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Abstract: This paper studies uniform distributional properties of particular stop-

ping times for Brownian motion that are determined by a family of stopping curves

indexed by p ∈ [0, 1]. These curves derive from the stopping curve for a sequential

estimation problem in which the goal is to estimate a function of the Binomial

parameter p that diverges as p approaches zero. The almost sure convergence

and asymptotic normality of the stopping times for the Brownian analogue of this

problem are obtained straightforwardly. The main result is the derivation of ex-

ponential bounds for the tail probabilities of a weighted mean square loss function

expressible in terms of these stopping times. This result suffices to establish the

uniform integrability of these loss functions in this continuous model, providing

more importantly the methodology to prove the more difficult consistency result

for the discrete Binomial problem. Brief historical comments about Brownian mo-

tion are included, as well as several open problems related to Brownian processes

and sequential methods.
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1. Introduction

The purpose of this paper is to study the asymptotic behavior of a particular
family of stopping times for Brownian motion. The motivation for considering
these stopping times comes from a particular sequential estimation problem in
the context of a sequence of independent Bernoulli-p observations. The specific
problem is discussed in Section 2 below, but for now, consider the prototypical
example in which one wishes to estimate sequentially the rate 1/p by 1/X̄N ,
the reciprocal of the stopped sample mean, in such a way as to maintain a
specified limiting risk as p ↘ 0 under the weighted mean-square loss function,
p(X̄−1

N − p−1)2. The stopping time, N , is chosen to be the smallest sample size n

that exceeds the (approximate) best fixed sample size for the Binomial problem
when p = X̄n. General problems of this type are studied in detail in Hubert and
Pyke (1995), where the asymptotic results include the uniform integrability of
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the loss function which is needed to insure the desired limit for the risk function
when p → 0. We expand a little on this in Section 2.

What is the role of Brownian motion in this particular sequential Bino-
mial problem? Clearly, Brownian motion and sequential analysis have had many
interconnections over the years. In fact, the stopping time aspect of sequential
analysis can be found in the very first paper in which the mathematical construct
now known as Brownian motion is introduced, namely the 1900 paper by Louis
Bachelier. This lengthy treatise is an excellent example of stochastic modeling
in which the real-life phenomenon being modeled is the fluctuation of prices on
the French bond market. Both the Binomial random walk and the approximat-
ing Brownian motion are presented in Bachelier (1900). The latter is of course
not done rigorously, but certainly the ideas are discussed in a surprisingly up-
to-date way by Bachelier, including the Chapman-Kolmogorov equations (page
29) the second-order heat equations (page 46) and the reflection principle (page
75). Though other processes may be preferred today for modeling market price
fluctuations, Bachelier, for his part, included many examples of actual data in
order to indicate the good level of fit for his model of these particular prices.

In particular, the idea of a stopping time occurs already in this first math-
ematical paper on Brownian motion. For among the many specific problems
considered by Bachelier is that of a person who buys a simple option (to buy
some bonds at a specified price) with the intention of selling a futures option
on these bonds when their price attains a predetermined gain. Thus, Bachelier
(1900), p. 84 studies the one-sided barrier problem for Brownian motion. Specif-
ically, if Tt denotes the (truncated by t) first time for standard Brownian motion
Z to hit level x > 0 during (0, t], his results include the probability distribution
of Tt, its mean and the conditional law of Z(t) given that the barrier had not
been reached prior to it.

Though in recent decades there has been considerable activity in the use
of Brownian-related processes in several areas of finance, the original paper of
Bachelier did not receive its due recognition. Instead, during the first half of
this century, the tremendous developments in the theory and applications of
Brownian motion followed not from Bachelier’s work but the independent later
work of Albert Einstein. In Einstein (1905), this mathematical construct known
as Brownian motion was introduced to model the fluctuations of molecules within
the molecular theory of heat. Indeed, this particular physical model provided a
theoretical justification for the movement of particles observed much earlier by
Sir Robert Brown in 1827 (see Brown (1828)) from whom the process takes its
name. The great developments in the probabilistic theory of Brownian motion
followed from Einstein through the work of Norbert Wiener and Paul Lévy, rather
than from the potentially superior but overlooked beginnings of Bachelier. (A
fuller discussion on the history of Brownian motion will appear in Pyke (1995).)
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A poignant reflection upon the lack of attention given to Bachelier’s wealth
of ideas is given in Mandelbrot (1989) where it is stated that

“He invented efficient markets in 1900, sixty years before the idea came
into vogue. He described the random walk model of prices, ordinary
diffusion of probability—also called Brownian motion—and martin-
gales, which are the mathematical expression of efficient markets. He
even attempted an empirical verification. But he remained a shadowy
presence until 1960 or so, when his major work was revived in English
translation.”

