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Abstract: Consider a linear model, yk = x′
kθ + ek, k = 1, 2, . . ., in which the current

design variable xk may be a function of the previous responses y1, . . . , yk−1 and

auxiliary randomization. Here the x’s and θ are p-dimensional, ′ denotes transpose,

and the errors ek are taken to be i.i.d standard normal variables. The goal is to

construct confidence sets for θ which are asymptotically valid to a high order. This

is accomplished by obtaining very weak asymptotic expansions for the distributions

of an appropriate pivotal quantity. The accuracy of the approximation is assessed

by simulation experiments for two sequential tests proposed by Siegmund (1980,

1993).
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1. Introduction

The purpose of this article is to show how to construct asymptotically valid
confidence regions for the parameters of a linear model when the design variables
may depend on previous responses. There is a substantial and growing list of
models of this type. These include control problems, as in Lai and Wei (1982),
Wu’s (1985) adaptive designs for estimating non-linear functions, a sequential
allocation rule due to Robbins and Siegmund (1974), Siegmund’s (1980, 1993)
tests for comparing three treatments, and Eisele’s (1994) adaptive biased coin
designs.

To fix ideas, let e1, e2, . . . and u1, u2, . . . denote independent random vari-
ables for which e1, e2, . . . are i.i.d. standard normal random variables, and con-
sider a statistical model in which the data are of the form yk = x′

kθ + ek, for
k = 1, 2, . . ., where θ = (θ1, . . . , θp)′ ∈ �p is unknown, ′ denotes transpose,
and xk = (xk1, . . . , xkp)′ may depend (measurably) on previous responses, say
xk = xk(u1, . . . , uk, y1, . . . , yk−1) for all k = 1, 2, . . . The u′s are included in
the model to accommodate auxiliary randomization as in Eisele’s (1994) biased
coin designs; their distributions do not depend on θ. If y1, . . . , yn are observed,
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then the model may be written in the familiar form yn = Xnθ + en, where
yn = (y1, . . . , yn)′, en = (e1, . . . , en)′, and Xn = [x1, . . . , xn]′. Throughout the
paper it is assumed that there is a possibly random integer n0 for which Xn is
of rank p w.p.1 (Pθ) for all θ ∈ �p and n ≥ n0, and consideration is restricted to
n ≥ n0. Then the log likelihood function and maximum likelihood estimator are
�n(θ) = −‖yn − Xnθ‖2/2 and θ̂n = (X ′

nXn)−1X ′
nyn for all n ≥ n0. In fact, �n

and θ̂n are the log likelihood function and maximum likelihood estimator, even if
n is replace by a stopping time with respect to Ak = σ{x1, . . . , yk}, k = 1, 2, . . .
See, for example, Berger and Wolpert (1984).

Let 1 ≤ m ≤ p and let An and Bn denote m×p and p×p matrices, depending
measurably on x1, . . . , yn, for which

AnA′
n = Im and X ′

nXn = BnB′
n, (1)

and let
Zn = B′

n(θ − θ̂n) and Wn = AnZn (2)

for n ≥ n0. Here Zn and Wn may be regarded as first approximations to piv-
otal quantities. If a particular linear functional, say c′θ, is of interest, then
c′(θ − θ̂n)/

√{c′(X ′
nXn)−1c} may be written in the form AnZn, where An =

(B−1
n c)′/

√{c′(X ′
nXn)−1c} and AnA′

n = 1. There are many ways of factoring
X ′

nXn in (1). Some advantages of using a Cholesky decomposition are described
at the end of Section 3.

The goal is to find asymptotic expansions for the distribution of Wt for
suitable families of stopping times t = ta, a ≥ 1. It is assumed that the parameter
a may be so chosen that X ′

tXt is of order a as a → ∞ in the sense of (11) below,
and the expansions take the following form: data dependent vectors µ̂a and
matrices Γ̂a are found for which

W ∗
t := Γ̂−1

a

(
Wt − µ̂a√

a

)
(3)

are asymptotically standard normal to third order in the very weak sense of
Woodroofe (1986). To state the result, let Φm denote the standard m-variate
normal distribution and write Φmh =

∫
�m hdΦm for measurable functions h :

�m → � for which the integral exists. Then it is shown that∫
Ω

Eθ[h(W ∗
t )]ξ(θ)dθ = Φmh + o(

1
a
) as a → ∞ (4)

for a large class of measurable h : �m → � and all twice continuously differen-
tiable densities ξ with compact support. Woodroofe (1986, 1989) calls expansions
of the form (4) very weak expansions and writes Eθ[h(W ∗

t )] = Φmh+o(1/a) (very
weakly).
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For the application to confidence sets, let C ⊂ �m be a measurable set and
let C = {θ ∈ �p : W ∗

t ∈ C} and γ(θ) = Pθ[θ ∈ C]. Then C may be regarded as
a confidence set with confidence level γ. By (4), γ(θ) is approximately Φm(C)
in the very weak sense; that is, γ(θ) = Φm(C) + o(1/a) very weakly. Woodroofe
(1986, 1989) argues that very weak expansions are strong enough to support a
frequentist interpretation of confidence.

The derivation of (4) is outlined in Section 3 with supporting details in
Sections 6, 7 and 8. Relation (4) is applied to form simultaneous confidence
intervals for contrasts for Siegmund’s (1980, 1993) sequential comparison of three
treatments in Section 4. The latter includes both adaptive design and optional
stopping. Section 2 contains some preliminary material on Stein’s Identity, and
Section 5 some remarks.

The goals of this paper are similar to those of Woodroofe (1989), but there
are important differences in the development. An additional term is computed
here without imposing additional smoothness conditions. It is mildly surprising
that this is possible. There is no analogue of the possibly data dependent matrix
An in earlier work. Advantages of including this matrix are illustrated in the
example. The analysis of the standardized variable W ∗

t is entirely different from
the earlier work.

2. Stein’s Identity

The proof of (4) depends on Stein’s (1981) Identity. If h : �p → � is a func-
tion of polynomial growth, say |h(z)| ≤ C(1 + ‖z‖r) for all z ∈ �p for some 0 <

C, r < ∞, let h0 = Φph, hp = h, hj(y1, . . . , yj) =
∫
�p−j h(y1, . . . , yj , z)Φp−j(dz),

and

gj(y1, . . . , yp) = e
1
2
yj

2

∞∫
yj

[hj(y1, . . . , yj−1, w) − hj−1(y1, . . . , yj−1)]e−
1
2
w2

dw

for −∞ < y1, . . . , yp, z < ∞ and j = 1, . . . , p. Here gj is to be regarded as
a function on �p, though it depends on y1, . . . , yp only through y1, . . . , yj. Let
Uph = (g1, . . . , gp)′.

For r ≥ 0, let Hp
r denote the class of all measurable functions h : �p → � for

which |h(z)| ≤ 1 + ‖z‖r for all z ∈ �p, and let Hp = ∪r≥0 ∪c≥0 cHp
r , the class of

functions of polynomial growth.

