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Abstract: The purpose of this paper is to indicate that the time-dependent frailty

model for multivariate counting processes of Chang and Hsiung (1996) can be ap-

plied to sequential analysis of paired survival data with staggered entry. It is shown

that the efficient estimating function in calendar time is a martingale and, with a

data-dependent change of time, it is asymptotically a Brownian motion process,

which paves the way for sequential analysis. This approach is illustrated by re-

examining the Freireich et al. (1963) data of remission lengths in leukemia. A

simulation study is also included to indicate its performance numerically.
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1. Introduction

The purpose of this paper is to indicate that the time-dependent frailty
model for multivariate counting processes introduced in Chang and Hsiung (1996)
(henceforth CH(96)) can be applied to sequential analysis of paired survival data
with staggered entry.

A typical example of survival data with paired design where calendar time
monitoring is desired is provided by Freireich et al. (1963). They conducted a
remission maintenance therapy to compare 6-MP with placebo for prolonging
the duration of remission in leukemia. After having been judged to be in a state
of partial or complete remission for the primary treatment with prednisone, a
patient was paired with a second patient in the same state. One randomly chosen
patient in each pair received the maintenance treatment 6-MP and the other a
placebo. Success (failure) was defined to occur in the ith pair if the time from
remission to relapse or censoring for the patient on 6-MP (placebo) exceeded the
time to relapse for the patient on placebo (6-MP). The trial was stopped once
the number of successes or failures had reached significance.
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Based on the theory of sequential analysis of survival data with staggered
entry developed in Sellke and Siegmund (1983), Siegmund (1985), Chapter V re-
examined the data of Freireich et al. (1963) and indicated that earlier termination
of the trial might be possible. We note that both Sellke and Siegmund (1983)
and Siegmund (1985) meant to provide a general theory for survival data in
proportional hazards models with staggered entry and did not consider the case
of paired design.

In the following sections, we indicate that, by making use of the propor-
tional hazards model with time-dependent frailties discussed in CH(96), where
the asymptotic efficiency of a Cox type estimator is established, sequential anal-
ysis of paired survival data with staggered entry is theoretically easier to handle
and has a neater solution. In fact, we show that the efficient estimating function
of CH(96) remains a martingale relative to the calendar time filtration, unlike
the situation without paired design treated by Sellke and Siegmund (1983) and
Gu and Lai (1991). Our situation is also different from the parametric sequential
analysis studied by Chang and Hsiung (1988), where the score function itself is
a calendar time martingale.

Our plan to present the sequential analysis of paired data is as follows. Sec-
tion 2 introduces a model for paired survival data with staggered entry and shows
that it is a time-dependent frailty model of counting processes, which implies
that the efficient estimating function is a calender time martingale studied in
CH(96). This is done by establishing a relation between the calender time filtra-
tion and the survival time filtration, which implies that martingales for survival
time transform naturally into martingales for calender time.

We would like to point out that time-dependent frailty appears naturally in
our problem when entry time is considered, even if the baseline hazard of the
survival time is a deterministic function (cf. Theorem 2.2). Because of this, we
introduce a frailty variable into the model from the beginning in order to have a
more general theory in a neater presentation.

Following the idea of rescaling time by Fisher information developed in Sellke
and Siegmund (1983), Section 3 introduces a data-dependent change of time into
the efficient martingale estimating function so that it behaves asymptotically like
a Brownian motion process, which paves the way for sequential analysis.

Section 4 illustrates the theory developed in Sections 2 and 3 by re-examining
the data of Freireich et al. (1963) and compare our method with that of Freireich
et al. (1963). It suggests that our method is a very good alternative.

