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ON SPITZER’S FORMULA FOR THE MOMENT
OF LADDER VARIABLES
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Abstract: Let X, X1, X2, ... belld. random variables, EX =0, S, = X1+---+ X,
and p(e) be the first n > 1 such that S,(e) < 0, where Sn(€) =S, — en for € > 0.
We prove that if E(|X~|*) < 0o, E|S,(0)| is the limit of E|S,(€)| as e — 0. When
E(X?) < 00, this limit is evaulated by a probabilistic method. Thus we have a new
proof of the Spitzer’s formula for the moment of ladder variable S, .

Key words and phrases: Euler constant, ladder variable, moment, random walks,
Spitzer’s formula, uniformly integrable.

1. Introduction

Let X, X1, Xs,... be iid, EX =0, E|X| > 0and S, = X1 + -+ + X,.
Define p=inf{n>1: S, <0}. Spitzer (1960) proved that if 02 = E(X?) < oo,

E(IS,)) = 2720 exp {in_l(P(Sn > 0) - %)} < 0. (1)
n=1

His method was analytic by applying generating functions associated with
fluctuation theory and a Tauberian argument. His approach was extended by Lai
(1976) to show that if E(|X[*1) < oo for some k = 1,2, ..., then E(|S,|*) < oo,
and an explicit expression was also given. By a probabilistic approach, Chow
and Lai (1979) established that if F(|X~[P*!) < oo for some p > 0, then

E(|Sp[") < oo. (2)

They replaced the driftless random walk S,, by the negative drift random
walk
Sp(e) =Sp—en, €>0

whose descending ladder variable S, ) (¢) is much easier to handle than the ladder
variable S,, where p(e) is the first n > 1 such that S, (e) < 0.
They showed that if E(|X~|P™!) < oo for some p > 0, then

E([Spe(e)I") = O(1), (3)

which implies (2) by Fatou’s lemma as € — 0.
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In this paper, we shall follow their approach to introduce S,(¢). By using
Erickson’s (1973) bounds for the renewal functions, we obtain the following result,
which is sharper than (3).

Theorem 1. Let X, X1, Xo,... be i.i.d. random variables, EX =0 < E|X| and
Sp=X1+--+X,. Fore>0, let S,,(¢) =S, — en and

p(e) =inf{n >1: 5,(e) < 0}, p = p(0).

Let p>1 and F(x) = P(X < x). Then

{140 (@F,0<e<1} isui (4)
iff
00 xp-i—l
/o vl AmyaR) K <) <o )
iff
E|S,|P < cc. (6)

The proof of Theorem 1 will be given in Section 2.

Klass (1983), (2.3) and Remark 2.5 proved that if EX? < oo, then (4) holds
and conjectured that the condition EX? < oo could be reduced to F(X )% < oo.
Since

/OOO y(y A x)dF (y)

is monotonically increasing and positive for x > 0,
BE(X7 )P < 00 (7)

implies (5). Hence Theorem 1 solves Klass’ conjecture.
Theorem 1 also gives an affirmative answer to the following question raised
by Chow (1986) Remark (ii) that whether (6) implies

E‘Sﬂ‘p = l%E‘Sp(e)(e)‘p
Since lim S, (€) = S, a.s., Theorem 1 implies that if E(|X~[PT!) < oo,
E(|S,P) =1lim E(]S,)(e)[?) < oo.
When p =1,

E(‘Sp(e)(e)D = _E(Sp(€)(6)) = _ESp(E) + eE(p(e))
= eE(p(e))
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by Wald’s lemma since FE(p(€)) < oo. By Feller (1971), p.416
E(p(e)) = exp {Zn_lP (Sp > ne) }
n=1
If E(|X~|?) < oo, then

E(1S,]) = lim exp { log e + in_lP (Sp > ne) } (8)

n=1
When EX? < 0o, the limit in (8) is given by the following Theorem 2.

Theorem 2. Let X, X1, Xo,... be i.i.d. random variables, E(X)=0< E(|X]),
Shn=X14+---+X,, and

n

K =lim (Zj_l - logn). 9)

j=1

If 0 = E(X?) < oo, then
lim 3 n~tP(S, > ne) +loge
(S0 p(s5, ) 410k}
=Y (PS8, > 0) - 5) + E(log [N (0, 1)]) + 5 +log o, (10)
n=1

where N(0,1) is the standard normal random variable.

The proof of Theorem 2 will be given in Section 3. The constant K defined
by (9) is the Euler constant (cf. Whittaker and Watson (1927), p.235). If we
assume (1), then from (8) and (10) we have the following result immediately.

Corollary 1. Let K be the Euler constant and ¢(z) be the density of the standard

normal random wvariable. Then

4/ o(z)logxdr = —K — log 2. (11)
0

Remark 1. Equation (11) gives a new formula for K. Other formulas for K
can be found in Whittaker and Watson (1927), p.236, p.246 and p.248. Even
without assuming (1), we can still prove (11) as follows.

Proof of Corollary 1. Let

I:/ o(z)log xdz, ['(z) :/ y e Vdy.
0 0
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Then I'"(z) = [3° y® Le ¥ log ydy and by letting 22 = 2y,
AT = 7 1/2 /OOO e Y(log2 + log y)y_1/2dy
== 12{1(1/2)log 2+ 1'(1/2)}.