Proposition 1. Up is a linear transformation from Hp into Hp. Moreover, there
are constants cp,0, cp,1, . . . for which UpHp

0 ⊆ cp,0Hp
0 and UpHp

r ⊆ cp,rHp
r−1 for all

r = 1, 2, . . .

Proof. This is established in Woodroofe (1992) for the case p = 1. The extension
from one to several dimensions is not difficult.
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The transformation Up may be iterated. If h∈Hp, let U2
p h=[Upg1, . . . , Upgp],

the p × p matrix whose jth column is Upgj , j = 1, . . . , p, where g1, . . . , gp are as
above. Then U2

p h is an upper triangular matrix. Let

Vph =
U2

p h + U2
p h′

2
=

1
2
{[Upg1, . . . , Upgp] + [Upg1, . . . , Upgp]′}.

Then Vph is a symmetric matrix. For an example, let h(z) = ‖z‖2 = z2
1 + · · · +

z2
p, z ∈ �p. Then hj(y1, . . . , yp) = y2

1 + · · · + y2
j + (p − j) and gj(z) = zj for all

j = 1, . . . , p. That is, Uph(z) = z, for all z ∈ �p. Similar, simpler calculations
then show that Vph = Ip, the p × p identity. Simple calculations also show that

Φp(Uph) =
∫
�p

zh(z)Φp(dz)

and
Φp(Vph) =

1
2

∫
�p

(zz′ − Ip)h(z)Φp(dz) (5)

for all h ∈ Hp.
If Ω is a convex open subset of �p, then a measurable function f : Ω → � is

said to be almost differentiable on Ω if there is a measurable function ∇f : Ω →
�p for which

f(y) − f(x) =
1∫

0

(y − x)′∇f [ty + (1 − t)x]dt

for a.e. x ∈ Ω for each y ∈ Ω. In this case, ∇f is essentially unique (Lebesgue).
Of course, a continuously differentiable function f is almost differentiable with
∇f equal to the gradient. Below ∇f is called the gradient of f , and the com-
ponents of ∇f are denoted by ∂f/∂zj , j = 1, . . . , p, even if f is only almost
differentiable.

The following properties of almost differentiable functions are needed. If f is
a continuous, almost differentiable function, K ⊂ Ω is compact, and

∫
K ‖∇f‖rdx

< ∞, where r≥1, then there are infinitely differentiable fε, 0<ε≤ε0, for which

lim
ε→0

{
sup
x∈K

|fε(x) − f(x)| +
∫

K
‖∇fε −∇f‖rdx

}
= 0. (6)

Further, if f and g are continuous, almost differentiable functions for which ‖∇f‖
and ‖∇g‖ are locally integrable (integrable over all compact subsets of Ω), and
g has compact support, then∫

Ω
f∇gdx = −

∫
Ω
∇fgdx.

In the next proposition, ∇2 denotes Hessian and ‖ · ‖ denotes the trace norm
of a matrix, as well as the Euclidean norm in �p.
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Proposition 2. Let r ≥ 0, and let Ψ be a signed measure of the form dΨ = fdΦp,
where f is an almost differentiable function on �p, for which∫

�p
|f |dΦp +

∫
�p

(1 + ‖z‖r)‖∇f(z)‖Φp(dz) < ∞.

Then ∫
�p

hdΨ = Φph × Ψ1 +
∫
�p

(Uph)′∇fdΦp

for all h ∈ Hp
r. If, in addition, f is continuously differentiable, ∂f/∂zj , j =

1, . . . , p, are almost differentiable, and
∫
�p(1 + ‖z‖r)‖∇2f(z)‖Φp(dz) < ∞, then∫

�p
hdΨ = Φph × Ψ1 + Φp(Uph)′

∫
�p

∇fdΦp +
∫
�p

tr[(Vph)∇2f ]dΦp (7)

for all h ∈ Hp
r, where Φp(Uph) = [Φpg1, . . . ,Φpgp]′.

Proof. For the first assertion, see Woodroofe (1989, Proposition 1). The second
assertion follows easily from the first.

Proposition 2 may be applied to a function of m variables, where 1 ≤ m ≤ p,
as follows.

Corollary. Let 1 ≤ m ≤ p and let A be an m × p matrix for which AA′ = Im.
If h ∈ Hm

r and h∗(z) = h(Az), z ∈ �p, then∫
�p

h∗dΨ = Φmh × Ψ1 +
∫
�p

Φm(Umh)′A∇f(z)Φp(dz)

+
∫
�p

tr[(Vmh)(Az)A∇2f(z)A′]Φp(dz). (8)

Proof. Using a singular value decomposition, A may be written as A = HJK,
where H and K are orthogonal matrices of dimensions m × m and p × p and
J = [Im, 0] (m × p). Thus, it suffices to verify (8) for A = K (and m = p) and
for A = J . For A = K, (8) follows from (7) and two transparent changes of
variables. For A = J , (8) follows from the easily verified relations Φph∗ = Φmh,
Uph

∗(z) = J ′Umh(Jz) and Vph
∗(z) = J ′Vmh(Jz)J and (7).

3. Expansions

The derivation of (4) depends on the following simple observation. If h is
measurable, ξ is a density on �p, and the expectations exist, then

∫
�p Eθ[h(Wt)]

ξ(θ)dθ = Eξ[h(Wt)], where Eξ denotes expectation in the Bayesian model in
which θ is replaced by a random variable Θ which has prior density ξ and is in-
dependent of e1, e2, . . . and u1, u2 . . . Let t denote any stopping time with respect
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to An = σ{x1, . . . , yn} for which t ≥ n0 w.p.1 and let Et
ξ denote conditional

expectation given x1, . . . , yt. Then∫
�p

Eθ[h(Wt)]ξ(θ)dθ = Eξ[h(Wt)] = Eξ{Et
ξ[h(Wt)]}.

The approach is to generate expansions for the posterior expectations and then
integrate them.

If Θ has a density ξ, then the posterior densities of Θ and Zn given x1, . . . , xn

and y1, . . . , yn are ξn(θ) ∝ ξ(θ)eln(θ) and

ζn(z) ∝ ξ(θ̂n + B′−1
n z)e−

1
2
‖z‖2

for all θ, z ∈ �p and n ≥ n0. That is, the posterior distribution of Zn is of the
form considered in Proposition 2, with f(z) ∝ ξ(θ̂n + B′−1

n z), z ∈ �p. Moreover,
if ξ is twice continuously differentiable with compact support, then

∇f

f
(Zn) = B−1

n

∇ξ

ξ
(Θ) and

∇2f

f
(Zn) = B−1

n

∇2ξ

ξ
(Θ)B′−1

n .

