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ON TESTING OF LIFETIMES
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Abstract: In this paper we improve the traditional experiments of lifetime testing.

A new estimator of survival function is suggested to get the full information of the

individual’s lifetime. It is unbiased with minimal variance among a certain class of

the unbiased estimators. Simulation results are also given.
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1. Introduction

When experimental units are still in operation at the closing data of an
investigation, and their subsequent times of failure are not known, the mortality
data are incomplete. For economical consideration, the experiments can not last
until all the lifetime data is to be obtained. We want to get the information
about the lifetime distribution of the individual as much as possible under our
budget. Termination of the experiment may be controlled in many ways. The
following schemes are traditionally the two most common ways: (cf. Lawless
(1982), Kalbfleisch and Prentice (1980))

Scheme 1. Run the experiments over a fixed time period in such a way
that an individual’s lifetime will be known exactly only if it is less than some
predetermined value. In such situations the data are said to be Type 1 censored.
Specifically let X1, . . . ,Xn be nonnegative independent identically distributed
random variables and C a positive constant which always denotes the limit time
that we could wait for. In such experiments we only observe

Zi = min(Xi, C), δi = I(Xi ≤ C) (i = 1, . . . , n),

where I(Xi ≤ C) denotes the indicator function, equal to 1 if Xi ≤ C or to 0 if
Xi > C.

Scheme 2. Terminate taking observations when a preassigned number of
deaths (say r) have occurred. Let X(1) ≤ · · · ≤ X(n) be the order statistics of
X1, . . . ,Xn. We only observe X(1) ≤ · · · ≤ X(r).

It is important to realize that in Scheme 1, the numbers of deaths are ran-
dom variables, whereas in Scheme 2, the time of termination is a random vari-
able. Although the two schemes provide information of the individual’s lifetime,
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we still know nothing about the individual’s lifetime after C in Scheme 1 and
X(r) in Scheme 2. This is a serious problem. We shall fail in estimating the
full lifetime distribution and the characteristics such as mean, variance in non-
parametric models. The random censorship model perhaps can help us to get
over the difficulties. Let X1, . . . ,Xn be nonnegative independent identically dis-
tributed random variables (lifetime) with distribution function F . Let Y1, . . . , Yn

be nonnegative independent identically distributed random variables (censoring)
with distribution function G. The two sequences are independent and we can
only observe

Zi = min(Xi, Yi), δi = I(Xi ≤ Yi). (1)

Denote τF = inf{t : F (t) = 1}, τG = inf{t : G(t) = 1} and τH = inf{t : H(t) =
1}, where H(t) = 1 − (1 − F (t))(1 − G(t)) is the distribution function of Zi.
Assume that τ

G
> τ

F
, then we have a chance to detect the tail part of F . We

also assume E(Xi) < ∞, Var (Xi) < ∞.
Now our task is to design the distribution function G of censoring variables

Yi, then create Yi by computer and use them instead of C in Scheme 1. First,
one may think that we might pay the cost of a · n · C in Scheme 1 where n

is number of individuals and a is some constant. The new procedure stops at
Zi, with E(Zi) = E[min(Xi, Yi)] ≤ E(Yi). If the mean of Yi is less or equal to
C, it seems that we need not pay more in average. Secondly, to estimate the
distribution function F (t) or the survival function S(t) = 1 − F (t) under the
random censoring model, the Kaplan-Meier estimator (1958) is often suggested.
It is defined by

Ŝ(t) =
∏

Z(i)≤t

(
1 − 1

n − i + 1

)δ(i)
, (2)

where Z(i) are the order statistics of Zi and δ(i) are the corresponding indicator
functions. In our procedure, since G is known, a better estimator should be
constructed. In Section 2 and Section 3, we develop a sum type estimator of
S(t) which is unbiased and consistent. It has minimal variance over a class of
unbiased estimators. Simulation reports are also given. In Section 4, we give
further results if some extra information is obtained.

2. The Estimator of S(t)

As we see in Section 1, the random censorship model is suggested. Instead of
constant C, we create a sequence of random variables {Yi}, which are independent
and identically distributed. And the observations are Zi = min(Xi, Yi), δi =
I(Xi ≤ Yi). Now there are two things that should be done. One is to determine
the distribution function G of Yi. The other is to estimate the distribution
function F (t) or survival function S(t) of Xi. We leave the first problem to the
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next sectoin. Here we study the second problem–finding the best estimator of
S(t) in some sense for known G.