In any event, the subject of Brownian motion has flourished greatly this cen-
tury, and represents today a major cornerstone of probability. In particular, for
this paper, we emphasize the significant roles played by Brownian motion within
sequential analysis. Perhaps most importantly is its natural role in providing
central-limit-type approximations to the random walks of discrete models, ap-
proximations that have been around since the beginnings of Brownian motion;
note for example, Lord Rayleigh’s response to Karl Pearson’s question about the
‘Random Walker’ (cf. Rayleigh (1905), Pearson (1905)), in the same year as Ein-
stein’s construction (Einstein (1905)). Some early sequential analysis examples
of this role are Vogel (1960), Anderson (1960) and Chernoff (1961). In the first
of these, Brownian motion is used to approximate a random walk constrained
between two-sided barriers, ±b. After computing E(T ) for the Brownian motion
case, it is then used as a heuristic limit for the actual mean stopping time. In
Anderson (1960) the Brownian motion approximation to normal random walks is
used to simplify calculations in numerical comparisons of sequential procedures.
The third paper is the first of a series of four papers (see Chernoff (1965) for
references) in which the Brownian approximation to a random walk of normal
increments is studied within the context of sequentially testing for the sign of the
drift or mean. These papers provide explicit characterizations and expansions
for the optimal stopping regions, along with rates of approximation.

A second role for Brownian motion has been in direct modeling. For exam-
ple, De Groot (1960) studies sequential tests for a one-sided hypothesis-testing
problem involving directly the parameter µ in the context of Brownian motion
with drift, {Z(t) + µt : t ≥ 0}.

The subject of this paper represents a third role, namely, the role of Brown-
ian motion in suggesting methodology for more difficult discrete problems. The
main asymptotic challenge for the Binomial sequential estimation problems of
Hubert and Pyke (1995) involved uniform integrability of loss functions and these
remained intractable until the problem was translated into the Brownian frame-
work. The self-similarity of Brownian motion then enabled one to transform
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these problems into ones involving a family of stopping curves for a single pro-
cess, a significant simplification of the original single stopping curve for a family
of processes. (By the way, self-similarity for Brownian motion is another of the
central concepts for Brownian motion that appears already in Bachelier (1900);
see e.g. page 76 where in the context of applications to his just derived distribu-
tion of the first passage time, he emphasizes that the probability is unchanged if
the height of the barrier is changed proportionally to the square-root of time.)

In Section 2 we state briefly the motivating Binomial problem, give the ap-
propriate continuous problem in terms of Brownian motion, and prove the strong
law and asymptotic normality of the resulting stopping times. The main theo-
retical result, the uniform integrability of these stopping times is presented in
Section 3. A brief addendum follows in Section 4 in which the second author
summarizes some further comments made during the oral presentation and in-
cludes statements of open problems that were outlined briefly at that time.

2. The Problem

The Binomial inference problem studied in Hubert and Pyke (1995) is as
follows: Let Sn be the partial sums of independent Bernoulli random variables
Xi with success probability p, so that Sn = X1 + X2 + · · · + Xn, n ≥ 1, with
P (Xi = 1) = p = P (Xi �= 0). Set S0 = 0. Given constants a, b, and c with a �= 0,
2a+b < 0, and c > 0, we wish to estimate the power of p, g(p) = pa, in such a way
as to keep the risk close to the specified constant c where risk = E(Ln(tn, p)) and
the loss function is Ln(tn, p) = h(p)(tn − g(p))2 with weight function h(p) = pb.
We consider the estimator tn = g(Xn) where Xn = Sn/n. Since the approximate
ideal fixed-sample size for a specific (but unknown) p can be shown to be

ξp := (a2/c)p2a+b−1 = (a2/c)p−1/(1−ρ), (2.1)

where
0 < ρ :=

2a + b

2a + b − 1
< 1, (2.2)

we consider in Hubert and Pyke (1995) the stopping time N defined by N =
inf{n > 0 : n ≥ ξXn

}. By the definition of ξp, this stopping time is expressible
directly in terms of the partial sums as

N = inf{n > 0 : Sn ≥ C(n)}, (2.3)

where
C(n) := (a2/c)1−ρnρ. (2.4)

The stopping rule is to stop as soon as one of the partial sums, Sn, is greater
than the curve, C(n). Since 0 < ρ < 1 the curve is increasing and concave.
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We use this definition to motivate the definition of a similar stopping time
for a family of Brownian motions. Since it becomes necessary to restrict N to be
no less than a minimum positive size, m say, replace N with

N ′ = inf{n ≥ m : Sn ≥ C(n)} (2.5)

= inf{n ≥ m :
Sn − np

(pq)1/2
≥ C(n) − np

(pq)1/2
}.