The simulation study in Section 5 supports the theory by indicating that
in case there is no association within pairs, it is better to use the standard Cox
partial likelihood score as developed in Sellke and Siegmund (1983) for repeated
significance testing; otherwise, it is better to use the method of the present work.
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2. The Model and the Basic Martingales

Let Yj denote the entry time of the jth pair in a clinical trial with paired
design. Let Xji, Cji and Zji denote respectively the survival time, censoring time
and the covariate of the ith member of the jth pair. Here i = 1, 2 and j = 1, 2, . . .
We note that the entry time Yj of the jth pair is the calendar time when they
were paired for the clinical trial, and the survival time Xji is the interval from
time of pairing to time of occurrence of the event in consideration.

Let H = {λ | λ : [0,∞) → [a, b] is a measurable function} with 0 ≤ a < b <

∞, H be the σ-field on H generated by the sup-norm, and Λj be an H-valued
random element.

We assume that Yj,Xj1,Xj2, Cj1 and Cj2 are random variables such that con-
ditional on Yj, Λj(·) = λ(·) and Zji = z,Xji has intensity λ(t)eθz and (Xj1,Xj2),
(Cj1, Cj2) are independent. Here Λj is considered as an unobservable frailty
variable, varying from pair to pair, and θ is an unknown parameter of interest
representing the treatment effect.

The statistical problem we are interested in is to make inference on θ based
on the data {Yj ∧ t, Zji, (Yj + Xji ∧Cji)∧ t, 1[(Yj+Xji)∧t≤(Yj+Cji)∧t] | i = 1, 2, j =
1, . . . , J, t ≤ T}, where T is a stopping time.

To make the previous statement more precise, we study the following filtra-
tions closely. Let

F̄j,t = σ{[Yj ≤ s], [Yj + Xji ≤ s], Cji, Zji | 0 ≤ s ≤ t, i = 1, 2},

which is the filtration with respect to calendar time t.
We will see that this calendar time filtration F̄j,t is convenient in studying the

martingale structures in our statistical problem, although it is a little bigger than
the ordinary filtration. The concepts of filtration, stopping time and stochastic
integrals used freely in this paper can be found in, for example, Elliott (1982).
The following proposition characterizes the corresponding filtration for survival
time.

Proposition 2.1. F̄j,Yj+t = σ{Yj , [Xji ≤ s], Cji, Zji | 0 ≤ s ≤ t, i = 1, 2}.
Proof. (i) Since both Yj ≤ Yj + t are F̄j,u-stopping times, we know Yj is F̄j,Yj+t-
measurable. We now show that [Xji ≤ s] belongs to F̄j,Yj+t. Observe that, for
s ≤ t ≤ a

[Xji ≤ s][Yj ≤ a − t] ⊂ [Yj ≤ a − t][Yj + Xji ≤ a]. (2.1)

Using (2.1) and the fact that every Borel subset of [Yj ≤ a − t][Yj + Xji ≤ a] is
in F̄j,a, we know that [Xji ≤ s][Yj + t ≤ a] ∈ F̄j,a. This shows that [Xji ≤ s] ∈
F̄j,Yj+t. Hence F̄j,Yj+t ⊃ σ{Yj , [Xji ≤ s], Cji, Zji | 0 ≤ s ≤ t, i = 1, 2}.
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(ii) Let A ∈ F̄j,Yj+t. We will conclude A ∈ σ{Yj , [Xji ≤ s], Cji, Zji | 0 ≤ s ≤
t, i = 1, 2} by showing that if Xji(ω0) > t for some ω0 ∈ A, then {ω | Xji(ω) >
t, Yj(ω) = Yj(ω0)} ⊂ A.

Let a = Yj(ω0) + t. Then ω0 ∈ A[Yj + t ≤ a] ∈ F̄j,a. Note that every Borel
subset B in F̄j,a has the property that the “half line” [Xji > s, Yj = a − s] is
either contained in B or disjoint with B. Because Xji(ω0) > t, Yj(ω0) = a − t,
we know that [Xji > t, Yj = Yj(ω0)] ⊂ A[Yj + t ≤ a] ⊂ A. This shows that
F̄j,Yj+t ⊂ σ{Yj , [Xji ≤ s], Cji, Zji | 0 ≤ s ≤ t, i = 1, 2}.

