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Abstract: This paper describes several problems, all arising from one real-world

problem. Some of these problems have been solved, others offer interesting chal-

lenges.
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Problem 1.

In a context that will be explained below, we came across the following
stopping-rule problem. Consider a stochastic source S0 that writes a sequence in
{0, 1}∗, e.g.

011101011111001111111110111 · · · ,
where 1’s occur independently with probability p. This is a sequence of Bernoulli
trials so long as p is constant. However, in our case the probability of success is
not constant. Whenever a failure (‘0’) occurs, the source is modified so that the
success rate increases. Thus, after the first ‘0’ is seen, the source S0 is modified,
giving a new source S1 whose probability of success is p1 > p0. This occurs after
every failure. We know that the probability of success rises asymptotically to 1.
We have a target value t (say, .99). Ideally, we would like a stopping rule τ that
would ensure that pτ ≥ t. An attempt to formulate this requirement is:

Minimize E( [ pτ < t] + λτ)

(where [ ] is the indicator function). A standard computation shows that the
optimum τ is given by

Continue iff
∞∑
i=0

λ

1 − pi
[ pi < t] < 1,

but this rule is useless, since we do not know the p’s. For a more practical
formulation, define a confidence coefficient α (say, .05) and require:

Among rules with the property P (pτ ≥ t) ≥ 1 − α, minimize E(τ).
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A first suggestion is the following. Choose an integer r, and stop as soon as
a run of 1’s of length ≥ r occurs. The probability of this is pr where p is the
unknown but constant probability of success during the run. If we choose r so
that tr < α then for all p < t the probability of getting a run as long as this is
smaller than α, suggesting that this stopping rule may do the trick.

But this cannot be. The worst case is when there are a very large number
of p’s that are increasing very slowly, and all just less than the required target t.
Then no matter how large we make r, if the number of such p’s is large enough,
with very high probability a long run will occur and the stopping rule will be
invoked with p still less than t. The confidence coefficient of this procedure is
zero!

Evidently to achieve a procedure with the desired confidence property, we
must ensure that in the limit of the situation described above, i.e. when there are
infinitely many p’s all just less than t, we have probability 1−α of never stopping
at all. Robbins and co-workers (for references to fourteen of his papers see the
review by Lai and Siegmund (1986)) have studied “tests of power one” that have
this flavor, but as far as we are aware they have only considered parameters that
stay fixed throughout the procedure.

A referee points out that the problem of estimating the size N of a finite
population, which was studied by Darling and Robbins (1967), is similar to our
problem, with pk the probability of choosing a population element that has al-
ready been seen. In this case the only unknown is N , and after seeing k different
population elements we know that pk = k/N . In our problem we do not know a
parametric form for pk.

We can arrange that when there are infinitely many p’s just less than t, with
probability at least 1 − α we will never stop. We can achieve this by letting the
required lengths of the success-runs increase. Let Rj be the length of the jth run
of successes. Suppose we stop as soon as one of the following events happens:

R1 ≥ r1 or
R1 < r1 and R2 ≥ r2 or
R1 < r1 and R2 < r2 and R3 ≥ r3

etc. (We will stop with Rj = rj for some j). If we take

rj = (2 log(j) + c)/ log(1/t) (1)

we will have P (never stop|p1 = p2 = · · · = t) =
∏∞

j=1 P (Rj < rj) =
∏

(1 − trj)
and this product is convergent since

∑
trj = e−c∑ 1/j2 which is convergent. By

changing c we can make the product anything we like between 0 and 1. For
example taking t = .99 and c = 3.478 the rj’s are (rounding up):

347 485 565 622 667 703 734 760 784 805 824 841 857 872 885 898 910 922 933 943 · · ·
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and
∏k

1(1− trj) = .95. Thus this sequence of r’s defines a stopping rule with the
property that if when we stop we assert that p ≥ t, we will make a mistake with
probability at most 0.05. If the p’s never get above t, with probability at least
0.95 we will keep on sampling indefinitely. If some p is > t, we are certain to stop
eventually. Since in the original statement of the problem we were assured that
the p’s do indeed get to 1 eventually, this does the trick. We do not know any
optimality properties of this procedure, or indeed of any procedure of this type.
See Darling and Robbins (1967) equation (10) for another rule of this type.