If Z = {Z(t) : t ≥ 0} is standard Brownian motion the analogous continuous
version of the stopping time N ′ would be

T̃p = inf{t ≥ m : Z(t) ≥ C̃p(t)}, (2.6)

where
C̃p(t) =

C(t) − tp

(pq)1/2
. (2.7)

Note that ξp is a root of C̃p.
A simplifying feature of this Brownian motion formulation of the stopping

problem is the fact that Brownian motion is self-similar. This allows one to
rescale the time axis so that the point ξp is always at 1. To this end, set

Cp(t) = ξ−1/2
p C̃p(tξp) = (a2/cq)1/2p−ρ/2(1−ρ)(tρ − t) (2.8)

and since ξ
−1/2
p Z(tξp) is still standard Brownian motion, the appropriate stopping

time is expressible as

Tp = inf{t ≥ mp : Z(t) ≥ Cp(t)}, (2.9)

where
mp =

m

ξp
= m/(a2/c)p−1/(1−ρ). (2.10)

Observe that Tp has the same distribution as T̃p/ξp. We note here that ξp → ∞ as
p → 0 so our minimum stopping point, mp, is converging to zero. The important
advantage of this formulation is that all of the stopping problems are now defined
on a single random process Z with the parameter p entering only through the
curves, {Cp}. This is not easily possible in the above discrete problem where
there is a single curve C, and hence a single stopping time N , but a family of
different probability models indexed by p.

In this paper we focus on the Brownian motion problem alone, and therefore
we delete the inconsequential factor of q−1/2 from the definition of Cp. Note that
this factor approaches 1 as p → 0. Thus for the remainder of the paper, let
A = (a2/c)1/2 and assume the family of stopping curves is given by

Cp(t) := Ap−r(tρ − t); t ≥ 0 (2.11)
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for A > 0 and parameters 0 < p ≤ 1, 0 < ρ < 1 and r = r(ρ) = ρ/2(1 − ρ) =
−a− b/2. Note that r is increasing in ρ with range (0,∞), and r(2/3) = 1. Also,
Cp is increasing on (0, ρ1/(1−ρ)) and decreasing on (ρ1/(1−ρ),∞).

We conclude this section by establishing the strong law and asymptotic nor-
mality for the stopping times, Tp.

Theorem 2.1. (i) Tp → 1 almost surely as p → 0.
(ii) As p → 0, τp ≡ Tp−1

σp

L→N(0, 1) where ξp is defined in (2.1) and

σp = A−1(1 − ρ)−1pr. (2.12)

Proof. For (i), the simple form of the curves Cp makes it clear that for any
t ∈ (0, 1), Cp(t) increases to +∞ as p ↘ 0 while for any t > 1, Cp(t) decreases to
−∞. If we ignore for the moment the possibility of Z hitting Cp near the origin,
we can almost surely force Tp to be arbitrarily close to 1; given any interval
around 1, one may take p so small that the curve Cp is steep enough to insure
that Z first hits the curve within that interval. Therefore, the proof will be
complete if we show that with probability 1, Z(mp) < Cp(mp) for all sufficiently
small p, thereby preventing stops near the origin. Set L(t) = t1/2 ln(1/t) for
0 < t < 1. By the LIL, there exists a (random) τ such that Z(t) < L(t) for all
t ≤ τ . Hence

Z(mp) < L(mp) (2.13)

for all p such that mp ≤ τ , say for all p ≤ p∗(τ). It is clear from the simple form
of Cp that if ρ < 1/2 then the Cp curve falls completely above the L curve for p

sufficiently small. For ρ ≥ 1/2, consider the ratio

Cp(t)
L(t)

= Ap−rtρ−1/2(1 − t1−ρ)/ ln(1/t). (2.14)

At t = mp = m/ξp = mA−1p1/(1−ρ), the factor

p−rtρ−
1
2 = const. × p−rp(ρ− 1

2
)/(1−ρ) = const. × p−1/2

and so Cp(mp)/L(mp) → +∞ as p → 0. Therefore,

L(mp) <
1
2
Cp(mp) (2.15)

for sufficiently small p. Combining (2.13) and (2.15) gives Z(mp) < Cp(mp) for
all sufficiently small p, which together with the monotoniety of Cp completes the
proof of (i).

We note from (2.14) that if ρ ≥ 1/2, Cp(t)/L(t) → 0 as t → 0 so that the
restriction Tp ≥ mp is necessary in this case. We also note in passing that in
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Theorem 2.1 the minimum stopping time, mp, could have been somewhat smaller
without invalidating the result. For ρ = 1/2 any positive power of p would be
sufficient and for ρ > 1/2 any power of p, say pα, with α < ρ/{(1 − ρ)(2ρ − 1)}
would be sufficient.

The proof of (ii) follows directly from (i) by utilizing a Taylor’s expansion of
Cp(t) around t = 1. By (2.11)

C ′
p(t) = Ap−r(ρtρ−1 − 1)

= σ−1
p

{
1 +

ρ

ρ − 1
(tρ−1 − 1)

}
= σ−1

p (1 + o(1)).

Hence Z(Tp) = Cp(Tp) = (Tp−1)σ−1
p (1+ o(1)), where by (i) the random remain-

der term in this last expression converges a.s. to zero. Moreover, by (i) and the
continuity of Z, Z(Tp) → Z(1) a.s. The proof is complete.

