different models objectively. What sets
our problem apart from conventional model selection is that models of different
types are often involved in panel data analysis. Usually, the number of param-
eters ceases to be an effective measure of model complexity, rendering standard
model selection methods such as AIC (Akaike (1973)) and BIC (Schwarz (1978))
completely inappropriate. In this paper, we shall adopt a predictive approach,
i.e., select the model that minimizes the prediction error. To be specific, suppose
that gt = g(y1t, . . . ,yNt) is a cross-sectional statistic that we wish to monitor.
The performance of a model can be measured by its ability to predict future
values of gt. We define the generalized accumulated prediction error (GAPE) as

GAPE =
T∑

t=t0

D(gt, ĝt), (1)

where ĝt is a model based predictor of gt, D(·, ·) is a distance function, and t0
is an initial value usually chosen to be large enough so that ĝt0 is reasonably
accurate. Suppose that a set of models M1, . . . ,MK is under consideration.
The models could assume similar mathematical forms or they could differ in
arbitrary ways. Model selection here amounts to choosing the model Mk that
yields the minimum GAPE. An important special case of (1) is when the target of
prediction equals to the vector of individual data points, i.e., gt = (y1t, . . . ,yNt).
The corresponding GAPE is reduced to the ordinary accumulated prediction
error (APE) criterion, originally proposed by Rissanen (1986a, 1986b, 1987). A
more thorough treatment of APE can be found in Wei (1992). See also Dawid
(1984). By and large, the asymptotic behavior of the ordinary APE has been
shown to be very similar to that of BIC, which penalizes model complexity by a
factor that is proportional to the log of sample size (Schwarz (1978)).
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The existing literature on panel data analysis focuses largely on continuous
data and linear models (Hsiao (1986)). The current paper treats the case when
the observed response yit is a categorical variable. In Section 2, we discuss issues
that arise when modeling such data. In particular, we introduce a special case
of the GAPE criterion, referred to as GAPEKL, for categorical panel data. In
Section 3, we derive some asymptotic properties for the newly defined GAPEKL.
It is well known, for linear models, that the ordinary APE is asymptotically
equivalent to BIC. By contrast, we show in Section 4 that GAPEKL behaves
rather differently. In addition to penalizing model complexity, our GAPEKL

criterion also represents a trade-off between different levels of heterogeneity. In
Section 5, we apply the GAPEKL criterion to an actual set of scanner panel
data drawn from marketing research and show that modeling heterogeneity yield
more accurate prediction than modeling temporal dependency. Some concluding
remarks are given in the final section.

2. Categorical Panel Data

This paper is concerned with categorical panel data of the following form:

yit = {yit(0), yit(1), . . . , yit(K)}, i = 1, . . . , N, t = 1, . . . , T,

where yit(k) are 0-1 variables satisfying
∑

k yit(k) = 1. Thus at any given point
of time, a panelist can choose, either voluntarily or passively, among K possible
outcomes. The panelist could also decline all the available choices. When this
happens, we observe yit(0) = 1. For fixed t and i, we have a categorical variable
with K + 1 categories. For given t, it is natural to assume that observations
obtained from different individuals are independent. When i is fixed, yit, t =
1, . . . , T, can be viewed as a categorical time series. Figure 1 shows some examples
of such time series records in the marketing context. For later expositions, we
need the following

Assumption I. The response variables yit, i = 1, . . . , N ; t = 1, . . . , T, are inde-
pendent across both i and t.

Technically, we could treat the event {yit(0) = 1} as one of the available
choices and model the K + 1 probabilities Pr{yit(k) = 0}, k = 0, 1, . . . ,K, simul-
taneously. In practice, depending on the type of data available, it is often more
realistic to separate the event {yit(0) = 1} from the rest of the choices. In the
context of marketing research, for example, one might want to study the impact
of advertising on consumer behavior (e.g., brand choice). This would be impos-
sible if none of the panelists made any purchases. Thus models for categorical
panel data often consist of two parts. First, at any given time, one needs to
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separate people who are active in making choices and people who are idle. In
other words, we first need to model the probability

πit(α) = Pr{yit(0) = 1}.
Then, choice decisions can take place only if the person is active. A choice model
is therefore a model for the conditional probability

pit(k, θ) = Pr{yit(k) = 1|yit(0) = 0}, k = 1, . . . ,K.