With (i) and (ii), the proof is complete.

It follows from Proposition 2.1 in CH(96), and the above Proposition 2.1
that Ñji(t) ≡ 1[Xji,∞)(t ∧ Cji) has intensity

Λj(t)eθZji1(0,Xji∧Cji](t) (2.2)

relative to the filtration H⊗ F̄j,Yj+t. To be able to handle (2.2) more effectively,
we need to introduce Fj,t ≡ H⊗ F̄j,t, and establish the following relation.

Proposition 2.2. Fj,Yj+t = H⊗ F̄j,Yj+t.

Proof. We need only show Fj,Yj+t ⊂ H⊗F̄j,Yj+t, because the other direction is
trivial. The proof for Fj,Yj+t ⊂ H⊗F̄j,Yj+t is also standard. First we argue that
if A = A1 ×A2 with A1 ∈ H, A2 ∈ F̄j,∞ and A ∈ Fj,Yj+t, then A2 ∈ F̄j,Yj+t and
hence A ∈ H⊗ F̄j,Yj+t. This together with the fact that Fj,Yj+t ∩H⊗ F̄j,Yj+t is
a σ-field completes the proof.

It follows from (2.2) and Proposition 2.2 that we have the following basic
martingale relative to survival time filtration.

Theorem 2.1. For i = 1, 2,

M̃ji(t) ≡ Ñji(t) −
∫ t

0
Λj(s)eθZji1(0,Xji∧Cji](s)ds (2.3)

is a martingale relative to Fj,Yj+t.

Let Nji(t) = Ñji((t − Yj)+), Mji(t) = M̃ji((t − Yj)+). Observe that

Mji(t)

= Ñji((t − Yj)+) −
∫ (t−Yj )+

0
Λj(s)eθZji1(0,Xji∧Cji](s)ds

= 1[Xji,∞)((t − Yj)+ ∧ Cji) −
∫ t

Yj∧t
Λj((s − Yj)+)eθZji1(0,Xji∧Cji]((s − Yj)+)ds

= 1[Yj+Xji,∞)(t ∧ (Yj +Cji))−
∫ t

0
Λj(s − Yj)eθZji1(Yj ,Yj+(Xji∧Cji)](s)1(Yj ,∞)(s)ds

= 1[Yj+Xji,∞)(t ∧ (Yj + Cji)) −
∫ t

0
Λj(s − Yj)eθZji1(Yj ,Yj+(Xji∧Cji)](s)ds, (2.4)
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where we adopt the convention that Λj(s) = 0 if s < 0. With (2.4), we show
in the following Theorem 2.2 that even if Λj degenerates into a deterministic
function, (Nj1(t), Nj2(t)) is a proportional hazards model with time-dependent
frailty Λj(t − Yj), which depends on the entry time Yj .

Theorem 2.2 is proved by the standard random time-change technique, ap-
pearing in Chang and Hsiung (1994).

Theorem 2.2. Mji(t) is a Fj,t-martingale, for i = 1, 2.

Proof. That Mji(t) is adapted to Fj,Yj+(t−Yj)+ ⊂ Fj,t is obvious. Furthermore,
for any Fj,t-stopping time T , by Theorem 2.1, EMji(T ) = EM̃ji((T −Yj)+) = 0,
since (T − Yj)+ is a Fj,Yj+t-stopping time. This completes the proof.

Assume that we have i.i.d. random vectors (Λj ,Yj,Xj1,Xj2,Cj1,Cj2,Zj1,Zj2)
for j = 1, . . . , J . Then Theorem 2.2 holds more generally as follows.

Theorem 2.3. Mji(t) is an F (J)
t -martingale, where F (J)

t =
⊗J

j=1 Fj,t is the
σ-field generated by Fj,t, for j = 1, . . . , J .

Theorem 2.3 concludes that the counting process {Nji(t) | j = 1, . . . , J ; i =
1, 2} forms a time-dependent frailty model studied in CH(96).