3. Uniform Integrability of the Stopping Times

In the motivating discrete problem described at the start of Section 2, the
weighted loss function of interest becomes pb((XN )a − pa)2 when estimating pa

by (XN )a. However, since SN differs from C(SN ) only by the amount of the
“jump over the boundary”, this loss is approximately

Ln(tn, p) = pb({C(SN )/N}a − pa)2. (3.1)

To translate this into the continuous model, use (2.7) and (2.11) to get

Cp(Tp)
Tp

=
C̃p(T̃p)

√
ξp

T̃p

=

{
C(T̃p)

T̃p

− p

}
(ξp/p)1/2 (3.2)

noting that the factor q1/2 is being omitted. Thus together with (2.1) and (2.11),
relation (3.2) implies

C(T̃p)
T̃p

= (p/ξp)1/2 Cp(Tp)
Tp

+ p = pT−(1−ρ)
p . (3.3)

The loss function (3.1) then translates into

Lp ≡ L(Tp, p) := pb(paT−a(1−ρ)
p − pa)2 = p−2r(T−a(1−ρ)

p − 1)2. (3.4)

The stopping curve C, in the discrete Binomial case, is chosen to insure that
the approximate risk for each fixed p ∈ (0, 1) is equal to a specified constant, c

say. In Hubert and Pyke (1995) it is shown that the exact risk converges to c as
p ↘ 0. To prove this result, it was necessary to establish first that the losses are
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uniformly integrable in p, and this required a lengthy argument for which the
following somewhat simpler situation provided the successful outline.

Define Vp = p−r(T−a(1−ρ)
p − 1) so that Lp = V 2

p and note that by part (ii) of

Theorem 2.1, it follows directly that Vp
L→(−a/A)Z where Z denotes a N(0, 1)

r.v. Consequently, Lp
L→(a2/A2)Z2 = cZ2 since we introduced the constant A

to stand for
√

a2/c. It is the purpose of this section to prove that the “risk”
E(Lp) → E(cZ2) ≡ c as p → 0. To do this, we will obtain rather precise tail
estimates of the distributions of Vp, from which their uniform integrability may
be deduced. The results to be proved are as follows.

Theorem 3.1. The family {|Vp|s : 0 < p ≤ p0} is uniformly integrable for any
p0 ∈ (0, 1) and s > 0.

Theorem 3.2. There exist positive constants K, K1, K2, K3 and 0 < ε < 1
such that for all u ≥ 0
(i) P (|Vp| > u, Tp < 1) ≤ e−K1p−(1−ε)/2

+ 4e−K2p−2εr
+ 4e−K3u2

for p sufficiently small, and
(ii) P (|Vp| > u, Tp ≥ 1) ≤ 2e−Ku2γ

for all p ∈ (0, 1), where

γ =

{
1, if a > 0,
min(1,−1/2a(1 − ρ)), if a < 0.

The first theorem follows directly from the bounds obtained in the second,
as we now show. For notational convenience let Zp = |Vp|.
Proof of Theorem 3.1. It suffices to consider the uniform boundedness of
EZs+1

o . Write

EZs+1
p =

∫ ∞

0
P (Zp > u)dus+1

=
∫ ∞

0
P (Zp > u, Tp < 1)dus+1+

∫ ∞

0
P (Zp > u, Tp ≥ 1)dus+1. (3.5)

It is clear from the bounds of Theorem 3.2 that the second integral is uniformly
bounded in p. For the first integral the boundedness comes from showing that
the range of integration is bounded. For a < 0, observe that whenever Tp < 1,
Zp = p−r|T−a(1−ρ)

p − 1| ≤ p−r. Hence the integrand is zero unless u ≤ p−r. For
a > 0, the event in the first integral in (3.5) is

[ p−r|T−a(1−ρ)
p − 1| > u, Tp < 1] = [ p−r(T−a(1−ρ)

p − 1) > u]

= [Tp < (1 + upr)−1/a(1−ρ)] (3.6)

since (1 + upr)−1/a(1−ρ) decreases as u → ∞. Also, recall that there is a lower
limit of mp on the stopping time Tp. From (2.1) and (2.10), the inequality
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(1+upr)−1/a(1−ρ) ≥ mp is equivalent to u ≤ (m−a(1−ρ)
p −1)p−r. The latter shows

that the range of integration is covered by

0 ≤ u ≤ m−a(1−ρ)
p p−r ≡ (m/A2)−a(1−ρ)pb/2.

We use K, with or without subscripts, as generic positive constants which may
have different values at different times. Thus in either case, the range of inte-
gration for the first integral may be taken as 0 ≤ u ≤ Kp−β for suitable positive
constants K and β. It then follows directly from the form of the bounds in The-
orem 3.2 that {EZs+1

p ; 0 ≤ p ≤ p0} are bounded where p0 is implicit in Theorem
3.2 (i).