Definition. Let Φ1, Φ2 be two functions such that



[1 − G(x)]I(x > t)Φ1(t, x) +
∫ x
0 Φ2(t, y)I(y > t)dG(y) = I(x > t)

Φ1,Φ2 are independent of F (but may dependent on G)
(3)

where I(·) is indicator function. We say (Φ1,Φ2) belongs to Class K∗((Φ1,Φ2) ∈
K∗).

It is easy to check that if we use

Sn(t) =
1
n

n∑
i=1

[I(Zi > t)δiΦ1(t, Zi) + I(Zi > t)(1 − δi)Φ2(t, Zi)] (4)

to estimate S(t), then we have

ESn(t) = S(t). (5)

A similar idea of constructing a class of unbiased estimators is also introduced to
deal with censored data in many statistical problems such as linear regression,
stochastic approximation etc. (cf. Zheng Zukang (1987)) as a useful tool. There
are various elements in Class K∗. We recommend Φ1(t, x) = Φ2(t, x) = [1 −
G(t)]−1 which does not depend on x or y. Thus,

S∗
n(t) =

1
n

n∑
i=1

I(Zi > t)[1 − G(t)]−1 (6)

with

Var S∗
n(t) = E

[ 1
n

n∑
i=1

I(Zi > t)
1 − G(t)

− S(t)
]2

=
S(t)
n

[ 1
1 − G(t)

− S(t)
]
. (7)

If G(t) ≡ 0, S∗
n(t) coincides with the empirical survival function. The reason why

we recommend (6) of the Class K∗ is the following:

Theorem 1.
Var S∗

n(t) = inf
[Φ1,Φ2]∈K∗

Var Sn(t). (8)

Proof. Due to the unbiasedness of the elements in Class K∗, we only need to
minimize the second moment. Notice that for any t>0, (omitting the subscript i)

A =̂ E[I(x > t)δΦ1(t, Z) + I(y > t)(1 − δ)Φ2(t, Z)]2

= E[I(x > t)I(x ≤ y)Φ2
1(t, Z) + I(y > t)I(y < x)Φ2

2(t, Z)]
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=
∫ ∫

y≥x>t

Φ2
1(t, x)dG(y)dF (x) +

∫ ∫

x>y>t

Φ2
2(t, y)dG(y)dF (x)

=
∫ ∞

t
[1 − G(x)]Φ2

1(t, x)dF (x) +
∫ ∞

t

(∫ x

t
Φ2

2(t, y)dG(y)
)
dF (x).

Combining this with equation of (3), we obtain

A =
∫ ∞

t
[1−G(x)]−1

[
1−

∫ x

t
Φ2(t, y)dG(y)

]2
dF (x)+

∫ ∞

t

(∫ x

t
Φ2

2(t, y)dG(y)
)
dF (x)

=
∫ ∞

t

{
[1 − G(x)]−1

[
1 −

∫ x

t
Φ2(t, y)dG(y)

]2
+

∫ x

t
Φ2

2(t, y)dG(y)
}
dF (x).

Since F (x) is arbitrary, minimizing A is equivalent to minimizing

B=̂B(Φ2) =
[
1 −

∫ x

t
Φ2(t, y)dG(y)

]2
+ [1 − G(x)]

∫ x

t
Φ2

2(t, y)dG(y),

where G is a known distribution function.
By the variational principle, if Φ2 = ξ = ξ(t, y) minimizes B, we consider

B(ξ + ρ∆), where ∆ = ∆(t, y) and ρ is a parameter, That is

B(x + ρ∆)

= 1−2
∫ ∞

t
(ξ+ρ∆)dG(y)+

[∫ x

t
(ξ+ρ∆)dG(y)

]2
+[1−G(x)]

∫ x

t
(ξ+ρ∆)2dG(y)

= B(x) + ρ2
{[∫ x

t
∆dG(y)

]2
+ [1 − G(x)]

∫ x

t
∆2dG(y)

}

+2ρ
{
−

∫ x

t
∆dG(y) +

∫ x

t
ξdG(y)

∫ x

t
ξdG(y) + [1 − G(x)]

∫ x

t
ξ∆dG(y)

}
.

The last expression is a quadratic form of ρ. It leads to

∂B(ξ + ρ∆)
∂ρ

∣∣∣
ρ=0

= −2
∫ x

t
∆dG(y) + 2

∫ x

t
ξdG(y)

∫ x

t
∆dG(y) + 2(1 − G(x))

∫ x

t
ξ∆dG(y) = 0

or
∫ x
t ∆{−1 +

∫ x
t ξdG(y) + [1 − G(x)]ξ}dG(y) = 0.