Most measured covariates have impact only on pit(k, θ). One has little infor-
mation as far as the modeling of πit(α) is concerned. For binary data, we have
K = 1 and there is no need to address the conditional event. In choice models,
however, the conditional probability is the focus.

Throughout this paper, to emphasize to purpose of model selection, we shall
not specify the mathematical forms of πit(α) and pit(k, θ), with the understanding
that different specifications would lead to different models. For example, logistic
regression models can be used to link both πit(α) and pit(k, θ) to covariates xi

and zt. Notice, however, that our description excludes random effects models.
When Assumption I holds, models πit(α) and pit(k, θ) give an adequate account
of the data. Otherwise, we would need to model the evolution of conditional
probabilities over time (e.g., Markov chains). See Sections 1 and 5 for more
discussion on the feasibility of Assumption I. Throughout this paper, we use the
terms cross-sectional and cross-time heterogeneity to describe deterministic (as
opposed to random) variations in πit(α) and pit(k, θ).

The main goal of the current article is to explore the properties of GAPE as
a model selection criterion. To accomplish this, we need to specify the three com-
ponents in the definition of (1). First, the performance of GAPE will obviously
depend on the prediction target gt. Next, we need to construct a predictor ĝt

based on models πit(α) and pit(k, θ). Different constructions will lead to differ-
ent criteria. Finally, one should also be specific about the choice of the distance
function D(·, ·). We illustrate the three steps as follows:

The Prediction Target. For categorical data, statistical quantities of prac-
tical interests are various sample proportions. In our case, since the goal is to
model choice behavior, a natural target of prediction is the vector of conditional
frequencies

st(k) =

{
N∑

i=1

yit(k)

} /{
N −

N∑
i=1

yit(0)

}
, k = 1, . . . ,K. (2)

In the context of marketing research, st(k) represents the market share of brand
k. Throughout this paper, we shall assess the merits of models πit(α) and pit(k, θ)
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according to their ability to predict the market share vector st ={st(1), . . . , sK(t)}.
In other words, we consider only the special case when gt = st in (1).

Construction of Predictor. We shall derive an intuitive predictor of st by
means of asymptotic approximation. As N → ∞, it is easy to verify that

N−1
N∑

i=1

yit(0) = N−1
N∑

i=1

πit(α) + op(1).

Likewise, we have

N−1
N∑

i=1

yit(k) = N−1
N∑

i=1

{1 − πit(α)}pit(k, θ) + op(1), k = 1, . . . ,K.

Hence an asymptotic approximation of st(k) is

p̃t(k, α, θ) =
N∑

i=1

rNi(α)pit(k, θ), (3)

where rNi(α) = {1−πit(α)}/∑N
i=1{1−πit(α)}. In other words, st(k) = p̃t(k, α, θ)

+op(1). It is interesting to point out that the average of conditional probabilities,
i.e., N−1 ∑N

i=1 pit(k, θ), is not the correct approximation of st(k), due to possible
cross-sectional heterogeneity in πit(α). We propose to predict st(k) by

ŝt(k) = p̃t(k, α̂t−1, β̂t−1) =
N∑

i=1

rNi(α̂t−1)pit(k, θ̂t−1), (4)

where α̂t−1 and θ̂t−1 are parameter estimates (e.g., mle) based on data observed
up to time t− 1. Thus in equation (1), we have ĝt = ŝt = {ŝt(1), . . . , ŝt(K)}.
The Distance Function. Since both st and ŝt are probability vectors, i.e.,
vectors with non-negative components that sum up to one, we should choose a
metric that measures the distance between density functions. Throughout this
paper, for technical convenience, we use the Kullback-Leibler distance

DKL(p,q) =
K∑

k=1

p(k) log{ p(k)/q(k)},

where p and q are two arbitrary probability vectors with components p(k) and
q(k) respectively. Other common choices include the chi-square distance

D2(p,q) = 2−1
K∑

k=1

{ p(k) − q(k)}2/p(k)
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and the Hellinger distance

DH(p,q) =
K∑

k=1

{√
p(k) −

√
q(k)

}2

.