If we know (or believe we know) something about the p’s, the procedure can
be tuned to make it more efficient. But to keep the procedure practical, we have
to be careful not to build in too much information. For example, if we “knew”
that at most k0 p’s were below t, we could simply sample until we have seen
k0 failures, but this procedure would be fragile (not valid if the assumption is
wrong).

We could also implement a “backwards cusum” procedure, in which we
choose a doubly-indexed sequence rij and stop the first time one of these events
happens:

Ri ≥ ri1 or
Ri + Ri−1 ≥ ri2 or
Ri + Ri−1 + Ri−2 ≥ ri3 etc.
Rules of this type were studied by Pollak and Siegmund (1975), see par-

ticularly (56) of their paper. However they were considering detecting a single
increment in an unknown parameter, and their results do not seem to apply
directly to our problem.

The problem we are considering is similar to a standard sequential testing
situation. Suppose we specify two thresholds t1, t2 and a probability α. Standard
Wald theory enables us to set up a stopping rule, determined by the lengths of
success runs, with these properties:

if the p’s stay below t1 then P (never stop) ≥ 1 − α

if the p’s ever get above t2 then P (stop) = 1.

Suppose that by trial N we have seen K failures. The rule is of the form:

Stop when N log
t2
t1

> K log
t2(1 − t1)
t1(1 − t2)

+ a. (2)

Now letting t2 → t1 → t this becomes:

Stop when N > K/(1 − t) + a.

Using this rule, we are sure to stop if p ever gets above t, while if p stays below
t, P (stop)< 1 and can be controlled by choosing a appropriately. We have not
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studied this rule further, since its performance will depend strongly on the initial
p’s.

We obtain a more attractive rule by turning the SPRT into a CUSUM pro-
cedure. Choose λ and a, and stop (at N) as soon as for some n < N ,

Kn ≥ Kn + a + λ(n − N).

Note that if we take λ = 1/(1 − t) and the p’s stay just below t for a very long
time, we have very high probability of stopping before p reaches the target t.
While there is a large literature on CUSUM procedures, we have not seen any
work relating to the present context.

Clearly very many stopping rules are possible. It is not clear how to choose
among them. It is time to find out what the real problem is.

Problem 2.

The real problem is that of Optical Character Recognition (OCR)-teaching
a machine to read printed text. There are many difficulties-many kinds of de-
formations occur, and there are imaging defects due to printing, optics, spatial
quantization, etc. Each printed symbol (say an upper-case Times-Roman ‘R’)
differs slightly from almost all other instances of that class of symbols, in size,
orientation, and clarity. Also many different typefaces are in use. We need a clas-
sification method that is both fast and extremely reliable. For an introduction
to the field, see the collection edited by Baird et al. (1992).

One of us has implemented a pre-classification procedure, in which a very
fast binary decision tree is constructed (from training data) and used to winnow
out the less-likely readings of each symbol, preparatory to a slower and more
careful computation that decides among the remaining possibilities. In this pre-
processing decision tree, each leaf is labeled with a set of possible class-names.
Ideally, each leaf will have just one label. The tree will be effective if it simulta-
neously reduces the number of possibilities to be considered, and makes it very
unlikely that a character is assigned to a leaf that does not carry the correct
class-name. For simplicity of analysis, and somewhat pessimistically, we assume
here that an error at this preliminary stage cannot be corrected in later stages
of classification or contextual analysis.