By the arbitrariness of ∆, we have

−1 +
∫ x

t
ξdG(y) + [1 − G(x)]ξ = 0.

Thus ξ can not be a functon of y , i.e. ξ = ξ(t) only. So

−1 + ξ(t)
∫ x

t
dG(y) + [1 − G(x)]ξ(t) = 0,

ξ(t) =
1

1 − G(t)
.

Therefore we conclude.
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Remark. Since we know G, S∗
n(t) has some advantages compared with the

Kaplan-Meier estimator.
(i) It is a sum type estimator and easy to be computed, while the Kaplan-Meier

estimator, a product type estimator, is complicated in calculation.
(ii) Although we can prove that Var S∗

n(t) ≥ Var Ŝn(t), the order of Var S∗
n(t) is

still O(n−1). This guarantees the consistency of S∗
n(t). On the other hand,

since nS∗
n(t) is a sum of i.i.d. random variables, the strong law of large num-

ber, the law of iterated logarithm and also the Strassen type (functional)
LIL can be applied to it to obtain strong consistency with the best conver-
gence rate. Also the normal approximation formulas of

√
n(S∗

n(t) − S(t)),
such as the Edgeworth expansion, are available.

(iii) After we construct S∗
n(t) of sample size n, a new datum is observed. The

only thing we need to do is to add one term to S∗
n(t) to get S∗

n+1(t). But
for Ŝn(t), we need to rearrange all the n + 1 of samples, such as ordering
Zi, and readjust the factors of the product etc.

3. Discussion of Choosing G

How to choose the censoring distribution G is a difficult problem. Heavy
censoring reduces the observing times but leads to the large variance of S∗

n(t).
Since Var S∗

n(t) depends on t and (7) shows that Var S∗
n(0) = 0 and Var S∗

n(τF ) =
0 by the assumption of τF < τG , we want to measure the total lost caused by the
variance of S∗

n(t) during [0, τF ].

Definition. We call
M =

∫ τ
F

0
[Var Sn(t)]dt (9)

the cumulative variance of Sn(t). That is for S∗
n(t)

M∗ =
1
n

∫ τ
F

0
S(t)

[ 1
1 − G(t)

− S(t)
]
dt. (10)

Now we consider the total cost of the experiment. It has the form

T = c
n∑

i=1

Zi + aM∗, (11)

where c, a are some positive constants. T is a random variable and we consider
the expectation

E(T ) = c
n∑

i=1

EZi + aM∗

= cn

∫ τ
F

0
udH(u) +

a

n

∫ τ
F

0
S(u)

[ 1
1 − G(u)

− S(u)
]
du
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= cn

∫ τ
F

0
(1 − F (u))(1 − G(u))du +

a

n

∫ τ
F

0
S(u)

[ 1
1 − G(u)

− S(u)
]
du

=
∫ τ

F

0
S(u)

{
cn(1 − G(u)) +

a

n

1
1 − G(u)

}
du −

∫ τ
F

0

aS2(u)
n

du. (12)

Let a = n2cα. Then the integrand in the first term of (12) becomes

cn
{
[1 − G(u)] +

a

1 − G(u)

}
(13)

(i) If 0 < α ≤ 1,

cn
{
[1 − G(u)] +

a

1 − G(u)

}
≥ 2cn

√
n.

The minimum is attained at 1 − G(u) ≡ √
α for any u ∈ [0, τ

F
] and

E(T ) = cn
[
2
√

α

∫ τ
F

0
S(u)du − α

∫ τ
F

0
S2(u)du

]

(ii) If α > 1, (13) is a decreasing functoin of 1 − G(u) which attains the
minimum at G(u) ≡ 0 for any u ∈ [0, τ

F
] and

E(T ) = cn(1 + α)
∫ τ

F

0
S(u)du − cnα

∫ τ
F

0
S2(u)du.

It seems that if a is very large (a > cn2) we should let the experiment continue
until all the lifetime data can be obtained, otherwise only use [

√
αn] units on the

experiment and also wait for the last lifetime datum.
One may think that the cost should also depend on the length of the period

which the experiment lasts. Hence the total cost is

T1 = c
n∑

i=1

Zi + b max
1≤i≤n

Zi + aM∗

with

E(T1) = cn

∫ τ
F

0
(1 − F (u))(1 − G(u))du + b

∫ τ
F

0
udHn(u) + aM∗

= cn

∫ τ
F

0
(1 − F (u))(1 − G(u))du + b

(
τ

F
−

∫ τ
F

0
Hn(u)du

)
+ aM∗

= bτ
F
− a

n

∫ τ
F

0
S2(u)du +

∫ τ
F

0

{
cn(1 − F (u))(1 − G(u))

−b[1 − (1 − F (u))(1 − G(u))]2 +
a

n

S(u)
1 − G(u)

}
du. (14)

Obviously the solution of minimizing ET1 is complicated and the unknown F (u)
is involved.