So, replacing n by t and appealing to the Corollary to Proposition 2 leads to

Et
ξ [h(Wt)] = Φmh + Et

ξ

{
(ΦmUmh)′AtB

−1
t

∇ξ

ξ
(Θ)

}

+ Et
ξ

{
tr[(Vmh)(Wt)AtB

−1
t

∇2ξ

ξ
(Θ)B′−1

t A′
t]
}

(9)

w.p.1 for all h ∈ Hm on {t ≥ n0}.
To proceed further some conditions on the design matrices Xn, n ≥ n0,

are needed. Let λn denote the minimum eigenvalue of X ′
nXn. It is assumed

throughout that there is a λ0 > 0 for which

inf
n≥n0

λn ≥ λ0 and lim
n→∞λn = ∞ (10)

w.p.1 (Pθ) for a.e. θ ∈ �p. This condition insures that θ̂n is consistent for
a.e. θ ∈ Ω. See Lemma 3 of Woodroofe (1989). Next let Qa =

√
aAtB

−1
t , a ≥ 1,

and suppose that there are matrices Qθ, θ ∈ �p, for which∫
K
‖Qθ‖2dθ < ∞ and lim

a→∞

∫
K

Eθ{‖Qa − Qθ‖2}dθ = 0 (11)

for all compact K ⊆ �p. Then

Et
ξ [h(Wt)] = Φmh+

1√
a
Et

ξ

{
(ΦmUmh)′QΘ

∇ξ

ξ
(Θ)
}

+
1
a
Et

ξ

{
tr[(ΦmVmh)QΘ

∇2ξ

ξ
(Θ)Q′

Θ]
}

+
1√
a
(ΦmUmh)′Ia +

1
a
IIa(h), (12)
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where
Ia = Et

ξ

{
[Qa − QΘ]

∇ξ

ξ
(Θ)

}
and

IIa(h) = Et
ξ

{
tr

[
Vmh(Wt)Qa∇2ξ

ξ
(Θ)Qa′ − (ΦmVmh)QΘ

∇2ξ

ξ
(Θ)Q′

Θ

]}
.

Ignoring the remainder terms for the moment and taking expectations in (12),
this suggests the approximation

Eξ [h(Wt)] ≈ Φmh +
1√
a
(ΦmUmh)′

∫
Ω

Qθ∇ξ(θ)dθ

+
1
a

∫
Ω

tr[(ΦmVmh)Qθ∇2ξ(θ)Q′
θ]dθ. (13)

In some cases the integrals on the right side of (13) may be written in the
form of expectations with respect to the prior density. Write Qθ = [qi,j(θ) :
i = 1, . . . ,m, j = 1, . . . , p] for θ ∈ �p. If ξ is twice continuously differentiable
with compact support and qi,j are almost differentiable with locally integrable
gradients, then ∫

�p
Qθ∇ξ(θ)dθ = −

∫
�p

Q#
θ 1ξ(θ)dθ, (14)

where q#
i,j(θ) = ∂qi,j(θ)/∂θj for a.e. θ ∈ �p, for all i = 1, . . . ,m , j = 1, . . . , p,

Q#
θ = [q#

i,j(θ) : i = 1, . . . ,m, j = 1, . . . , p], and 1 = (1, . . . , 1)′. If also qi,j are
continuously differentiable and their partial derivatives are almost differentiable
with locally square integrable gradients, then∫

�p
Qθ∇2ξ(θ)Q′

θdθ =
∫
�p

M(θ)ξ(θ)dθ, (15)

where

mi,j(θ) =
p∑

k=1

p∑
l=1

∂2

∂θk∂θl
[qi,k(θ)qj,l(θ)]

for i, j = 1, . . . ,m.
Letting h(w) = wi, w ∈ �m, i = 1, . . . ,m, in (13) and (14) leads to the very

weak approximation,

Eθ(Wt) ≈ − 1√
a
Q#

θ 1 =
1√
a
µ(θ), say, (16)

very weakly. Here µ(θ) may be estimated. If µ is bounded and continuous a.e.,
then µ̂a = µ(θ̂t), a ≥ 1, are suitable estimators. More general situations are con-
sidered in Proposition 3. Letting µ̂a denote suitable estimators, approximations
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like those described above lead to

Eθ

{
[Wt − µ̂a√

a
][Wt − µ̂a√

a
]′
}
≈ Im +

1
a
∆(θ), (17)

very weakly, where

∆i,j(θ) =
p∑

k=1

p∑
l=1

(∂qi,k

∂θl

)(∂qj,l

∂θk

)

for i, j = 1, . . . ,m and θ ∈ �m. As above, the matrix ∆(θ) may be estimated,
by ∆̂a = ∆(θ̂t) if ∆(θ) is bounded and continuous a.e., and by other estimators
in more general situations. Let

Γ̂a = Im +
∆̂a

2a
. (18)

The main result asserts that (4) holds with these choices of µ̂a and Γ̂a.
Relations (16) and (17) are intended to provide motivation for the choice

of Γ̂a in (18). They will not be explicitly proved. It may seem clear that (4)
can be deduced from (13), if the functions µ and Γ are sufficiently smooth. The
proof of (4) does not require smoothness of these functions, however. This is an
important point, since optimal designs may not lead to smooth functions. The
example in the next section illustrates this point.

There are advantages to using a Cholesky decomposition in (1). If Bn is lower
(or upper) triangular in (2) and X ′

tXt/a → Lθ > 0 w.p.1 (Pθ) for a.e. θ ∈ �p,
then Bt/

√
a → Bθ w.p.1 for a.e. θ ∈ �p, where Lθ = BθB

′
θ. If, in addition,∫

K
‖L−1

θ ‖dθ < ∞ and lim
a→∞

∫
K

Eθ‖a(X ′
tXt)−1 − L−1

θ ‖dθ = 0

for a given compact set K ⊂ �p, then (11) holds for the same K with m = p and
A = Ip. Then (11) also holds for any m ≤ p and any convergent sequence An for
which AnA′

n = Im for all n.

4. Comparing Treatments

The problem of comparing three treatments is considered in this section. It
is assumed that three treatments produce normally distributed responses with
unknown means θ1, θ2, and θ3 and unit variances. Siegmund (1980, 1993) pro-
posed sequential tests for the hypothesis H : θ1 = θ2 = θ3. Here interest centers
on simultaneous confidence intervals for contrasts following these tests. Of course
the problem may be formulated in terms of three samples or a linear model, and
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elements of both formulations are used below. Let yi,j denote the ith observation
on the jth treatment, so that the yi,j are independent and yi,j is normally dis-
tributed with mean θj and unit variance; alternatively, each yi,j may be written
in the form θ′x + e, where θ = (θ1, θ2, θ3)′, x is chosen from (1, 0, 0)′, (0, 1, 0)′ , or
(0, 0, 1)′, and e has a standard normal distribution.

A Sequential Test. Siegmund’s (1980) sequential test for this problem de-
pends on three design parameters, an initial sample size n0, a boundary parame-
ter a ≥ 1, and a truncation parameter ε > 0. Let N = �a/ε2�, the greatest integer
which is less than or equal to a/ε2. Next, let Π denote the projection operator on
the orthogonal complement, C ⊂ �3 say, of the linear subspace {α1;α ∈ �} ⊆ �3.