It is often possible to construct shallow preclassification trees with an accept-
ably low probability of error. However, trees that are deeper and more strongly
pruning-and thus offering greater speed-up at the later stages-often exhibit un-
acceptable error-rates. This suggests the possibility that the essential problem is
not that the greedy tree-building heuristic is sub-optimal; it is that the training
data is too sparse. The tree becomes unreliable as it deepens simply because the
leaves are each only sparsely occupied.
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This conjecture motivated an experiment in which we built a tree using
1,066,639 training samples; this gave a tree with 933 leaves, which was perfect on
the training set. The pruning factor was 9; that is, the expected number of classes
at a leaf was 1/9 of the maximum number possible, averaged over the training set.
In our trials, a total of 4034 classes–typeface/symbol combinations–were possible,
so a tree with a pruning factor of 9 reduces these to 447 on average, resulting in
significantly faster classification by the OCR system as a whole. However testing
on a distinct set of 1,030,000 samples revealed a 15% error rate (and a pruning
factor of 9.3). We therefore tried the effect of deleting all the labels on the leaves,
and reassigning them using a new training set. In this computation the decision
tree itself is not changed; only the labels on the leaves. From here on, we consider
only a single class of symbols (for example, Times-Roman ‘R’. For brevity, we
say simply ‘R’). The problem is to decide which leaves should be labeled with
this class.

We can regard the successive test cases as a series of trials, where a “success”
occurs if a test case (of the class being studied) is assigned to a leaf that is
already labeled with this class; if this leaf has not been visited previously, the
class-label is now added to the class-labels already assigned to this leaf. Thus
the probability that a properly-labeled leaf is hit at the next trial is increased.
Problem 1 which we studied above arises as an idealization, where we regard the
number of leaves as unbounded. But since we actually know the total number of
leaves, the asymptotic difficulties we encountered are seen to be irrelevant. Also,
we now see that a loss function of the form

(Pτ − t)2 + λτ (3)

might be more appropriate, since we would be happy with a rule that stopped
with Pτ close to t. We do not want to make Pτ much larger than t, since this
cuts down the utility of the decision tree (reduces its pruning factor). Also, we
do not want Pτ too small, since (we are assuming) errors at this pre-processing
stage cannot be recovered from. This formulation suggests a large new class of
procedures for Problem 1, which we have not studied. Instead, we turn to a
classical result due to Turing (see Good (1953)).

Suppose we have n cells with unknown probabilities pi, i = 1, . . . , n (These
are not the same p’s as in Problem 1). We throw N balls into these cells, getting
Zi in the ith cell, i = 1, . . . , n. Consider the set of cells that are each hit exactly
k times; call this the kth block of cells. The number of cells in the kth block
is n

(N)
k =

∑n
i=1[Zi = k] and the empirical relative frequency of these cells is

Q
(N)
k = (k/N )n(N)

k . Let P
(N)
k be the total true probability of these cells, P

(N)
k =∑n

i=1 pi[Zi = k]. Note that P
(N)
k is a random quantity. Thus P

(N)
0 is the total
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probability of the cells that have not been visited. Turing’s result is that P
(N)
k−1

and Q
(N)
k are approximately equal; in fact we have exactly, no matter what the

p’s are,

E(P (N−1)
k−1 )=

n∑
i=1

pi

(
N−1
k−1

)
pk−1

i (1−pi)N−k =
k

N

n∑
i=1

(
N

k

)
pk

i (1−pi)N−k =E(Q(N)
k ).

(4)
Thus if we can keep track of the size of the “1” block of leaves, those that have
been hit exactly once, we will have an estimate of the total probability of the
leaves that have not been visited.

Robbins (1968) has shown that it is not simply in expectation that P
(N−1)
0

and Q
(N)
0 are close; he shows that

E(P (N−1)
0 − n

(N)
1 /N)2 < 1/N. (5)

Thus the Chebyshev inequality gives us a crude confidence interval for P0. Rob-
bins remarks that the inequality (5) can certainly be improved, and similar in-
equalities for higher moments may yield shorter intervals.

Can we turn this result into a stopping-rule? A simple rule would be: stop
at N∗ where

N∗ = smallest N such that n
(N)
1 /N ≤ 1 − t.

But this will not work; if (as is actually the case in practice) there are a few cells
with large probabilities; then when N is small n1 is very volatile. For example,
it will be quite likely that when N = 2 both trials land in the same cell, so
n1 = 0 and the stopping rule will be invoked immediately. We have to build in
an initial transient stage to allow n1 to get safely above (1− t)N before starting
to apply the rule. In our application we have about 1000 cells, and a transient
of 1000 is adequate; typically this makes n1 about 40, so that n1/N is about .04,
safely above the target .01. From this point on, for a very long time n1 stays
roughly constant as N increases, so n1/N decreases slowly (but not completely
monotonely).