The particular consequence of this result that is of methodological interest
for the sequential analysis context is the following:

Corollary 3.1. The family of loss functions {Lp}, as defined in (3.4), is uni-
formly integrable with

lim
p→0

E(Lp) = c.

Proof. Since Lp is just the square of Zp the family {Lp} is uniformly integrable
by Theorem 3.1. The result is then a consequence of the convergence in law
of {Lp} given in Part (ii) of Theorem 2.1 and the construction of the stopping
curves.

In the remainder of this section, we give the derivation of the probability
bounds used in the proof of uniform integrability.

Proof of Theorem 3.2. There are small differences that arise in the proof
depending on the sign of a so it is necessary to split the proof into two cases.

Case 1. a > 0. From (3.6)

[Zp > u, Tp < 1] = [Tp < tp−(u)], (3.7)

where
tp−(u) ≡ (1 + upr)−1/a(1−ρ).

Different bounds turn out to be necessary for different ranges of u. Recall that
the stopping curves Cp rise steeply from zero at t = 1 to arbitrarily great heights
(as p → 0) before returning steeply to pass through zero again at t = 1. Thus it
is very unlikely that the Brownian motion will hit the curve anywhere but near
the origin or near 1. Note that if the Brownian motion Z is above the stopping
curve Cp for any t between mp and tp−(M) then by definition Zp is larger than
M and this is the event we are integrating over.
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To get suitable bounds we first split the range of u’s into three pieces. It is
easier and more useful to think of splitting the range of t’s into three intervals.
First of all, fix ε ∈ (0, 1) and set

vp = kp
1−ε

2(1−ρ) = kp(1−ε)(r+1/2), (3.8)

where k is a positive constant. Note that the maximum value of Cp occurs at
tmax = ρ1/(1−ρ) so that vp is to the left of tmax for p sufficiently small. Let
wp be the unique value greater than tmax which satisfies Cp(vp) = Cp(wp). The
three regions into which we split the t interval are delineated for p sufficiently
small by the points 0,mp, vp, wp, and 1. In order to talk about the u range being
split into three intervals, define u1 and u2 as the u’s which satisfy the equations:
tp−(u1) = vp, and tp−(u2) = wp.

The range of integration is then split into three parts corresponding to the
labels I, II, and III as follows

(I): u1 < u; (II): u2 < u ≤ u1; (III): 0 ≤ u ≤ u2.

It will be seen that the ε in the definition of vp is needed only for interval II. It
could just as well be omitted for intervals I and III.

First of all, consider u such that tp−(u) < mp. Since Tp is bounded below by
mp, P (Tp < tp−(u)) = 0, yielding a trivial bound in this case. Next, consider a u

in interval I. In this case, mp ≤ tp−(u) < vp. If Tp < tp−(u) then Z(t) ≥ Cp(t) for
some mp ≤ t < tp−(u), which implies that Z(t) ≥ L1(t) for some mp ≤ t < tp−(u)
where L1 is the line through the points (mp, Cp(mp)) and (vp, Cp(vp)). The
probability of Z being above the line L1 somewhere between mp and tp−(u) is
less than or equal to the probability of Z crossing above the line somewhere from
0 to +∞. A well known expression of Doob (1949) shows that the probability
that Z ever crosses a line with positive slope, S, and positive intercept, I, is

P (Z(t) ≥ L(t), for some t > 0) = e−2SI . (3.9)

For the particular line L1, the slope is

S =
Cp(vp) − Cp(mp)

vp − mp
≥ Cp(vp) − Cp(mp)

vp
. (3.10)

The numerator of (3.10) satisfies

Cp(vp) − Cp(mp) = Ap−r{(vρ
p − vp) − (mρ

p − mp)}
≥ Ap−r(vρ

p/2 − mρ
p)

for sufficiently small p. This last expression, for constants K1,K2 and K, equals

Ap−r{K1p
(1−ε)r − K2p

2r} = Ap−εr{K1 − K2p
(1+ε)r} ≥ Kp−εr
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for sufficiently small p. Thus from (3.10), the slope of L1 satisfies

S ≥ Kp−εr

vp
= Kp

−1+ε(1−ρ)
2(1−ρ) = Kp−r− 1

2
+ ε

2 , (3.11)

where K is used generically. By solving the equation of the line for the intercept
we get

I = Cp(mp) − mpS. (3.12)

To give a lower bound to this, we need an upper bound on the slope in addition
to the above lower bound. To do this, observe that

S =
Cp(vp) − Cp(mp)

vp − mp
≤ Cp(vp)

vp − mp
.