Below, C is called the contrast space. Triples (yk,1, yk,2, yk,3)′, k = 1, 2, . . ., are
observed until time

s = inf{n : n ≥ n0 and ‖ΠSn‖ >
√

an} ∧ N,

where Sn =
∑n

i=1(yi,1, yi,2, yi,3)′ and ∧ denotes minimum. Thus X ′
sXs = sI3 is

a diagonal matrix in this example, and lima→∞ a/s = ‖Πθ‖2 ∨ ε2 = σ2(θ), say,
w.p.1 (Pθ) for all θ ∈ �3 by standard arguments, where ∨ denotes maximum.
Let Bs =

√
sI3 and let A denote a 2× 3 matrix whose rows form an orthonormal

basis for C. If As = A, then it is easily seen that (11) holds with Qθ = σ(θ)A
for all θ ∈ �3, again using standard arguments (maximal inequalities). It follows
easily that µ(θ) = −A∇σ(θ) and ∆(θ) = µ(θ)µ(θ)′ for a.e. θ.

By (4), W ∗
s = Γ̂−1

a (Ws − a−
1
2 µ̂a) is approximately standard bivariate normal

to order o(1/a). Simulations which illustrate the accuracy of this approximation
are presented in Table 1 for the case in which

A =

(
1√
2

− 1√
2

0
1√
6

1√
6

− 2√
6

)
, (19)

a = 12.25, n0 = 10, and N = 50, and selected values of θ. Clearly the mean
of W ∗

s is approximately zero to within the accuracy of the simulations for the
θ’s considered. The standard deviations appear to be too large by about 1 or
2 percent. Let ν̂a = A′µ̂a/

√
as. Then simultaneous confidence intervals for all

contrasts may be obtained from the relations, sup0
=c∈C |c′(Θ−θ̂s−ν̂a)|/‖Γ̂aAc‖ =
‖W ∗

s ‖/
√

s and

Pθ[‖W ∗
s ‖ ≤ κ] = 1 − e−

1
2
κ2

+ o(
1
a
) (20)

(very weakly) as a → ∞. From Table 1, the latter approximation appears to be
very good.
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Table 1. A sequential test

θ1 .5 .5 .25 0
θ2 0 −.25 .25 0
θ3 −.5 −.25 −.5 0
Pθ(s < N) .958 .870 .873 .017
Eθ(s) 22.7 28.3 28.2 49.6
Eθ(Ws,1) −.120 −.204 −.003 −.004
Eθ(Ws,2) −.203 −.121 −.233 −.006√

Eθ(W 2
s,1) 1.04 1.04 1.08 1.02√

Eθ(W 2
s,2) 1.02 1.08 1.04 1.03

Eθ(Ws,1Ws,2) −.07 −.02 .00 .02
Eθ(W ∗

s,1) −.007 −.011 −.003 −.005
Eθ(W ∗

s,2) −.008 −.008 −.008 −.006√
Eθ(W ∗2

s,1) .99 .98 1.01 1.01√
Eθ(W ∗2

s,2) 1.00 1.01 .98 1.02
Eθ(W ∗

s,1W
∗
s,2) −.01 −.01 .00 .01

Pθ(‖W ∗
s ‖ ≤ κ1) .901 .900 .901 .893

Pθ(‖W ∗
s ‖ ≤ κ2) .952 .951 .949 .943

Pθ(‖W ∗
s ‖ ≤ κ3) .991 .991 .991 .980

Entries are Monte Carlo estimates based on 10,000 replications; a = 12.25,
n0 = 10, N = 50, κ1 = 2.146, κ2 = 2.448 and κ3 = 3.035.

A Sequential Allocation Rule. Siegmund (1993) added a second stage to the
procedure described above. Let the data dependent indices I = Ia, J = Ja, and
K = Ka be determined (w.p.1) by θ̂s,I < θ̂s,J < θ̂s,K, where θ̂s = Ss/s. After
time s, treatment I is dropped and observations are taken on treatments J and
K until time

t = inf
{
n : n ≥ s and |

n∑
i=1

(yi,K − yi,J)| >
1
c

√
an
}
∧ N,

where c ≥ 2/
√

3. Sampling is terminated at time t.
To determine the proper corrections, it is necessary to compute the limit of

X ′
tXt/a. Denote the ordered θ’s by θ(1) ≤ θ(2) ≤ θ(3). Then

lim
a→∞

a

t
= c2[θ(3) − θ(2)]

2 ∧ ‖Πθ‖2 ∨ ε2 = τ2(θ), say,

w.p.1 (Pθ) for all θ ∈ �3. As above, X ′
tXt is a diagonal matrix. Let Bt = B′

t

denote the unique diagonal square root of X ′
tXt with non negative entries. Then

the diagonal entries of X ′
tXt = B2

t are b2
t,II = s and b2

t,JJ = b2
t,KK = t. Define

i = iθ, j = jθ, and k = kθ by θ(1) = θi, θ(2) = θj, θ(3) = θk, i < j if θ(1) = θ(2),
and j < k if θ(2) = θ(3). Then

lim
a→∞ a(X ′

tXt)−1 = D2
θ = diag[d2

1(θ), d2
2(θ), d2

3(θ)]
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w.p.1 (Pθ) for a.e. θ ∈ �3, where d2
i = σ2, and d2

j = d2
k = τ2. The matrix D

depends continuously on θ. This is not immediately clear, since the indices i,
j, and k are discontinuous. It is clear that Dθ is continuous at every θo ∈ �3

for which θo
(1) < θo

(2) ≤ θo
(3), since i is constant on some neighborhood of such a

point, and dj = dk everywhere. That leaves the case θo
(1) = θo

(2) < θo
(3). In this

case, ‖Πθo‖2 = 2[θo
(3) − θo

(2)]
2/3, so that c2[θo

(3) − θo
(2)] ≥ 2‖Πθo‖2 and, therefore,

τ2 = σ2 on some neighborhood of θo.
Let M be a 2 × 3 matrix whose rows from a basis for the contrast space C.

Further, let Lt be a 2×2 lower triangular matrix for which LtL
′
t = M(X ′

tXt)−1M ′,
let At = L−1

t MB−1
t , and let Wt = AtZt = L−1

t M(Θ − θ̂t). Then, AtA
′
t = I2 as

required in (1), and it is easily seen that (11) is satisfied with Qθ = L−1
θ MD2

θ

for all θ ∈ R3, where Lθ denotes the limit of
√

aLt. Define µ and ∆ by (16)
and (17), and let µ̂a = µ(θ̂t) and Γ̂a = I2 + ∆(θ̂t)/(2a). Then (4) holds for all
symmetric (sign invariant) functions h ∈ H2 by a simple application of Theorem
2 below. The accuracy of this approximation is illustrated in Table 2 for the case
in which M is given by (19) and selected values of θ. Let ν̂a = M ′Ltµ̂a/

√
at.

Then sup0
=c∈C |c′(Θ − θ̂t − ν̂a)|/‖Γ̂aLtMc‖ = ‖W ∗
t ‖, as above, and approximate

simultaneous confidence intervals for all contrasts may be determined from (20).
From Table 2, the accuracy of this approximation appears to be good too.