We can also consider stopping at N∗∗, the last time n
(N)
1 /N ≥ 1 − t, or at

the N half-way between N∗ and N∗∗. Note that strictly these are not proper
stopping rules, since they do not depend only on the past. In practice there is
no difficulty in implementing them. When n

(N)
1 /N has got as small as (1 − t)/2

there is very little chance that it will rise above 1 − t again.
We have studied these procedures by simulation. We considered n=1000

cells, and assigned probabilities generated from a symmetric Dirichlet distribu-
tion D(n, γ), i.e. with density proportional to

pγ−1
1 pγ−1

2 · · · pγ−1
n (6)
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on the unit simplex
∑

pi = 1. Guided by our real data, we chose γ = .04 and
.05. For each value of γ, running 300 trials of the procedure, (10 for each of 30
realizations of the Dirichlet p’s) we found

γ = .04 ave(N) s.d.(N) ave(P0) s.d.(P0)
first below 3252 587 .01055 .00283
last above 3366 544 .00991 .00242
mid-point 3309 555 .01019 .00255
γ = .05 ave(N) s.d.(N) ave(P0) s.d.(P0)
first below 3978 613 .01064 .00232
last above 4123 621 .01002 .00216
mid-point 4051 603 .01031 .00218

QQ-plots showed that the P0 values are approximately Gaussian. Variability
among the Dirichlet realizations was negligible. These results are a little disap-
pointing. While all three rules hit the target of .01 pretty closely on the average,
the values of P0 are more variable than we would like.

Problem 3.

Reconsideration of the OCR problem suggests a different formulation, and
a more attractive class of procedures. We have a (fixed) decision tree, and a
supply of test cases. For the present, assume these are all of one class, say ‘R’.
For test-cases of this class, the ith leaf has probability pi. We have a target
t (= .99). We want to label each leaf either “R” or “not R”, in such a way that
as few leaves as possible are labeled ‘R’, while the total probability P (‘R’) is as
close as possible to the target t.

If we knew, or were able to estimate accurately, all the p’s, we would simply
sort them and assign the label ‘R’ in decreasing order of size, stopping when the
target t is attained. Since we don’t know the p’s, we resort to experimentation,
using a (pseudo-random) sequence of test cases. The problem is to find a stopping
rule τ and an associated rule for labeling the leaves of the tree. Let R

(τ)
0 be the

total probability of the unlabeled leaves, when this pair of rules is applied. We
define the loss function

L = (R(τ)
0 − t̄ )2 + λτ (7)

(t̄ = 1 − t) and we want to minimize the expected loss. A more realistic loss
function would involve the number of unlabeled leaves, (which affects the pruning
factor of the decision tree), or even the outcomes of trials involving all the classes
of test-cases, but we have not tried to deal with this. We have seen that using
Turing’s result (4) in a straightforward way (using a stopping rule based on n

(N)
1 )

makes R0 (= P0) rather variable. The following procedure reduces the variability
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in simulations. Define

cum Q
(N)
k =

k∑
i=1

Q
(N)
i

cum P
(N)
k =

k∑
i=0

P
(N)
i .

We determine K so that cum Q
(N)
K+1 = 1 − t, and to choose to label (as“not

R”) the blocks 0, 1, . . . ,K. This should make cum P
(N)
K approximately equal to

1 − t. In practice, we must allow K to take non-integer values, by interpolating
as necessary; if we find K = k + f where 0 ≤ f < 1 we label blocks 0, 1, . . . , k
and a random fraction f of the leaves in the k + 1st block.

We can study the properties of this procedure if we make the very conve-
nient assumption that the p’s have the Dirichlet prior distribution (6). Then
the posterior distribution of the pi’s is Dirichlet with density proportional to∏n

i=1 pγ+Zi−1
i . Thus the posterior distribution of the quantity cum P

(N)
k is sim-

ply a beta distribution with exponents W
(N)
k − 1, nγ + N − W

(N)
k − 1, where

W
(N)
k =

∑k
j=0 n

(N)
j (γ + j). The posterior expectation of the loss (7) is

[ W
(N)
k

nγ + N
− t̄
]2

+
W

(N)
k (nγ + N − W

(N)
k )

(nγ + N)2(nγ + N + 1)
+ λN.