TESTING OF LIFETIMES 145

However, the simplest idea is to choose G such that EYi = C of Scheme 1
guarantees the total observing time not to exceed that of Scheme 1 in average.
The advantage here is to get information of the distribution after time C. The
exponential distribution G(y) = 1 − e−y/c with τ

G
= ∞ is always suitable.

Table 1. Comparisons between Ŝn,E(u) and S∗
n(u)

u Ŝn,E(u) (m.s.e.) S∗
n(u) (m.s.e.)

0.00 1.0000 1.0000
0.05 0.9482 (4.9235× 10−5) 0.9480 (1.0010 × 10−4)
0.10 0.8985 (9.3178× 10−5) 0.8986 (1.7998 × 10−4)
0.15 0.8507 (1.1566× 10−4) 0.8524 (2.1514 × 10−4)
0.20 0.8011 (1.4205× 10−4) 0.8011 (3.1780 × 10−4)
0.25 0.7501 (1.8421× 10−4) 0.7511 (5.4101 × 10−4)
0.30 0.7011 (1.7249× 10−4) 0.7013 (6.4012 × 10−4)
0.35 0.6515 (2.0623× 10−4) 0.6536 (4.8947 × 10−4)
0.40 0.6008 (2.4100× 10−4) 0.6024 (6.4763 × 10−4)
0.45 0.5518 (2.4442× 10−4) 0.5524 (5.3862 × 10−4)
0.50 0.5034 (2.1210× 10−4) 0.5034 (5.5453 × 10−4)
0.55 0.4525 (1.6319× 10−4) 0.4520 (5.9636 × 10−4)
0.60 0.4031 (1.8335× 10−4) 0.4002 (7.6347 × 10−4)
0.65 0.3531 (2.1739× 10−4) 0.3496 (7.4137 × 10−4)
0.70 0.2969 (6.9940 × 10−4)
0.75 0.2469 (5.8715 × 10−4)
0.80 0.1969 (5.1338 × 10−4)
0.85 0.1487 (4.4569 × 10−4)
0.90 0.0980 (3.1918 × 10−4)
0.95 0.0472 (1.6906 × 10−4)

Table 1 shows the results of simulations (50 runs) where Xi are i.i.d. uni-
formly distributed on [0, 1] and n = 1000, C = 0.7. We also let Yi be i.i.d. with
G(y) = 1 − e−y/c. The second column lists the mean values of the empirical
survival function in Scheme 1 with mean square errors while the third column
lists the values of S∗

n(t). The average experimental time of each sample is 0.4558
unit in Scheme 1 and 0.3276 unit in our procedure. We save 0.1282 unit time for
each sample in average. The important thing is that we obtain the estimations
of S(u) for u > C.

It is conservative to choose G(y) with E(Y ) ≤ C. In fact

E(XΛC) =
∫ C

0
xdF (x) +

∫ ∞

C
CdF (x)

= −x(1 − F (x))
∣∣∣C
0

+
∫ C

0
[1 − F (x)]dx + C[1 − F (C)]
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=
∫ C

0
[1 − F (x)]dx

and

E(XΛY ) =
∫ ∞

0
[1 − F (x)][1 − G(x)]dx

=
∫ ∞

0
[1 − F (x)]dx −

∫ ∞

0
[1 − F (x)]G(x)dx.

We only need to have
∫ ∞

C
[1 − F (x)]dx <

∫ ∞

0
[1 − F (x)]G(x)dx. (15)

Since the unknown distribution function F is involved, (15) may not reveal very
much in practice.

4. Further Studies with Extra Information

In this section we study the function

SA(t) =
1
n

n∑
i=1

[δiI(Xi > t) + (1 − δi)P (Xi > t|Xi > Yi)]. (16)

It looks like an estimator of S(t). Notice that Yi are the censoring variables.
When δi = 0, the conditional probability P (Xi > t|Xi > Yi) is introduced. In
fact, we have

Theorem 2.