Table 2. A sequential test with sequential allocation

θ1 .5 .5 .25 0
θ2 0 −.25 .25 0
θ3 −.5 −.25 −.5 0
Eθ(t) 31.9 30.2 46.9 49.8
Eθ(Wt,1) −.232 −.211 .012 .012
Eθ(Wt,2) −.163 −.110 −.176 .002√

Eθ(W 2
t,1) 1.04 1.05 1.14 1.02√

Eθ(W 2
t,2) 1.00 1.06 1.02 1.03

Eθ(Wt,1Wt,2) .05 −.02 −.01 .00
Eθ(W ∗

t,1) .016 .015 .009 .011
Eθ(W ∗

t,2) −.116 .022 −.170 .002√
Eθ(W ∗2

t,1) .91 .97 1.03 1.01√
Eθ(W ∗2

t,2) .99 1.08 1.02 1.03
Eθ(W ∗

t,1W
∗
t,2) −.04 −.16 −.01 .00

Pθ(‖W ∗
t ‖ ≤ κ1) .914 .905 .901 .891

Pθ(‖W ∗
t ‖ ≤ κ2) .959 .952 .954 .941

Pθ(‖W ∗
t ‖ ≤ κ3) .992 .989 .991 .983

Entries are Monte Carlo estimates based on 10,000 replications; a = 12.25,
c = 1.198, n0 = 10, N = 50, κ1 = 2.146, κ2 = 2.448 and κ3 = 3.035.
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The values of a, c, n0, and N used in Tables 1 and 2 were chosen to agree
with Siegmund (1993). Other simulations were conducted with a = 15, 20, n0 =
1, 5, and N = 75 with similar results. The accuracy of the approximations did
not deteriorate when n0 was decreased from 10 to 5.

An alternative to Siegmund’s (1993) procedure has been proposed by Beten-
sky (1995) who changed s and t to s = inf{n ≥ n0 : ‖ΠSn‖ > a} ∧ N and
t = inf{n ≥ s : |∑n

i=1(yi,K − yi,J)| > a/c} ∧ N , where c ≥ 2/
√

3. Corrected
confidence sets for her procedure are similar to those for Siegmund’s, and sim-
ulations indicate that the approximations are slightly better. They differ in the
functional forms of σ and τ .

5. Remarks and Open Questions

The questions addressed in Section 4 are motivated by phase III clinical trials
in which new treatments are tested on human subjects. It is straightforward to
extend the analysis of the first stage of Siegmund’s procedure to the case of several
treatments. The second stage presents more difficulty. It is not even clear what
form the second stage should take, or whether there should be multiple stages. A
question not addressed in Section 4 is that of finding corrected confidence levels
for a contrast, like θK − θJ , in which the indices may be random variables. Such
contrasts present technical difficulties in that the resulting Qθ matrix may be
discontinuous in θ.

The case of unknown variability presents another question. If the model is
changed to yk = x′

kθ + σek, k = 1, 2, . . ., where σ > 0 is unknown, then Zt

may be changed to Ẑt = Zt/σ̂t, where σ̂t denotes an estimator of σ–for example,
σ̂2

t = ‖yt − Xtθ̂t‖2/(t − p). For this case and An = Ip, considerations like those
presented in Section 7 suggest that µ(θ) and ∆(θ) should be replaced by σµ(θ)
and σ2∆(θ) + a(v − bσ2)Ip/σ

4, where b and v denote the bias and variance of σ̂2
t

(which must be of order 1/a). The authors hope to present the details of this
extension elsewhere and to relate it to the work of Coad (1995).

Relation (13) may be useful in obtaining higher order approximations to
the integrated risk of sequential designs, like Wu’s (1985) adaptive design for
estimating non-linear functions, with respect to a large class of prior densities.
In principle, such approximations may lead to refinements of designs which are
optimal to first order.

6. Proof of (13)

Let Ω ⊆ �p be open and let ΞΩ denote the class of twice continuously
differentiable densities ξ with compact support in Ω. The inclusion of Ω in the
model allows the expansions to fail on a subset of �p (the complement of Ω).

Recall that t = ta, a ≥ 1, denote stopping times.
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Theorem 1. Let Ω ⊆ �p be open; suppose that (11) holds for all compact K ⊂ Ω;
and define Ia and IIa by (12). If ξ ∈ ΞΩ, then

lim
a→∞Eξ{‖Ia‖} = 0, (21)

and
lim

a→∞Eξ{essuph∈Hm
2
|IIa(h)|} = 0. (22)

If also,

lim
a→∞

√
a

∫
K
‖Eθ{Qa − Qθ}‖ dθ = 0, for all compact K ⊂ Ω, (23)

then
lim

a→∞
√

aEξ(Ia) = 0. (24)

Proof. In the proof, ξ is written for ξ(Θ), ∇ξ for ∇ξ(Θ), etc. Relations (21)
and (24) are easy, since

Eξ{‖Ia‖} ≤ Eξ

{
‖Qa − Qθ‖ ‖∇ξ

ξ
‖
}

=
∫
Ω

Eθ{‖Qa − Qθ‖}‖∇ξ‖dθ → 0,

as a → ∞, by the assumption (11), since ξ has compact support; and if (23)
holds, then √

aEξ{Ia} =
√

a

∫
Ω

Eθ{Qa − Qθ}∇ξ(θ)dθ → 0,

as a → ∞, again since ξ has compact support.
For (22), write

IIa(h) = II1,a(h) + II2,a(h) + II3,a(h),

where

II1,a(h) = Et
ξ

{
tr
[
(Vmh(Wt) − ΦmVmh)Qa[

∇2ξ

ξ
− Et

ξ(
∇2ξ

ξ
)]Qa′]},

II2,a(h) = Et
ξ

{
tr
[
(Vmh(Wt) − ΦmVmh)QaEt

ξ(
∇2ξ

ξ
)Qa′]},

and

II3,a(h) = Et
ξ

{
tr
[
(ΦmVmh)(Qa∇2ξ

ξ
Qa′ − QΘ

∇2ξ

ξ
Q′

Θ)
]}

.

By Proposition 1, there is a constant C for which ‖Vmh(w)‖ ≤ C for all
w ∈ �m and all h ∈ Hm

2 . Let

Mt = essuph∈Hm
2
‖Et

ξ{tr[Vmh(Wt) − ΦmVmh]}‖.
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Then Mt ≤ 2C w.p.1, and Mt → 0 in Pξ-probability, by Lemma 1 of Woodroofe
(1989). Now

|II1,a(h)| ≤ 2CEt
ξ

{
‖Qa[

∇2ξ

ξ
− Et

ξ(
∇2ξ

ξ
)]Qa′‖

}
= II∗1,a, say,

|II2,a(h)| ≤ Mt‖QaEt
ξ(
∇2ξ

ξ
)Qa′‖ = II∗2,a, say,

and

|II3,a(h)| ≤ CEt
ξ

{
‖Qa∇2ξ

ξ
Qa′ − QΘ

∇2ξ

ξ
Q′

Θ‖
}

= II∗3,a, say,

for all h ∈ Hm
2 , and it suffices to show that Eξ(II∗i,a) → 0 as a → ∞ for i = 1, 2, 3.