To summarize, the problem that we shall treat in this paper is that of predict-
ing st using ŝt under the Kullback-Leibler distance. The corresponding GAPE
criterion shall be denoted as

GAPEKL =
T∑

t=t0

DKL(st, ŝt), (5)

whose asymptotic properties will be discussed in the next section.

3. Asymptotic Properties of GAPEKL

There are two basic concerns in a typical model selection problem: goodness-
of-fit and model complexity. One wants to fit the data well with models that are
as simple as possible. The goal of model selection is to find a compromise between
the two contrasting goals. It is therefore of crucial importance to understand the
trade-off mechanism of a proposed model selection criterion. Currently known
results on the ordinary APE all indicate that it behaves similarly to the well
known BIC criterion. Why should we expect anything different from GAPEKL?
First, the short answer is that the definitions of APE and GAPEKL are different.
More specifically, as we discussed in the previous section, properties of ĝt, hence
the properties of GAPEKL, depend not only on the dimensions of α and θ, as
BIC does, but also on the cross-sectional heterogeneity of πit(α) and pit(k, θ),
which BIC does not address.

To derive a meaningful decomposition of (5), let us first define

p̃t = { p̃t(1, α, θ), . . . , p̃t(K,α, θ)},
where p̃t(k, α, θ) is as defined in (3). We can decompose GAPEKL as

GAPEKL =
T∑

t=t0

DKL(st, p̃t) + ξNT + ηNT , (6)

where

ξNT =
T∑

t=t0

K∑
k=1

st(k) log{ p̃t(k, α, θ)/p̃t(k, α, θ̂t−1)}

and

ηNT =
T∑

t=t0

K∑
k=1

st(k) log{ p̃t(k, α, θ̂t−1)/p̃t(k, α̂t−1, θ̂t−1)}.
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The three terms on the right hand side of (6) can be roughly described as
follows: If the underlying models are correct, we should have st = p̃t + op(1).
Hence the first term is a measure of goodness-of-fit. The second term, i.e., ξNT ,
is small when θ̂t−1 is close to θ. Hence it is related to the accuracy of θ̂t−1, which
in most cases is proportional to the dimension of θ. Likewise, the third term, i.e.,
ηNT , is related to the dimension of α. To further understand the decomposition
in (6), let us define matrices

VT =
T∑

t=1

N∑
i=1

K∑
k=1

{1 − πit(α)}
pit(k, θ)

{
∂pit(k, θ)

∂θ

} {
∂pit(k, θ)

∂θ

}′

and

WT =
T∑

t=1

N∑
i=1

1
πit(α){1 − πit(α)}

{
∂πit(α)
∂α

} {
∂πit(α)
∂α

}′
.

Note that VT and WT are the Fisher information matrices for θ and α respec-
tively.

Define random variables ANT and BNT such that ξNT = ANTN
−1

log det(WT ) and ηNT = BNTN
−1 log det(VT ). Thus (6) becomes

GAPEKL =
T∑

t=t0

DKL(st, p̃t) +ANTN
−1 log det(WT ) +BNTN

−1 log det(VT ).

(7)
The main result of this paper is the following theorem, which shows that ANT

and BNT in the above equation are asymptotically non-negative and bounded.

Theorem 1. Suppose that the maximum likelihood estimates of θ and α are
asymptotically consistent and efficient. Furthermore, suppose that there exist
positive constants ρ and γ such that πit(α) ≤ ρ and N−1 ∑N

i=1{p̃t(k, α, θ) −
pit(k, θ)}2 ≤ γ. Then as N → ∞ and T → ∞, the random variables ANT

and BNT in (7) satisfy

0 ≤ E(ANT ) ≤ 2−1(1 − ρ)−1

and
0 ≤ E(BNT ) ≤ 8−1(1 − ρ)−2γ.

Proof. See the Appendix.