But then,

vp − mp = Kp(1−ε)/2(1−ρ) − K1p
1/(1−ρ)

≥ K2p
(1−ε)/2(1−ρ) = Kp(1−ε)(r+ 1

2
)

for p sufficiently small. Moreover,

Cp(vp) = Ap−rvρ
p(1 − v1−ρ

p ) ≤ Kp−rp(1−ε)r = Kp−εr. (3.13)

Consequently, S ≤ Kp−r− 1
2
+ ε

2 . Substitution of this upper bound into (3.12)
yields

I ≥ Cp(mp) − mpKp
−1

2(1−ρ)
+ ε

2 = Ap−rmρ
p(1 − m1−ρ

p ) − mpKp
−1

2(1−ρ)
+ ε

2

≥ Kpr − K1p
1

2(1−ρ)
+ ε

2 ≥ 1
2
Kpr (3.14)

for sufficiently small p. The combination of (3.11) and (3.14) gives SI≥Kp−(1−ε)/2.
Hence, by (3.9)

P (Z crosses line L1) ≤ e−Kp−(1−ε)/2
(3.15)

and thus
P (Tp < tp−(u)) ≤ e−Kp−(1−ε)/2

, for u > u1. (3.16)

Next, consider tp−(u) in interval II, i.e. u2 < u ≤ u1. Similar methods for
this region yield a bound that is also constant in u and depends only on p. For
this interval we are able to use a piece-wise linear lower bound to Cp that involves
two lines. The first line is the same one used on interval I and the second is just
the horizontal line of height Cp(vp).

The probability of Z crossing above the piece-wise boundary formed by L1

and L2 between mp and tp−(u) is less than or equal to the probability of crossing
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L1 anywhere from 0 to +∞, plus the probability of crossing L2 between 0 and
1. The first probability is the one for which we just computed a bound in (3.15).
The second is just the probability of the Brownian motion Z crossing a horizontal
line. It is well known that this probability equals twice the probability of being
above the line at 1. The height of the horizontal line is Cp(vp) so the probability
of crossing above L2 equals

2P (Z(1) ≥ Cp(vp)) ≤ 4e−C2
p(vp)/2. (3.17)

But, similarly to (3.13), one obtains Cp(vp) = Ap−rvρ
p(1 − v1−ρ

p ) ≥ Kp−εr for p

sufficiently small. Thus for the second interval we have

P (Tp < tp−(u)) ≤ e−K1p−(1−ε)/2
+ 4e−K2p−2εr

, for u2 < u ≤ u1. (3.18)

As this shows, it was for this second interval that we had to introduce ε.
Now consider tp−(u) in interval III, namely, 0 ≤ u ≤ u2. For this interval

the bound depends on the specific value of u. The picture is similar to the last
one. We once again use a piece-wise linear lower bound to Cp that involves two
lines, namely, the same sloping line L1 as before together with the horizontal
line L3 of height Cp(tp−(u)). Note that L3 is necessarily lower than L2. Use
the same bound as before for the probability of crossing L1. The probability
of exceeding L3, as for L2, can be shown to be bounded by 4e−C2

p(tp− (u))/2 (see
(3.17)). However, Cp(tp−(u)) is rather complex here, and some additional work
is required to find a suitable lower bound for it.

Observe first that since vp → 0 as p → 0, the structure of the curves Cp

implies that wp → 1 as p → 0. Though it is not possible to solve for wp explicitly
in the defining equation Cp(vp) = Cp(wp), we only need an approximate value,
wp, that is less than wp. If one ignores higher order terms in the defining equation,
the value

wp := (1 − 2vρ
p)1/(1−ρ) (3.19)

is suggested. To see that wp < wp, note firstly that wp > tmax when p is small,
so that it suffices to check that Cp(wp) > Cp(wp). But

Cp(wp)
Cp(wp)

=
wρ

p

1 − v1−ρ
p

· 1 − w1−ρ
p

vρ
p

= 2
wρ

p

1 − v1−ρ
p

> 1

for p sufficiently small since wp → 1 and vp → 0. Define up by tp−(up) = wp.
Then by the definition of tp− in (3.7), up = o(p−r) since wp → 1. Also, since
u < up for all u’s in interval III, it follows that upr converges to zero uniformly
over 0 ≤ u ≤ u2; recall that u2 = u2(p) depends on p, and could be diverging.
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Consequently, tp−(u) → 1 uniformly for 0 ≤ u ≤ u2. We can now get the desired
bound, since

Cp(tp−(u)) ≡ Ap−rtρp−(u)(1 − (tp−(u))1−ρ)

≥ 1
2
Ap−r{1 − (1 + upr)−1/a}

and the uniform convergence to zero of upr then gives

Cp(tp−(u)) ≥ Ku, 0 ≤ u ≤ u2, (3.20)

for sufficiently small p and a suitable constant K. (Note that we could have used
A− δ for any δ ∈ (0, 1) in place of A/2 above, so that A/a = c−1/2 could be used
for K in (3.20).) In view of (3.15) and (3.20), this proves

P (Tp < tp−(u)) ≤ e−K1p−(1−ε)/2
+ 4e−K2u2

; 0 ≤ u ≤ u2. (3.21)

A combination of the bounds for the three cases then yields the desired bound
(i) of the theorem.