3. Asymptotics for the Cox Type Estimating Function

Following CH(96), we now introduce the Cox type estimating function

GJ(θ, t) =
J∑

j=1

2∑
i=1

∫ t

0

(
Zji −

S
(1)
j (θ, s)

S
(0)
j (θ, s)

)
dNji(s), (3.1)

where

S
(q)
j (θ, s) =

2∑
i=1

1(Yj ,Yj+(Xji∧Cji)](s)e
θZjiZq

ji,

with q = 0, 1, 2.
We note that (3.1) produces a martingale structure, which is not present in

the usual time-sequential setup. This trick here is that each pair is assumed to
have the same entry time and that the comparison is done within each pair.

Let P J(α) denote the probability measure corresponding to the parameter
θ = θ0 +α/

√
J . Assuming the boundedness of Zji, we have the following asymp-

totics of GJ (θ0, t)/
√

J for J large.

Theorem 3.1. Under P J(α), GJ(θ0, t)/
√

J converges weakly to a Gaussian pro-
cess G(t) with the property that G(t) − αg(t) is a mean zero martingale with
variance g(t), where

g(t) = E
{ ∫ t

0

(S
(2)
1 (θ0, s)

S
(0)
1 (θ0, s)

− (S(1)
1 (θ0, s))2

(S(0)
1 (θ0, s))2

)
Λ1(s − Y1)S

(0)
1 (θ0, s)ds

}
. (3.2)
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Theorem 3.1 can be proved by using the martingale central limit theorem
and mean value theorem or LeCam’s third lemma. Because the proof is quite
standard now, we will only sketch it with important formulas for later use.

We note that, under P J(α), Theorem 2.3 implies that GJ(θ0 + α/
√

J, t)/
√

J

is a martingale and that g(t) is the weak limit of the predictable variation of the
martingale GJ (θ0 + α/

√
J, t)/

√
J . In fact, we have

< GJ(θ0 + α/
√

J, ·) >t

=
J∑

j=1

2∑
i=1

∫ t

0

(
Zji −

S
(1)
j (θ0 + α/

√
J, s)

S
(0)
j (θ0 + α/

√
J, s)

)2
Λj(s − Yj)1(Yj ,Yj+(Xji∧Cji)](s) ·

e(θ0+α/
√

J)Zjids

=
J∑

j=1

∫ t

0

(
S

(2)
j (θ0 + α/

√
J, s) − (S(1)

j (θ0 + α/
√

J, s))2

S
(0)
j (θ0 + α/

√
J, s)

)
Λj(s − Yj)ds. (3.3)

Applying the mean-value theorem, we get

GJ(θ0, t)/
√

J = GJ(θ0 + α/
√

J, t)/
√

J +
∂GJ (θ∗(t), t)

∂θ
α/J, (3.4)

where θ∗(t) is on the line segment joining θ0 and θ0 + α/
√

J .
Applying the martingale central limit theorem to GJ(θ0 + α/

√
J, t)/

√
J and

using (3.4), we can get the weak convergence of GJ (θ0, t)/
√

J as desired.
Let

IJ(θ0, t) = − ∂

∂θ
GJ (θ, t)

∣∣∣∣
θ=θ0

. (3.5)

Since IJ(θ0, t)/J converges to g(t) as J goes to infinity, the following stopping
time is well-defined.

Let ν0 < sup{g(t) | t ∈ R+}. Define, for ν ∈ [0, ν0], τJ(ν) = inf{t >

0 | IJ(θ0, t)/J > ν}. A straight-forward calculation shows that τJ(ν) converges
weakly to g−1(ν) as J goes to infinity. This together with Theorem 3.1 gives
the following asymptotics for the random time change version of the estimating
function. (cf. Billingsley (1968), p.145.)

Theorem 3.2. Under P J(α), GJ (θ0, τJ(ν))/
√

J converges weakly to a Gaussian
process Wα(ν) with the property that Wα(ν)−αν is a standard Brownian motion
for ν ∈ [0, ν0].