A number of remarks are in order here. By comparing (6) with (7), it is
clear that ξNT and ηNT serve as penalties for the complexity of models πit(α)
and pit(k, θ) respectively. The decomposition in (7) is quite similar to standard
results for linear models (Wei (1992)). The difference is that the two terms ANT
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and BNT , both equal to a constant in ordinary APE, are now dependent on the
underlying models. Moreover, what is not shown in Theorem 1 is the fact that
the two penalty terms are related. In fact, we shall argue in the next section that
ANT and BNT tend to move in opposite directions. The same conditions that
make one term large would make the other term small. Furthermore, we will
also argue that this negative correlation is driven by the level of heterogeneity
in the underlying models. How large the penalty terms are depend on how
heterogeneous the models are. Thus the GAPEKL criterion not only penalizes
model complexity, but also determines the level of heterogeneity that we should
build into our models.

4. The Difference Between GAPEKL and BIC

4.1. The ambiguity of BIC

The general expression of the BIC criterion is

−2 log(maximum likelihood) + (model dimension) × log(sample size).

Accordingly, the BIC criterion in our case can be written as

BIC = −2 logL(θ̂T , α̂T ) + {dim(θ) + dim(α)} log(NT ) = BICπ + BICp, (8)

where

BICπ = −2
∑

i

∑
t

[yit(0) log{πit(α̂T )} + {1 − yit(0)} log{1−πit(α̂T )}]

+ dim(α) log(NT )

and
BICp = −2

∑
i

∑
t

∑
k

yit(k) log{ pit(k, θ̂T )} + dim(θ) log(NT )

correspond to models πit(α) and pit(k, θ) respectively. Alternatively, one can
treat the modeling of the initial decision yit(0) and the modeling of the choice
activities {yit(1), . . . , yit(K)} as separate problems. By doing so, one can then
choose models πit(α) and pit(k, θ) separately. The problem with this latter ap-
proach, often used in marketing research, is that the meaning of sample size
becomes ambiguous. For example, the BIC criterion for πit(α) shall be given by
the BICπ component in (8). However, the BIC criterion for pit(k, θ), when viewed
as conditional models, is different from the BICp component in (8), the reason
being that for any fixed t, the effective sample size in the conditional model
pit(k, θ) is not N , but N − ∑

i yit(0) instead. For example, in the marketing
research literature, one often selects brand choice models by minimizing

−2
∑

i

∑
t

∑
k

yit(k) log{ pit(k, θ̂T )} + dim(θ) log(Nc),
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where Nc = NT − ∑
i

∑
t yit(0) is the number of “purchase occasions”. The

upshot, of course, is that the results of model selection via BIC would be very
different depending on whether one treats the modeling of πit(α) and pit(k, θ) as
separate problems or as the integral parts of a single modeling problem. This
controversy does not arise when using GAPEKL because the construction of the
prediction rule, hence the performance of GAPEKL, depends on both πit(α) and
pit(k, θ). In other words, one is not allowed to treat the two parts as separate
problems.

4.2. GAPEKL and heterogeneity

A simple comparison between GAPEKL and BIC can be made by comparing
the asymptotic orders of the corresponding goodness-of-fit and penalty terms. To
this end, let us assume that (NT )−1VT → V and (NT )−1WT → W for some
positive definite matrices V and W. Under these assumptions, we have

log det(WT ) ≈ dim(α) log(NT ) + log det(W)

and
log det(VT ) ≈ dim(β) log(NT ) + log det(V).

Note also that DKL(st, p̃t) = O(N−1). Table 2 shows the results of a side-by-side
comparison between GAPEKL and BIC.

Table 2. Comparison of asymptotic orders

Goodness-of-fit Penalty for πit(α) Penalty for pit(k, θ)
GAPEKL O(TN−1) ANT dim(α)N−1 log(NT ) BNT dim(β)N−1 log(NT )

BIC O(TN) dim(α) log(NT ) dim(β) log(NT )

The three terms in GAPEKL are as in (7). The three terms in BIC are as in (8)