For i = 3, this is clear, since

Eξ(II∗3,a) ≤ CEξ

{
‖Qa − QΘ‖ ‖∇

2ξ

ξ
‖(‖Qa‖ + ‖QΘ‖)

}

≤ C
√

Eξ

{
‖Qa − QΘ‖2‖∇

2ξ

ξ
‖
}√

Eξ

{
(‖Qa‖ + ‖QΘ‖)2‖∇

2ξ

ξ
‖
}

and

Eξ

{
‖Qa − QΘ‖2‖∇

2ξ

ξ
‖
}
≤
∫
Ω

Eθ{‖Qa − Qθ‖2}‖∇2ξ‖dθ → 0 (25)

as a → ∞ by (11). Moreover, it follows from (25) that

∥∥∥Qa∇2ξ

ξ
Qa′

∥∥∥, a ≥ 1, and
∥∥∥QaEt

ξ(
∇2ξ

ξ
)Qa′

∥∥∥, a ≥ 1,

are uniformly integrable with respect to Pξ, since the first sequence converges in
L1(Pξ), and the second is bounded by the conditional expectation of the first.
That Eξ(II∗1,a + II∗2,a) → 0 as a → ∞ then follows directly, since Mt → 0 in
Pξ−probability and

lim
n→∞En

ξ

(∇2ξ

ξ

)
=

∇2ξ

ξ
w.p.1 (Pξ)

by the Martingale Convergence Theorem.

In the Corollary, Hm
r,0 denotes the set of h ∈ Hm

r for which ΦmUmh = 0.
This class includes all sign invariant h ∈ Hm

r .

Corollary. Let ξ ∈ ΞΩ. If (11) holds for all compact K ⊂ Ω, then (13) holds
uniformly with respect to h ∈ Hm

2,0 with “≈” replaced by “= +o(1/a);” and if
(24) holds, then (13) holds uniformly with respect to h ∈ Hm

2 .

Proof. The corollary is clear from (12) and Theorem 1.
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The uniformity asserted in the theorem is much stronger than that of the
Corollary.

7. Proof of (4)

The following lemma is needed in the proof of (4).

Lemma 1. Let ν ∈ �m and let Γ be a non singular m × m matrix for which
‖ν‖ ≤ 1 and ‖Γ− Im‖≤1. For h ∈ Hm

2 , let h∗(x)=h[Γ−1(x− ν)] for all x ∈ �m.
Then there is a constant C, independent of h, ν, and Γ, for which

Φmh∗−Φmh=−(ΦmUmh)′ν +tr{(ΦmVmh)[νν ′−2(Γ− Im)]}+ III(h; Γ, ν), (26)

ΦmUmh∗ − ΦmUmh = −2(ΦmVmh)ν + IV (h; Γ, ν),

and
‖ΦmVmh∗ − ΦmVmh‖ ≤ C[‖ν‖ + ‖Γ − Im‖],

where |III(h; Γ, ν)| ≤ C[‖ν‖3+‖Γ−Im‖ 3
2 ] and |IV (h; Γ, ν)| ≤ C[‖ν‖2+‖Γ−Im‖].

Proof. The proof of (26) depends on the observations that

Φmh∗ =
∫
�m

h(z)|det(Γ)|φm(Γz + ν)dz,

where φm denotes the standard m-variate normal density, and that |det(Γ)|
φm(Γz + ν) form an exponential family of densities with natural parameters
Γ′Γ and Γ′ν. It follows that Φmh∗ is differentiable, and (26) then follows from a
straightforward Taylor series expansion for any C that is an upper bound for the
partial derivatives of order three. That C may be chosen independently of h then
follows from basic analytic properties of exponential families. See, for example,
Brown (1986, pp. 34-36). The proof of the remainder of the lemma is similar.

In the proof of (4), the estimators µ̂a and ∆̂a must be so chosen that

‖µ̂a‖ ≤ √
a, ‖∆̂a‖ ≤ a, (27)

lim
a→∞

[
Eξ{‖µ̂a − µ(Θ)‖2} + Eξ{‖∆̂a − ∆(Θ)‖}

]
= 0 (28)

and
lim

a→∞
√

aEξ{µ̂a − µ(Θ)} = 0 (29)

for all ξ ∈ ΞΩ. If the partial derivatives of qi,j are bounded and continuous, then
such estimators may be constructed by letting µ̂a = µa(θ̂t) and ∆̂a = ∆(θ̂t). That
such estimators exist more generally is shown in Proposition 3 below, provided
that ∫

K
(‖µ(θ)‖2 + ‖∆(θ)‖)dθ < ∞ (30)
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for all compact K ⊂ Ω.

Theorem 2. Let Ω ⊆ �p be a convex open set and let ξ ∈ ΞΩ. Suppose that (11)
holds for all compact K ⊂ Ω and that the entries of Qθ are almost differentiable
on Ω with locally square integrable gradients. Let µ̂a and Γ̂a = Im + ∆̂a/(2a) be
estimators for which (27) and (28) hold. Then

Eξ{h(W ∗
t )} = Φmh + o(

1
a
) (31)

uniformly with respect to h ∈ Hm
2,0 as a → ∞. If, in addition, (23) and (29) hold,

then (31) holds uniformly with respect to h ∈ Hm
2 .

Proof. Fix ξ ∈ Ξ throughout the proof, as above, and write ξ for ξ(Θ), etc. Given
h ∈ Hm

2 , let ha(w) = h[Γ̂−1
a (w − a−

1
2 µ̂a)] for w ∈ �m, so that h(W ∗

t ) = ha(Wt)
and, therefore, Eξ{h(W ∗

t )} = Eξ{Et
ξ[ha(Wt)]}. Using (12) and Lemma 1,

Et
ξ[ha(Wt)]−Φmha =

1√
a
(ΦmUmha)′Et

ξ

{
Qa∇ξ

ξ

}

+
1
a
Et

ξ

{
tr[(ΦmVmha)QΘ

∇2ξ

ξ
Q′

Θ]
}

+
1
a
IIa(ha),

Φmha − Φmh = − 1√
a
(ΦmUmh)′µ̂a+

1
a

tr{(ΦmVmh)[µ̂aµ̂
′
a−∆̂a]}+

1
a
IIIa(h),

and
ΦmUmha − ΦmUmh = − 2√

a
(ΦmVmh)µ̂a + IV

(
h; Γ̂a,

µ̂a√
a

)
,

where IIa(h) is as in (12) and IIIa(h) = aIII(h; Γ̂a, a
− 1

2 µ̂a) with III as in Lemma
1. So,

Et
ξ[ha(Wt)]−Φmh = Et

ξ[ha(Wt)] − Φmha + Φmha − Φmh

=
1√
a
(ΦmUmh)′

[
Et

ξ(Q
a∇ξ

ξ
)−µ̂a

]
+

1
a
Et

ξ{tr[(ΦmVmh)Ma]}

+
1
a
[IIa(ha) + IIIa(h) + IVa(h)],

where

Ma = QΘ

(∇2ξ

ξ

)
Q′

Θ + µ̂aµ̂
′
a − ∆̂a − 2Et

ξ

{
Qa(

∇ξ

ξ
)
}
µ̂′

a,

and

IVa(h) =
√

aIV (h; Γ̂a, a
− 1

2 µ̂a)′Et
ξ

{
Qa∇ξ

ξ

}

+Et
ξ

{
tr[(ΦmVmha − ΦmVmh)QΘ(

∇2ξ

ξ
)Q′

Θ]
}
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with IV as in Lemma 1.
The remainder terms, IIa(ha), IIIa(h), and IVa(h), are negligible. It was

shown in the proof of Theorem 1 that lima→∞ Eξ{essuph∈Hm
2
|IIa(h)|} = 0, and

it follows that Eξ{essuph∈Hm
2
|IIa(ha)|} → 0 as a → ∞. For IIIa, it is clear from