(i) ESA(t) = S(t) (17)

(ii) Var SA(t) =
1
n

{
S(t) − S2(t) −

[∫ ∞

t
G(x)dF (x)

][∫ t

0
G(x)dF (x)

]
[∫ ∞

0
G(x)dF (x)

]−1}
(18)

Remark. The variance of SA(t) is less than that of the empirical survival func-
tion. The reason is that the extra information P (Xi > t|Xi > Yi) is given.

Proof. Since

E[δiI(Xi > t) + (1 − δi)P (Xi > t|Xi > Yi)]

=
∫ ∫

x≤y

I(x > t)dF (x)dG(x) +
∫ ∫

x>y

P (Xi > t|Xi > Yi)dF (x)dG(x)

=
∫ ∞

t
[1 − G(x)]dF (x) +

∫ ∞

t
G(x)dF (x) = S(t),
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the proof of (i) is complete. For the second assertion,

E[SA(t) − S(t)]2

=
1
n2

E
{ n∑

i=1

[δiI(Xi > t) + (1 − δi)P (Xi > t|Xi > Yi) − S(t)]
}2

=
1
n

{
E[δiI(Xi > t) + (1 − δi)P 2(Xi > t|Xi > Yi)] − S2(t)

}

=
1
n

{∫ ∞

t
[1 − G(x)]dF (x) +

[∫ ∞

t
G(x)dF (x)

]2[∫ ∞

0
G(x)dF (x)

]−1 − S2(t)
}

=
1
n

{∫ ∞

t
[1 − G(x)]dF (x) +

∫ ∞

t
G(x)dF (x)

−
[∫ ∞

t
G(x)dF (x)

][∫ t

0
G(x)dF (x)

][∫ ∞

0
G(x)dF (x)

]−1 − S2(t)
}

=
1
n

{
S(t) − S2(t) −

[∫ ∞

t
G(x)dF (x)

][∫ t

0
G(x)dF (x)

][∫ ∞

0
G(x)dF (x)

]−1}
.

This completes the proof.

Unfortunately, SA(t) is not a statistics and we need extra information P (Xi >
t|Xi > Yi). If we continue the testing after censoring and pursue the true lifetime
data, the estimation of P (X > t|X > Y ) could be obtained as follows.

Definition. For any t ≥ 0

P̂ (X > t|X > Y ) =




n∑
j=1

I(Xj>Yj ,Xj>t)

n∑
j=1

I(Xj>Yj)

, if
n∑

j=1
I(Xj > Yj) > 0,

0, if
n∑

j=1
I(Xj > Yj) = 0,

and

ŜA(t) =
1
n

n∑
i=1

[δiI(Zi > t) + (1 − δi)P̂ (X > t|X > Y )]

=
1
n

n∑
i=1

δiI(Zi > t) +
[ 1
n

n∑
i=1

(1 − δi)
]
P̂ (X > t|X > Y )

Theorem 3.

EŜA(t) = S(t) Var ŜA(t) =
1
n

[S(t) − S2(t)]

Proof. For any t ≥ 0

EŜA(t) = E
[ 1
n

n∑
i=1

δiI(Zi > t)
]
+ E

{[ 1
n

n∑
i=1

(1 − δi)
]
P̂ (X > t|X > Y )

}
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=
∫ ∞

t
[1 − G(x)]dF (x) + E

[ 1
n

n∑
j=1

I(Xj > Yj,Xj > t)
]

=
∫ ∞

t
[1 − G(x)]dF (x) +

∫ ∫

x>y,x>t

dF (x)dG(y) = S(t)

and

E[ŜA(t) − S(t)]2

= E
{ 1

n

n∑
i=1

δiI(Zi > t) +
[ 1
n

n∑
i=1

(1 − δi)
]
P̂ (X > t|X > Y ) − S(t)

}2

= E
{ 1

n

n∑
i=1

δiI(Zi > t) +
1
n

n∑
i=1

I(Xi > Yi,Xi > t) − S(t)
}2

= E
{ 1

n

n∑
i=1

[δiI(Zi > t) + I(Xi > Yi,Xi > t) − S(t)]
}2

=
1
n

E[δiI(Zi > t) + I(Xi > Yi,Xi > t) − S(t)]2

=
1
n
{E[δiI(Zi > t) + I(Xi > Yi,Xi > t)] − S2(t)}

=
1
n

[S(t) − S2(t)].
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