To verify the bound in (ii) for Case 1 of a > 0, observe that for this other
tail,

[Zp > u, Tp ≥ 1] = [ p−r(1 − T−a(1−ρ)
p ) > u] = [T−a(1−ρ)

p < 1 − upr].

Note that this is the empty event if upr ≥ 1. Assume therefore that 0 < upr < 1
and write

[Zp > u, Tp ≥ 1] = [Tp > tp+(u)], (3.22)

where
tp+(u) = (1 − upr)−1/a(1−ρ). (3.23)

Clearly, [Tp > t ≥ 1] ⊂ [Z(t) ≤ Cp(t)], so that

P [Tp > tp+(u)] ≤ P [Z(tp+(u)) ≤ Cp(tp+(u))] = Φ
(
Cp(tp+(u))/

√
tp+(u)

)
≤ 2 exp{−C2

p(tp+(u))/2tp+(u)}. (3.24)

By setting x = upr, direct substitution yields

Cp(tp+(u))/
√

tp+(u) = Aux−1(1 − x)(−2ρ+1)/2a(1−ρ){1 − (1 − x)−1/a}
≡ −AuJ(x), say. (3.25)

It is easy to check that J(1−) = +∞, J(0+) = 1/a, and J is continuous and
never zero on 0 < x < 1. Thus J is bounded away from zero, implying from
(3.22), (3.24) and (3.25) that for all p ∈ (0, 1)

P [Zp > u, Tp ≥ 1] ≤ 2e−Ku2
, 0 < u < p−r.
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Recall that a bound of zero applies for u ≥ p−r, and this completes the proof
when a > 0.

Case 2. a < 0. The main difference from Case 1 is in the definitions of tp−(u)
and tp+(u), where the change in the sign of a effectively amounts to a substitution
of −u for u; namely

[Zp > u, Tp < 1] = [Tp < tp−(u)] with tp−(u) = (1 − upr)−1/a(1−ρ) (3.26)

when upr < 1, and for all u,

[Zp > u, Tp ≥ 1] = [Tp > tp+(u)] with tp+(u) = (1 + upr)−1/a(1−ρ). (3.27)

These may be compared with (3.7) and (3.23), respectively. For the proof of (i),
the range of u is split as before. The steps for intervals I and II are essentially
unchanged since they depend only on the curve Cp and the points mp, vp and
wp whose definitions do not change. For interval III, an analogous calculation as
before shows that

Cp(tp−(u)) = Ap−rtρp−(u)(1 − t1−ρ
p− (u)) ≥ Ku

for sufficiently small p. Thus all three terms in the bound remain the same except
for the constants, thereby proving (i) when a < 0.

For the right hand tail bound of (ii), it follows as before that (3.24) holds,
and, moreover, that the term in the exponent can be written as

−Cp(tp+(u))/
√

tp+(u) = AuH(x), (3.28)

where x = upr,
H(x) ≡ x−1(1 + x)α{(1 + x)−1/a − 1} (3.29)

and α = (−2ρ + 1)/2a(1 − ρ). By (3.25), note that H(x) = −J(−x). Now,
however, the range for x is (0,∞) rather than (0, 1), which forces a significant
change in the required lower bound for H. Since H(0+) = −1/a > 0 and H

is always positive, the lower bound is determined by its behavior as x → +∞.
Clearly,

H(x) ≥ (1 + x)α−1/a−1{1 − (1 + x)1/a} = 0(xα−1/a−1)

so that for α − 1/a ≥ 1, H is bounded below, so that from (3.24) and (3.29),

P [Tp > tp+(u)] ≤ 2 exp(−Ku2) (3.30)

when α − 1/a ≥ 1. For α − 1/a < 1, rewrite (3.29) as

H(x) = (1 + x)α−1/a{1 − (1 + x)1/a}/x
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and observe that H(0+) = −1/a and for x large, H(x) ≥ K(1 + x)α−
1
a
−1 ≥

Kxα− 1
a
−1 for suitable constants K. Thus there are constants such that for any

x > 0, H(x) ≥ min(Kxα− 1
a
−1,K ′). Since α−1/a = −1/2a(1−ρ), it follows that

in both cases we have shown that H(x) ≥ Kxγ−1 where γ ≡ min{1,−1/2a(1−ρ)}
when a < 0. Thus from (3.28) applied to (3.24) it follows that

P [Tp > tp+(u)] ≤ 2 exp(−Kp2(γ−1)ru2γ) (3.31)

for all p ∈ (0, 1) and u > 0. This bound improves as p → 0, but note that since
0 < γ ≤ 1, one has 2 exp(−Ku2γ) as a bound independent of p. The proof is
complete.