A number of interesting observations can be drawn from Table 2. First,
the goodness-of-fit terms in GAPEKL and BIC are not directly compara-
ble. One needs to multiply GAPEKL by N2 in order for it to be compara-
ble with BIC. After the modification, the penalty terms in GAPEKL become
ANT dim(α)N log(NT ) and BNT dim(θ)N log(NT ) respectively. Thus, if ANT

and BNT were bounded away from zero, GAPEKL will penalize model complex-
ity more heavily than BIC does, especially when N is large. In other words,
models selected by GAPEKL will be simpler than models selected by BIC. How-
ever, since the zero lower bounds in Theorem 1 are both reachable, there is more
to the comparison of GAPEKL and BIC than Table 2 indicates. In fact, the
following result holds:
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Theorem 2. Let p̃t(k, α, θ) be the asymptotic approximation of st(k) as defined
in (3). Let ANT and BNT be as in Theorem 1. Then (a) A sufficient condition
for E(ANT ) → 0 is ∂p̃t(k, α, θ)/∂θ → 0; (b) E(BNT ) reaches its lower bound
when either πit(k, θ) or pit(k, θ) does not depend on i; and (c) The upper bound
for E(ANT ) is reached when pit(k, θ) does not depend on i.

Proof. See the Appendix.

In addition to compromising between goodness-of-fit and model complexity,
as most model selection criteria do, Theorem 2 shows that the GAPEKL crite-
rion also determines the level of heterogeneity allowed in the models πit(α) and
pit(k, θ). The ξNT term in (6) penalizes homogeneous models, whereas the ηNT

term in (6) penalizes heterogeneous models.

5. Application

A rapidly growing area of empirical research where categorical panel data
are frequently encountered is marketing research. The increasing availability
of electronic scanner data have enabled researchers to study in greater detail a
consumer’s reaction to marketing stimulations. Consider the widely used multi-
variate logit model:

pit(k, θ) =
exp{x′

it(k)β(k)}∑K
j=1 exp{x′

it(j)β(j)} , (9)

where xit(k) is a vector of covariates, β(k) is a vector of unknown parameters,
and θ = {β′(1), . . . , β′(K)}′. The implicit assumption in (9) is that all varia-
tions can be described through observable variables. The chief attraction of such
“fixed effects” models is their straightforward interpretations and easy compu-
tational implementation. However, much of the variation, as is often argued,
cannot be observed directly. Random effects models are often used in the latter
case to handle the problem of hidden heterogeneity. Unfortunately, the literature
on random effects models is largely confined to linear regression models due to
formidable technical difficulties encountered in general non-linear models. As a
compromise, discrete mixture models are often used as simple approximations to
general random effects models (Kamakura and Russel (1989), Gupta and Chin-
tagunta (1994)). Efforts have also been made to model or to test the existence
of temporal correlations. Using the technique of Gibbs sampling, Allenby and
Lenk (1994) incorporate an autocorrelation structure in the random effects logit
model. For other related models of serial correlation, see Gilula and Haberman
(1994), Diggle, Liang and Zeger (1994), Cosslett and Lee (1985) and Gottschau
(1994).
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Tropicana Premium
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Figure 1. Purchasing records of four households

The solid boxes represent purchase occasions. The empty circles at the bot-
tom correspond to no purchase weeks. Week 175 is the beginning of 1983.
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One approach to assess the merits of different models is through model se-
lection. An objective comparison of different models would not only enhance our
understanding of the data structure, but also point to the right directions for
further research.

The data used in the following application, obtained from Information Re-
sources, Inc., consist of weekly purchasing records for 200 households in Marion,
Indiana, from the beginning of 1983 through the middle of 1985 (Fader and
Lattin (1993)). Six popular brands of orange juice are included as the product
class for this study. Figure 1 depicts the purchasing patterns of some typical
panel households. Clearly, there is substantial amount of heterogeneity across
consumers. Some make frequent purchases. Others buy occasionally. Some stay
loyal to a certain brand while others switch among different brands in an appar-
ently random fashion. In addition to the purchasing records, we also have data
on store environment like price and feature advertisement.

Guadagni and Little (1983) introduce the variable

LOYit(k) = λLOYi,t−1(k) + (1 − λ)yi,t−1(k),

as a measure of consumer i’s loyalty towards brand k, where λ ∈ [0, 1] is an
unknown constant. The so called loyalty model is a logit regression model with
LOYit(k) as one of the covariates. When λ = 1, LOYit(k) becomes a measure of
heterogeneity since it does not depend on t. When λ = 0, LOYit(k) = yi,t−1(k)
and the corresponding loyalty model reduces to a simple Markov regression model
(Diggle, Liang and Zeger (1994)). By varying the value of λ, the loyalty model can
be used to gauge various combinations of temporal and cross-sectional variations.
We consider the choice of λ as a model selection problem. Incidentally, both AIC
and BIC give the maximum likelihood estimate of λ because the dimension of
the parameter space does not depend on λ.