4. A Worked Example

In this section, we indicate that the theory developed in Sections 2 and 3
provides a way to propose repeated significance tests for paired survival data



SEQUENTIAL SURVIVAL ANALYSIS 133

with staggered entry. The significance level and power of the tests can then
be calculated by using the theory for tests with curved stopping boundaries as
presented in Siegmund (1985). We will illustrate it by examining the data of
Freireich et al. (1963) as explained in the introduction.

With the same model assumption and notation introduced in Section 2, we
denote by Xj1 the remission length of the patient in the jth pair receiving 6-MP
and Xj2 that receiving placebo, and set Zj1 = 1, Zj2 = 0.

We are interested in proposing a repeated significance test of the hypothesis
H0 : θ = θ0 = 0 versus H1 : θ �= θ0 = 0, based on the Cox type partial score
GJ(θ0, t), given in (3.1).

We first rewrite GJ and IJ as follows. It follows from (3.1) and (3.5) respec-
tively that

GJ (t) ≡ GJ(θ0, t)

=
1
2

J∑
j=1

(
1{Xj1≤(t−Yj)∧Xj2∧Cj1∧Cj2} − 1{Xj2≤(t−Yj)∧Xj1∧Cj1∧Cj2}

)
(4.1)

and

IJ(t) ≡ IJ(θ0, t)

=
1
4

J∑
j=1

(
1{Xj1≤(t−Yj)∧Xj2∧Cj1∧Cj2} + 1{Xj2≤(t−Yj)∧Xj1∧Cj1∧Cj2}

)
. (4.2)

Let J0 be a positive integer,

t0 = inf{t > 0 | IJ(t) ≥ J0/4} (4.3)

and
TJ = inf

{
t ≥ t0 | |GJ(t)| ≥ b

√
IJ(t)

}
(4.4)

for some b > 0.
The repeated significance test that we propose is to stop sampling at TJ ∧ t1

and reject H0 if and only if TJ < t1. Here

t1 = inf{t > 0 | IJ(t) ≥ J1/4}, (4.5)

and J0 < J1 ≤ J are positive integers.
In the following we calculate the significance level and power of the test so

as to compare it with the approach of Freireich et al. (1963).
Let

T ′
J = inf

{
ν ≥ J0/(4J) |

∣∣∣GJ(τJ(ν))/
√

J
∣∣∣ ≥ b

√
ν
}

(4.6)
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and

T ′ = inf
{
ν ≥ J0/(4J) | |Wα(ν)| ≥ b

√
ν
}

, (4.7)

where Wα is a Brownian motion with drift α.
It follows from (4.4) and Theorem 3.2 that

P J(α)[TJ < t1] = P J(α)[T ′
J < J1/(4J)] (4.8)

is approximately

Pα[T ′ < J1/(4J)], (4.9)

where Pα is the probability when T ′ is defined by Wα in (4.7).
Using Corollary 4.19 and Theorem 4.21 of Siegmund (1985), we get

P0[T ′ < J1/(4J)] = (b − b−1)φ(b) log(J1/J0) + 4b−1φ(b) + o(b−1φ(b)), (4.10)

and

Pα[T ′< J1/(4J)]

= 1−Φ
[
(J1/(4J))1/2(b/

√
J1/(4J)−α)

]

+
{

φ
[
(J1/(4J))1/2(b/

√
J1/(4J)−α)

]
/α

√
J1/(4J)

}
(1+o(1)), (4.11)

where φ and Φ are respectively the density and distribution function of a standard
normal random variable.

In order to make more meaningful comparison with the test of Freireich et
al. (1963), we choose J = J1 = 66, J0 = 9. Now it follows from (4.10) that we
choose b to be 2.791 so that the significance level is about 0.05. Using (4.11),
we know that the power of the test at α = 8.936 is about 0.975. We note that
the corresponding θ = α/

√
J is about 1.1, which is chosen to compare with the

results reported in Freireich et al. (1963).
Since both GJ(t) and IJ(t) are step functions and they change their values

only at Yj +Xj1∧Xj2, the time TJ to stop sampling can be expressed in terms of
the difference between the number of pairs that have given preferences to 6-MP
and the number for placebo. In particular, we do not need the entry times Yj to
perform the test.
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Figure 1.