By Whittaker and Watson (1927), p.236 and p.259
I'(1/2)

(1) = —K, ((1)) T(i/2) ~2ls? (12)
Since I'(1) = 1 and I'(1/2) = /7, from (12)
4] =log?2 + F((l//22)) —K —log?2,

which is (11).

Remark 2. When p = 1, Theorem 1, Theorem 2 and Corollary 1 yields a new
derivation for the Spitzer’s formula (1).

2. Proof of Theorem 1

(i) (4) = (6) = (5). By Fatou’s lemma, (4) impllies (6) and by Chow (1986),
Theorem 1, (6) implies (5).

(ii) (5) = (4). For e > 0 and = > 0, let
X(e)=X—¢, F(x)=P(X(e)<zx), Gr)=P(—X(e)<ux),
F(e) = Fo(x), Glx) = Gole), Su(e) = Sp— en,
7(e) =inf{n >1:S5,(e) >0}, p(e) =inf{n >1:5,(¢c) <0},

be(z) = P(H,
0
where
Ho(e) =0, Hyp(e)=HWY(e) +---+HM(e),
HY(e) = H(e) = Syo(e), P(HY(e) <) =P(H(e) < x)
and (HY(e), j > 1) are independent. By Chow (1986), (16),

y(y AN z)PdF(y)
E|Sp(€ |/\y)

=O(1)E(H(e) N z)P.

Since p > 1, by Chow (1986), Remark (ii),
E|Sye(e)] = O(1).
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Therefore, -
/0 y(y A z)PdF.(y) = O()E(H(€) A )P, (13)

By Chow (1986), (12) and (13)

P(ISy0(@] = )= [ by - 0)dGey) < [ od0)dGly)
> Y
< 2/93 dee(Q)- (14)
From (13) and (14),
_ > y
P800 > 20) = O(1) [~ sty
By Chow (1986), (39) for x > a > 2¢ with 0 < F( ) < 1,

& Yy Yy
e T 20z A p)dEu(z) W) T2 A p)dF(s) )

Hence

Y
P(ISy ()] = 22) R T Aeral

and for M > 2a,

/];OP(\S (€)] > 22)da? = O /dxp/ = ZAde 960

=0() /M 122z Ay)dF(2)

dG(y).

Thus (4) follows from (5).

3. Proof of Theorem 2
Let N be a positive integer and § > 0. Put

= /_xoo o(u)du, o2 =var{(X Av/no)V (—vno)}

and
B(x,8) = [22/6%] = the integral part of z%/5°.

o0

1 1
> ocevan = [ g Y de
n:N+1n VN+18 N<n<pB(z,d) n
—/ z){log B(x,6) + Ky 5) tdr

(- \/ +16)(Ky + log N).
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Hence

o0

> l<I>(—\/'r_u5) +logé
n=N+1

- VvV N+16
1
—®(—VN + 16)(Ky +log N) + 2(5 ~ ®(—VN +15)) log .

o(x){log 6*B(x,8) + Kpg(y 5)

Since (1/2 — ®(—x))logz — 0, as x — 07, then as § — 0,

o

> l(I)(—\/ﬁé) +logé

n=N+1
0 K—Ky—logN
—>2/ o(z)log xdx + N OB
0

5 (15)

Now for € — 0, since o > 0, > oy for n > N, (see Chow and Teicher (1988),
p.104), by (15)

= 1_/—+/ne €
- — > —<I> + log —
n§+1n < Onp, ) n %_‘_1 ( ) ON
—>2/Oo o(z)log xdx + K_KNQ_IOgN, (16)
0
and N N
1. /—+/ne I<—1 (Ky+logN)

Therefore by (16) and (17)

liminf{zl®<_\/ﬁ6> —Hoge} > 2/OO o(z)log xdx +log on + 5
0

— on, 2

Hence as N — oo,

K
liminf{z <\/_6>—|—10g6 >2/ p(a)logzdz +logo + 7. (18)
n
n=1

By (15), for 6 = ¢/o and € — 0,

K — Ky —log N
2 )

(0.@) 1 o0
E —@(—\/ﬁ6> —1—logE —>2/ o(z)log xdx +
n=N41" g g 0
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i% ( \/_e>_)KN+10gN.

n=1 2
Hence
0 1 K
Z_ (_ >+loge—>2/ o(z)log xdx +logo + —. (19)
n:ln 2
By (19),
] V/ne . — 1 Vne
imap{ 310 () +iog < tim {3 T () +1oxe)
n=1 n=1
0o K
= 2/0 ¢(z)log xdx + log o + 5" (20)
By (18) and (20),
Z_@<_@>+1oge—>2/ ¢(z)log xdr 4 logo + —. (21)
n On 0 2

n=1

By Friedman, Katz and Koopmans (1966) or Chow and Teicher (1988), p.307 as

e—0

Zn_1< (Sp < —ne) — @( \/7>> Zn_1< (Sh <0)—%> (22)

By (21) and (22), as € — 0

Z%P(Sn < —ne) +loge
n=1
B 1 ne > 1 \/ne
_T;E(P(Sn < —ne) — P(— o )) +nz::15(1)<— - ) +loge
_ il(p(s <0)— 1) _|_2/OO o(z)log xdz + log o + 5
—n " 2 0 2

The proof is completed.
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