For the data described above, we have N = 200, T = 130 and K = 6. The
two environmental variables that we derive from scanner data are (i) PRICEit(k),
which equals the acting price of brand k at time t in the store where consumer i
made the purchase; and (ii) ADVERit(k), which equals 0,1,2 respectively when
none, one, or both of feature advertisement and price discount is present for brand
k at time t in the store where consumer i made the purchase. We use the 1983
data for initialization (t0 = 52) and calculate the one week ahead prediction error
for each of the subsequent weeks until the end of the study period (T = 130).
Figure 2 depicts the GAPE as a function of λ under different distance functions.
Figure 3 shows the maximum log-likelihood as a function of λ. Regardless of the
choice of distance functions in (1), the value of λ that minimizes GAPEKL is
substantially larger than the maximum likelihood estimate of λ, indicating that
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Figure 2. GAPE as a function of λ

The solid line corresponds to GAPEKL. The dotted and the dashed lines
correspond to GAPE under the χ2-distance, and the Hellinger-distance re-
spectively. The values of GAPE are rescaled so that GAPE(0) = 1. The
optimal values of λ for the three distance functions are 0.9148, 0.9311, 0.9311
respectively.
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Figure 3. Log likelihood as a function of λ

The maximum likelihood estimate of λ is λ̂ = 0.7846, which coincides with
the value chosen by AIC and BIC.
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modeling cross-sectional heterogeneity (i.e., large λ) would yield better market
share predictions than modeling temporal correlation (i.e., small λ).

6. Final Remarks

In the previous section, we did not specify the form of πit(α). To calcu-
late market share predictions, we simply estimated the rNi terms in (3) by the
corresponding sample proportions. Technically, this corresponds essentially to a
nonparametric model for πit(α), or alternatively, a parametric model with large
dim(α). Thus in our application, the first penalty term in (6) is likely to dominate
the second penalty term. According to Theorem 2, it is therefore not surprising
that the GAPEKL criterion favors heterogeneous models.

Modeling categorical panel data is a difficult problem. Much of the difficulty,
nevertheless, lies in the unique structure of panel data rather than deficiencies
in methodology. A good understanding of individual behavior does not necessar-
ily lead to accurate predictions of aggregate outcomes, no matter how good the
models are otherwise. For instance, it is counter-intuitive to assume that indi-
vidual decisions are independent across time. Yet decades of empirical research
have shown that cross-sectional heterogeneity plays a more important role in the
modeling of panel data. We reached the same conclusion in our application. The
irony here is that a “wrong” model might wind up doing better than a “true”
model. It is therefore not the true model that we should be looking for in model
selection, but models that would help us accomplish specific goals.

Finally, we point out that aggregate prediction is not always the natural
goal of modeling. In many cases, cross-sectional prediction is of more interest.
A typical example is the classification problem. In the context of marketing
research, mixture models are used mainly to address the problem of market
segmentation. In other words, the goal here is to determine whether there are
different types of consumer behavior and how to classify individuals into one of a
few segments. Still, it is fair to say that models that fail to yield accurate market
share predictions are not serving their ultimate goals.
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Appendix

The proofs
The main step in the proof of Theorem 1 is the following
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Lemma 1. Let Bt =
∑t

j=1 Aj, where At, t = 1, . . . , T , are positive definite d×d
matrices satisfying ‖B−1

t−1At‖ = o(t) and ‖Bt‖ → ∞. Then there exists t0 large
enough such that

T∑
t=t0

tr(B−1
t−1At) = log det(BT ){1 + o(T )}.

Proof. Let λi(t), i = 1, . . . , d, be the eigenvalues of B−1
t−1At. Then by assump-

tion, we have maxi λi(t) → 0, as t → ∞, which further implies that

log det(I + B−1
t−1At) = log

∏
i

{1 + λi(t)} ≈
∑

i

λi(t) = tr(B−1
t−1At).