Lemma 1, (27) and (28) that there is a constant C for which

Eξ{essuph∈Hm
2
|IIIa(h)|} ≤ CEξ

{‖µ̂a‖3 + ‖∆̂a‖ 3
2√

a

}
→ 0,

as a → ∞, since the integrand converges to zero in Pξ-probability and is bounded
by C[‖µ̂a‖2 + ‖∆̂a‖] which converges in the mean and is, therefore, uniformly
integrable. Similarly, there is a constant C for which

essuph∈Hm
2
‖IVa(h)‖

≤ C
[‖µ̂a‖2+‖∆̂a‖√

a

]
‖Qa‖Et

ξ

(‖∇ξ‖
ξ

)
+C‖ΦmVmha−ΦmVmh‖Et

ξ

[
‖Qθ

(∇2ξ

ξ

)
Q′

θ‖
]

= IV1,a + IV2,a, say.

Clearly, IV2,a → 0 in Pξ-probability, and IV2,a is uniformly integrable, so that
Eξ(IV2,a) → 0 as a → ∞. Similarly, IV1,a → 0 in Pξ-probability, and IV1,a is
uniformly integrable, since Eξ(IV 2

1,a) remains bounded. So, Eξ(IV1,a) → 0 and,
therefore,

Eξ{h(W ∗
a )} − Φmh =

1√
a
(ΦmUmh)Eξ

{
Qa(

∇ξ

ξ
) − µ̂a

}

+
1
a
Eξ

{
tr[(ΦmVmh)Ma]

}
+ o(

1
a
), (32)

uniformly with respect to h ∈ Hm
2 as a → ∞.

Next consider Et
ξ{tr[(ΦmVmh)Ma]}. Let

M(θ) := Qθ
∇2ξ

ξ
Q′

θ + Q#
θ 11′Q#

θ
′ + 2Qθ(

∇ξ

ξ
)(Q#

θ 1)′ − ∆(θ) (33)

for θ ∈ Ω. Then Eξ[‖Ma − M(Θ)‖] → 0 as a → ∞ by (27), (28), and the
Martingale Convergence Theorem. So,

lim
a→∞Eξ

{
Et

ξ{tr[(ΦmVmh)Ma]}
}

= tr
[
(ΦmVmh)

∫
Ω

M(θ)ξ(θ)dθ
]
,

uniformly with respect to h ∈ Hm
2 . The term on the right, tr[(ΦmVmh)

∫
Ω Mξdθ],

is zero by an integration by parts. See Lemma 2 below.
This establishes the first assertion of the theorem, since ΦmUmh = 0 for all

h ∈ Hm
2,0.
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For the second assertion, it suffices to show that the first expectation on the
right side of (32) is o(1/

√
a) as a → ∞. This is clear, however. For

√
aEξ

{
Qa(

∇ξ

ξ
) − µ̂a

}
=

√
aEξ

{
(Qa − QΘ)(

∇ξ

ξ
)
}

+
√

aEξ

{
QΘ(

∇ξ

ξ
) + µ(Θ)

}
+
√

aEξ{µ(Θ) − µ̂a}.

The first and third terms approach zero as a → ∞, by (23) and (29), and the
middle term is zero by an integration by parts. This completes the proof, except
for the proof of Lemma 2.

Lemma 2. Let Ω ⊆ �p be a convex open set and ξ ∈ ΞΩ. Let Q be an m ×
p matrix which has almost differentiable entries with locally square integrable
gradients and define M by (33). Then

∫
Ω Mξdθ is a skew symmetric matrix.

Proof. Suppose first that the entries of Q are twice continuously differentiable.
Then the (i, j)th entry in

∫
Ω Mξdθ is

p∑
r=1

p∑
s=1

∫
Ω

{
(qirqjs)

∂2ξ

∂θr∂θs
+2qir(

∂qjs

∂θs
)(

∂ξ

∂θr
)+(

∂qir

∂θr
)(

∂qjs

∂θs
)ξ− (

∂qir

∂θs
)(

∂qjs

∂θr
)ξ
}
dθ.

If the terms involving the partial derivatives of ξ are integrated by parts, then
the latter expression becomes

p∑
r=1

p∑
s=1

∫
Ω

{
(

∂2

∂θr∂θs
qir)qjs − qir(

∂2

∂θr∂θs
qjs)

}
ξdθ,

which is the (i, j)th entry of a skew symmetric matrix. This establishes the
lemma when the entries of Q are twice continuously differentiable. The general
case then follows from a simple approximation argument using (6).

8. Construction of Estimators

In Theorem 2 the estimators µ̂a and ∆̂a were required to satisfy conditions
(27), (28), and (29). The existence of such estimators is shown in this section.
Throughout this section, Ω ⊆ �p denotes an open set, condition (30) is assumed,
and (11) is required to hold with m = p and An = Im for all n ≥ n0. Recall that
λn denotes the minimal eigenvalue of X ′

nXn and that there are n0 and λo > 0
for which λn ≥ λo w.p.1 (Pθ) for all θ ∈ �p and all n ≥ n0. By (11), a/λt, a ≥ 1,
are uniformly integrable.

Three lemmas are needed.

Lemma 3. If ξ ∈ ΞΩ, then Pξ[‖θ̂t − Θ‖ ≥ ε] = o(1/a) for all ε > 0 and
Eξ[‖θ̂t − Θ‖2] = O(1/a), as a → ∞.
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Proof. This follows easily from (11), Theorem 1, and the observation that
‖Zt‖2 = (θ̂t − Θ)′(X ′

tXt)(θ̂t − Θ) ≥ λt‖θ̂t − Θ‖2. Let ht(z) be the indicator of
|z| ≥ √

λtε. Then

Pξ[‖θ̂t − Θ‖ ≥ ε] ≤ Eξ[ht(Zt)]

= Eξ

{
Φpht +

1
a

tr[(ΦpVpht)Qa(
∇2ξ

ξ
)Qa′]

}

≤ 1
a
Eξ

{
(

a

λt
)λtΦpht + ‖ΦpVpht‖ ‖Qa(

∇2ξ

ξ
)Qa′‖

}
.