This suggests that (if γ is known), the optimal rule is very nearly this determin-
istic rule:

choose N to minimize t(1 − t)/(nγ + N) + λN

label (as “not R”) K blocks, where W
(N)
k ≈ (nγ + N)(1 − t).

Choosing λ is equivalent to choosing the variance of the posterior distribution.
We expect that if we run N trial cases, the mean square error of cum P

(N)
K will

be about t(1 − t)/(N + nγ).
In practice, we do not know γ, or even that the p’s have a Dirichlet distri-

bution. In fact we have evidence that the Dirichlet is not an appropriate model;
estimating γ by maximum likelihood from one sequence of trials gave these esti-
mates:

N 1019 2045 5152 10311 20619 51552
γ̂ .0315 .0372 .0390 .0419 .0462 .0501

which show a clear trend. With n = 1000 and γ = .05, nγ is much smaller than
our N = 10000 so we might hope that the value of γ is not critical. But we do
not want to have to rely on the Dirichlet assumption. One possibility would be
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to use a more flexible (less informative) prior than the Dirichlet. Since we can
generate the Dirichlet(γ) distribution by taking pi = Xi/

∑
X where X1, . . . ,Xn

are independent Gamma(γ), we might replace Gamma by a Beta distribution of
the second kind, i.e. an F distribution (see Kempton (1975)). However this is
not very tractable.

Reverting to a frequentist approach, if we assume the number of trials is
Poisson with mean N , it is straightforward to derive expressions for the variances
and covariances of Pk, k = 0, 1, . . . ,K − 1 and Qk, k = 1, . . . ,K, and hence
of cum PK−1 and cum QK . Hence, assuming these are approximately bivariate
normal, we obtain an approximation for the variance of cum PK−1 conditional
on cum QK = 1 − t, namely

1
N

[
kSk+1 +

[
∑k

j=1 Sj][
∑k

j=2(j − 1)Sj − Tk]∑k
j=1 jSj − Tk

]
, (8)

where

Sm = E(Qm) =
m

N

∑
(Npj)me−Npj/m!, Tm =

k∑
i=1

k∑
j=1

ij

(
i + j

i

)
Ui+j

and
Um =

∑
(Npj)me−2Npj/m!.

Numerical evaluations show that the relative size of the two terms in (8) depends
strongly on the configuration of the p’s.

At this point we do not see how to make further progress theoretically. We
are unable to reconcile the Good-Turing approach with the Bayesian approach
of Hill (1979).

We do have an “engineering” solution to the problem. We choose N by a rule
we state below. We run N trials, and estimate Pk−1 by a weighted straight-line
smooth of Qk, with weights depending on the variances of the individual Q’s. We
sum to get an estimate cum Pk, and determine K so that cum PK = 1 − t. We
label (as “not R”) blocks 0, 1, . . . ,K, interpreting fractional blocks as explained
above. By simulation using the Dirichlet model, and by experience with both
pseudo-random and real trials on the real decision tree, we have verified that this
gives true coverage approximately equal to the target, with a standard error about
1.5
√

t(1 − t)/N . Thus we simply choose N large enough to give the precision
we desire (about 10000 seems right). Applying our method to 3720 <typeface,
symbol> pairs, we used 37,200,000 samples to populate the tree. When tested
on a distinct set of 18,600,000 samples, the tree’s error rate was measured to be
1.05%, a little higher than the target. The effective pruning factor was 3.43, down
of course from 9 but still high enough to speed up the OCR system markedly.



220 HENRY S. BAIRD AND COLIN L. MALLOWS

Clearly many open questions remain. We do not know how to deal with a
loss function that involves the number of labeled leaves. We cannot handle any
prior other than Dirichlet. We have made no progress on rules that consider more
than one type of symbol, and that attack the pruning factor problem directly.
We would like to know how to divide our effort between building the decision
tree and labeling its leaves.
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