Figure 1 plots the number of preferences for 6-MP minus the number of
placebo preferences against the number of pairs in the order of Yj + Xj1 ∧ Xj2.
The corresponding stopping boundary for (4.4) is given by the parobola, y =
±2.791 · √x.

The sequential test of Freireich et al. (1963) was to stop the experiment when
the difference between the number of 6-MP and placebo preferences cross the
boundary consisting of the dotted line segments in Figure 1. The corresponding
upper and lower line segments are given by the equations y = ±(6.62+0.2679·x).
(cf. Armitage (1957), Table 5.) Let p = P [Xj1 > Xj2] denote the probability of
a success for 6-MP. Their test has the property that the significance level is 0.05
for the null hypothesis p = 1/2 and power 0.95 at p = 0.75.

We note that when the survival times are exponential, then p = 0.75 corre-
sponds to θ = log 3 (cf. Siegmund (1985), p.135), which is about 1.1.

Remarks 1. Comparing the power of our test and the power of the test used
by Freireich et al. (1963), we know our method is quite a good alternative. We
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note that both tests would stop the experiment when there are 18 preferences
available.
2. According to Andersen, Borgan, Gill and Keiding (1993), p.672 and CH(96),
p.23, there seems very little association within pairs in the study of Freireich et
al. (1963). With this understanding, it would be desirable to ignore the paired
design and use the proportional hazards model of Sellke and Siegmund (1983) to
propose a repeated significance test. Unfortunately, the published data do not
contain times of entry into the study, so we do not compare their method with
ours in this example. However, if there is association within pairs, it would be
better to use our method in view of the simulation study in Section 5.
3. It is obvious that our method can be generalized to the case when there are
more than two treatments.

5. A Simulation Study

The simulation study intends to indicate that in case there is association
within pairs, our estimating function GJ performs more satisfactorily than the
standard Cox partial score used in Sellke and Siegmund (1983); and in case there
is no association, the standard Cox partial score performs better.

The distributions of Λj , Yj ,Xji, Cji and Zji for this simulation study are
described as follows. P [Λj = λa] = P [Λj = λb] = 1/2, Yj is uniformly distributed
in the interval [ya, yb], Cji = ∞, Zj1 = 1, and Zj2 = 0. Conditional on Λj = λ,
Xj1 has intensity λeθ, Xj2 has intensity λ. We generate data with different
values of λa, λb, ya, yb, exp(θ). The simulation results presented in the following
are based on 1000 replicates of the data.

Let

G
(c)
J (θ0, t) =

J∑
j=1

2∑
i=1

∫ t

0

(
Zji −

∑J
j=1

∑2
i=1 1(Yj ,Yj+Xji∧Cji](s)e

θ0ZjiZji∑J
j=1

∑2
i=1 1(Yj ,Yj+Xji∧Cji](s)e

θ0Zji

)
dNji(s)

and
I

(c)
J (θ0, t) = − ∂

∂θ
G

(c)
J (θ, t)

∣∣∣∣
θ=θ0

be respectively the standard Cox partial score and information.
For positive numbers m0 and d, we can define a repeated significance test of

H0 : θ = θ0 = 0 against H1 : θ �= θ0 by means of the stopping rule based on G
(c)
J ,

T (c) ≡ inf
{

t

∣∣∣∣ I
(c)
J (θ0, t) ≥ m0, |G(c)

J (θ0, t)| ≥ d

√
I

(c)
J (θ0, t)

}
,

truncated as soon as I
(c)
J (θ0, t) ≥ m for some m > m0. The test rejects H0 if

T (c) < t
(c)
1 , where t

(c)
1 = inf{t|I(c)