The terms λtΦpht and ‖ΦpVpht‖ converge to zero boundedly in Pξ-probability,
and the last line is uniformly integrable by (11) and the proof of Theorem 1. The
first assertion of the lemma follows. The proof of the second is similar. In fact,

Eξ[‖θ̂t − Θ‖2] ≤ Eξ[λ−1
t ‖Zt‖2] = Eξ

[
λ−1

t {p +
1
a

tr[Qa(
∇2ξ

ξ
)Qa′]}

]
,

which is of order 1/a by (11).

Lemma 4. Let d be a positive integer, and let g : Ω → �d be a locally square
integrable function. Then there is a bounded, twice continuously differentiable,
positive density π on Ω for which

∫
Ω ‖g‖2πdθ < ∞ and Pπ[‖θ̂t−Θ‖ ≥ ε] = o(1/a),

as a → ∞ for all ε > 0.

Proof. There are compact Kn, n ≥ 1, for which Kn ⊂ Ko
n+1 for all n ≥ 1,

and Ω = ∪∞
n=1K

◦
n, where K◦

n denotes the interior of Kn; and there are twice
continuously differentiable functions πn, n ≥ 1, for which 1Kn ≤ πn ≤ 1Kn+1,
for all n ≥ 1. Clearly, each πn is integrable. Write Pπn for the mixture measures∫
Ω Pθπn(θ)dθ, n ≥ 1, even though these are not normalized to be probability

measures. Then Pπn [‖θ̂t−Θ‖ ≥ ε] = o(1/a), as a → ∞ for all ε > 0 and all n ≥ 1
by Lemma 3. So, there are 1 ≤ b1 < b2 < · · · for which

Pπn

[
‖θ̂t − Θ‖ ≥ 1

n

]
≤ 1

an

for all a ≥ bn and n ≥ 1. Let αn = 2n2
∫
Ω(bn + ‖g‖2)πndθ for all n ≥ 1 and let

π = c−1∑∞
n=1 πn/αn, where c is a normalizing constant and c < 1. Then π has

the desired properties.
That ‖g‖2π is integrable is clear. The proof of the second assertion uses the

relation

Pπ[‖θ̂t − Θ‖ ≥ ε] =
[m0∑
j=1

+
m1∑

j=m0+1

+
∞∑

j=m1+1

] 1
cαj

Pπj{‖θ̂t − Θ‖ ≥ ε}, (34)
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where m0 < m1 are integers depending on ε. Given ε > 0, let m0 be the least
positive integer which exceeds 4/(cε). Then there is an A > 0 for which

m0∑
j=1

1
cαj

Pπj [‖θ̂t − Θ‖ ≥ ε] ≤ ε

4a
(35)

for all a ≥ A, since the left side of (35) is o(1/a) as a → ∞, and there is no loss
of generality in requiring A > bm0+1. If a > A, then there is an integer m1 > m0

for which bm1 ≤ a < bm1+1. Then, since 1/j ≤ cε/4 for j ≥ m0,
m1∑

j=m0+1

1
cαj

Pπj{‖θ̂t − Θ‖ ≥ ε} ≤
m1∑

j=m0+1

1
αj

ε

4a
≤ ε

4a

and ∞∑
j=m1+1

1
cαj

Pπj

{
‖θ̂t − Θ‖ ≥ 1

j

}
≤ 1

cbm1+1

∞∑
j=m1+1

1
2j2

≤ ε

2a
,

by the choice of bn and αn. That is, the left side of (34) is at most ε/a for all
sufficiently large a, as asserted.

In the proofs of Lemma 5 and Proposition 3, it is necessary to compare two
measures Pξ and Pπ, where ξ and π are densities on Ω. Clearly, if ξ/π is bounded
above, say ξ/π ≤ c, then Pξ ≤ cPπ.

Lemma 5. Let π be a positive, twice continuously differentiable density on Ω
for which (35) holds. If r is continuously differentiable with compact support in
Ω, then Eπ[|r(Θ) − r(θ̂t)|2] = O(1/a), as a → ∞.

Proof. Let J denote the compact support of r; let K be a compact set for which
J ⊂ K◦ ⊂ K ⊂ Ω; and let ε be the distance from J to K ′, the complement of K.
Then there is a constant C for which

Eπ[|r(Θ) − r(θ̂t)|2] ≤ CEπ[‖Θ − θ̂t‖21K(Θ)] + CPπ[‖Θ − θ̂t‖ ≥ ε].

The second term on the right is of smaller order of magnitude than 1/a by Lemma
4. For the first, there is a positive, twice continuously differentiable function ρ

with compact support in Ω for which 1K ≤ ρ ≤ 1. Let ξ be the density for which
ξ ∝ πρ. Then, since π1K ≤ πρ ≤ ξ,

Eπ[‖θ̂t − Θ‖21K(Θ)] ≤ Eξ[‖θ̂t − Θ‖2] = O(
1
a
),

by Lemma 3.

Proposition 3. If g is as in Lemma 4, then there are estimators ĝn, n ≥ 1, for
which

lim
a→∞{Eξ[‖ĝt − g(Θ)‖2] +

√
a‖Eξ[ĝt − g(Θ)]‖} = 0 (36)
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for all ξ ∈ ΞΩ.

Proof. Fix ξ ∈ ΞΩ throughout the proof. Construct π as in Lemma 4, and let
ĝn = En

π [g(Θ)] for all n ≥ 1. Then ĝn → g(Θ) w.p.1 (Pπ) and supn≥1 Eπ[‖ĝn‖2] ≤
4Eπ[‖g(Θ)‖2] < ∞ by the Martingale Convergence Theorem and Doob’s Inequal-
ity. It then follows from the Dominated Convergence Theorem that lima→∞
Eπ[‖ĝt − g(Θ)‖2] = 0 and, therefore, lima→∞ Eξ[‖ĝt − g(Θ)‖2] = 0, since ξ/π is
bounded above. Next, let g̃n = En

ξ [g(Θ)], n ≥ 1. Then Eξ[ĝt−g(Θ)] = Eξ[ĝt− g̃t]
for all a ≥ 1. So, it suffices to show that lima→∞

√
aEξ[‖ĝt − g̃t‖] = 0. Let

r(θ) = ξ(θ)/π(θ) for all θ ∈ Ω. Then g̃n = En
π [g(Θ)r(Θ)]/En

π [r(Θ)], and

g̃n − ĝn =
Covn

π[g(Θ), r(Θ)]
En

π [r(Θ)]
,

where Covn
π denotes the d×1 vector of conditional covariances of the components

of g with r. It follows that

Eξ[‖g̃t − ĝt‖] = Eπ{‖g̃t − ĝt‖Et
π[r(Θ)]} = Eπ{‖Covt

π[g(Θ), r(Θ)]‖};

and

Eπ[‖Covt
π[g(Θ), r(Θ)]‖] ≤

√
Eπ[‖g(Θ) − ĝt‖2] ×

√
Eπ[|r(Θ) − r(θ̂t)|2]

= o(1) × O(
1√
a
) = o(

1√
a
),

as a → ∞ by the first part of the Proposition and Lemma 5.
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