4. Addendum

It was a great privilege for the second author to be able to participate in
the conference at Rutgers University to honor Professor Robbins on the occa-
sion of his eightieth birthday. My earliest contacts with Herb would have been
through his writings, possibly first (other than through the text he wrote with
Courant) while learning about minimum variance estimation in 1954 during grad-
uate school, where the initials in “C-R lower bounds” referred to both Cramér-
Rao and Chapman-Robbins. Thereafter, two of the most stimulating early years
of my career revolved around the students and faculty of Fayerweather Hall,
Columbia University, during 1958–60.

Although the coverage of the Rutgers conference appropriately focused pri-
marily upon statistical topics of central interest to Herb, I hope this paper might
serve to emphasize his interest in and contributions to several areas of probabil-
ity, including martingales, Brownian motion and stopping times. One indication
of his contributions to the latter topic were his 1969 IMS Wald Lectures (cf.
Robbins (1970) and references therein, including Robbins and Siegmund (1970)).
In fact, if one defines a probabilist as one who works in one probability space (in
contrast to a statistician whose work involves more than one) then I assume that
Bayesian statisticians must be viewed as probabilists, thereby expanding greatly
Herb’s probabilistic contributions.

Throughout his work, Herb shows his special knack for capturing and de-
scribing clearly the essence of a new type of problem, often by means of a de-
ceptively simple example. Conversations as well often included the posing of
deceptively simple sounding problems whose eventual solutions would frequently
require considerable effort and new methodology, sometimes opening up com-
pletely new directions for research.

Because of this, I included at the end of the oral presentation of this paper,
brief statements of three very simply stated type of problems that to date re-
main unsolved. The first two of these, involving 2-parameter Brownian-related
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processes, have been stated elsewhere so are only briefly recalled here with ref-
erences:

Problem I. If C is a fixed compact convex subset of R
2 and Z(t) ≡ Z(C + t) is

the Brownian (white noise) measure of this set translated by t, is knowledge of Z

over the unit square equivalent almost surely to knowledge of C? (The answer is
yes if C is a finite sided polygon; see Adler and Pyke (1997).)

Problem II. If Z1 and Z2 are independent standard Brownian motions over
[0, 1], then Z1 × Z2 is very easily defined almost surely (by Fubini and stochastic
integration) for any convex C ⊂ [0, 1]2. Does there exist a continuous version of
Z1 × Z2 as a process indexed by C, the family of closed convex subsets of [0, 1]2?
(Consider C endowed with the Lebesgue measure of symmetric differences as the
metric, for example.) This is a separating example in the sense that the answer
is known to be yes (no) if the index family is smaller (larger) than C in terms of
exponents of metric entropy (see Pyke (1992), Question 3, page 260).

The third type of problem presented arose from a paper given by Thomas
Bruss just five days earlier at a conference on applied probability and time series
held in Athens, Greece, to recognize the contributions of Joe Gani (one of the
Fayerweather residents during 1959) and Ted Hannan. The paper, joint with
Thomas Ferguson, was appropriately titled, “On Robbins’ problem of minimizing
the expected rank with full information”; see Bruss and Ferguson (1996). A direct
extension of their problem would be the following two-sided version.

Problem IIIa. If Pn denotes the empirical measure based on n independent
uniform-[0, 1] random variables observed sequentially, how does one choose two
of these based only on their “pasts” to maximize EPn(J), where J is the interval
determined by one’s choices?

The problem extends also to cubes by using uniform points in [0, 1]k and
letting J be the cube having the two chosen points as opposite vertices. How-
ever, I chose to modify the optimality criterion from the expected number of
trapped points as given above to the expected volume of the enclosed region.
This amounts to using P (J) rather than EPn(J). (The particular terminology I
used was probably a consequence of being in the process of selling our farm.)

Problem IIIb. Suppose a prespecified number, n, of random locations are
marked one after another in a rectangular field. If you were invited to place
property stakes sequentially at any two of these locations with the promise of
being given the rectangular lot with sides parallel to the original field and hav-
ing your two stakes at its opposite corners, how should you proceed in order to
maximize your lot’s expected area?
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What if the original area was a disk (sphere) and the randomly selected sub-
region is the disk (sphere) having the line segment joining your two chosen points
as a diameter? Note that both of these formulations reduce in one dimension
to the problem of determining a pair of stopping times 1 ≤ M ≤ N ≤ n to
maximize E|UM − MN | where U1, U2, . . . , Un are i.i.d. Unif(0, 1) observations.

Here is a general formulation of a related problem that reduces to the above
only in the 1-dimensional setting:

Problem IIIc. If U1, U2, . . . , Un are i.i.d. random variables uniformly distributed
over a bounded convex set C ⊂ R

k, how would one determine (a random number
of ) stopping times 1 ≤ N1 ≤ N2 < · · · < NL ≤ n to maximize E| Convex
Hull of {UN1 , . . . , UNL

}|? (Here, | · · · | is Lebesgue measure and your sequential
procedure is restricted to insure that all points in {UN1 , . . . , UNL

} are extreme
points of their convex hull.)
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