J (0, t) ≥ m} is the truncation time. Similarly,
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Table 1. Comparison of F̃θ and C̃θ under null hypothesis exp(θ) = 1 and
under alternative exp(θ) = 2 for different values of ya, yb, λa, λb and m0.

exp(θ) = 1 exp(θ) = 2
ya yb λa λb m0 d α C̃θ F̃θ β C̃θ F̃θ

0 0 1 1 3 2.843 0.05 0.044 0.041 0.896 0.881 0.865
0 0 1 1 10 2.631 0.05 0.049 0.045 0.931 0.912 0.908
0 0 1 5 3 2.843 0.05 0.025 0.043 0.896 0.791 0.882
0 0 1 5 10 2.631 0.05 0.032 0.052 0.931 0.856 0.907
0 0 1 7 3 2.843 0.05 0.022 0.040 0.896 0.750 0.870
0 0 1 7 10 2.631 0.05 0.025 0.044 0.931 0.817 0.914
0 3/4 1 1 3 2.843 0.05 0.044 0.038 0.896 0.889 0.867
0 3/4 1 1 10 2.631 0.05 0.051 0.039 0.931 0.925 0.899
0 3/4 1 5 3 2.843 0.05 0.014 0.041 0.896 0.693 0.875
0 3/4 1 5 10 2.631 0.05 0.019 0.051 0.931 0.774 0.922
0 3/4 1 7 3 2.843 0.05 0.009 0.036 0.896 0.565 0.867
0 3/4 1 7 10 2.631 0.05 0.004 0.038 0.931 0.648 0.913

another repeated significance test based on GJ can be defined by letting

T ≡ inf
{

t

∣∣∣∣ IJ(θ0, t) ≥ m0, |GJ (θ0, t)| ≥ d
√

IJ(θ0, t)
}

,

truncated as soon as IJ(θ0, t) ≥ m, and the test rejects H0 if T < t1, where
t1 = inf{t|IJ(0, t) ≥ m}.

Let Fθ = P (θ)[T < t1] and Cθ = P (θ)[T (c) < t
(c)
1 ] be respectively the power

functions of T and T (c), where P (θ) is the probability corresponding to the pa-
rameter θ.

We present approximated values of Fθ, denoted by F̃θ, by calculating the
percentage of the 1000 replicates for which T < t1. A similar calculation is also
done for Cθ, and denoted by C̃θ. We take the sample size J = 120, and m = 30.
In Table 1, C̃θ and F̃θ are presented for different values of ya, yb, λa, λb and m0

under both null hypothesis exp(θ) = 1 and alternative exp(θ) = 2.
Let T ′ = inf{t|t ≥ m0, |Wµ(t)| ≥ d

√
t}, where Wµ is a Brownian motion with

drift µ. Then from Corollary 4.19 and Theorem 4.21 of Siegmund (1985),

P0[T ′ < m] = (d − d−1)φ(d) log(m/m0) + 4d−1φ(d) + o(d−1φ(d)), (5.1)

Pµ[T ′ < m] = 1 − Φ[m1/2(dm−1/2 − µ)]

+{φ[m1/2(dm−1/2 − µ)]/(µm1/2)}(1 + o(1)), (5.2)

where Pµ is the probabilty corresponding to Wµ. The nominal significance level
α in Table 1 is set to be 0.05 and for different values of m0, d is obtained
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accordingly by using (5.1). For each d, the corresponding “approximate” power
β at the alternative µ = θ

√
120 with exp(θ) = 2 is obtained by using (5.2).

The simulation results indicate that when λa = λb, which is the case when
there is no frailty, G

(c)
J performs a little better because of bigger power; and when

there is frailty effect, i.e., λa �= λb, the significance levels C̃θ of the test based on
G

(c)
J are not as close to 0.05 as those F̃θ for the test based on GJ , and the powers

C̃θ of G
(c)
J are farther from β than those F̃θ of GJ .
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