The conclusion follows since

log det(Bt) − log det(Bt−1) = log det(I + B−1
t−1At).

Proof of Theorem 1. Since p̃t(k, α, θ̂t−1) depends only on the past data, we
have from the definition of ξNT that

E(ξNT ) =
T∑

t=t0

K∑
k=1

E{st(k)} ·E log{ p̃t(k, α, θ)/p̃t(k, α, θ̂t−1)}.

Next, from Section 2, we have E{st(k)}→ p̃t(k, α, θ) as N→∞. Hence asymptot-
ically, E(ξNT )≈∑T

t=t0E{DKL(p̃t, s̃t)}, where p̃t = { p̃t(1, α, θ), . . . , p̃t(K,α, θ)}
and s̃t = {p̃t(1, α, θ̂t−1), . . . , p̃t(K,α, θ̂t−1)}. Under the assumptions, θ̂t is con-
sistent and efficient. Hence E{(θ̂t − θ)(θ̂t − θ)′} ≈ V−1

t . Following the Taylor
expansion p̃t(k, α, θ̂t−1) − p̃t(k, α, θ) ≈ {∂p̃t(k, α, θ)/∂θ}′(θ̂t−1 − θ), we get

E(ξNT ) ≈ 1
2

T∑
t=t0

K∑
k=1

1
p̃t(k, α, θ)

E{ p̃t(k, α, θ̂t−1) − p̃t(k, α, θ)}2

≈ 2−1
T∑

t=t0

tr{V−1
t−1∆Ut},

where

Ut =
t∑

j=1

K∑
k=1

1
p̃j(k, α, θ)

{
∂p̃j(k, α, θ)

∂θ

} {
∂p̃j(k, α, θ)

∂θ

}′

and ∆Ut = Ut − Ut−1. Next, the Cauchy-Schwarz inequality implies that

∆Ut ≤
N∑

i=1

K∑
k=1

rNi

pit(k, θ)

{
∂pit(k, θ)

∂θ

} {
∂pit(k, θ)

∂θ

}′
≤ (1 − ρ)−1N−1∆Vt,
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where for two matrices A and B, A ≤ B means that B − A is non-negative
definite. The second inequality in the above expression holds since

rNi = {1 − πit(α)}
/

N∑
i=1

{1 − πit(α)} ≤ (1 − ρ)−1N−1{1 − πit(α)}.

Consequently, we get

T∑
t=t0

E{DKL(p̃t, s̃t)} ≤ 2−1(1 − ρ)−1N−1
T∑

t=t0

tr{V−1
t−1∆Vt}.

It follows from Lemma 1 of the Appendix that

T∑
t=t0

E{DKL(p̃t, s̃t)} ≤ 2−1(1 − ρ)−1N−1 log det(VT ).

Hence the first inequality in Theorem 1 holds.
To prove the second inequality, let ψNt(k) = ∂p̃t(k, α, θ)/∂α =

∑N
i=1 pit(k, θ)

∂rNi/∂α. Then it is easy to verify that

ψNt(k) = (1 − π̄t)−1N−1
N∑

i=1

{ p̃t(k, α, θ) − pit(k, θ)}∂πit(α)
∂α

,

where π̄t =N−1 ∑N
i=1πit(α). Next, define Ũt=

∑t
j=1

∑K
k=1ψNj(k)ψ′

Nj(k). Then
the Cauchy-Schwarz inequality implies that

ψNt(k)ψ′
Nt(k) ≤ 4−1(1 − ρ)−2N−1γ∆Wt.

Notice that ∆Ũt = ψNt(k)ψ′
Nt(k). The result for ηNT follows from the same

argument that we used to treat ξNT .

Proof of Theorem 2. This is nearly a corollary of Theorem 1. The follow-
ing brief statements will be adequate: (a) When ∂p̃it(k, α, θ)/∂θ → 0, we have
(NT )−1WT → 0. Hence the conclusion; (b) By definition, γ = 0 when the model
is homogeneous. The conclusion follows from the second inequality in Theorem 1;
(c) Homogeneity is the condition for equality in the Cauchy-Schwarz inequality,
which is used to establish the upper bounds in Theorem 1.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.

In 2nd International Symposium on Information Theory (Edited by B. N. Petrov and
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