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Abstract: Blackwell (1956a) proved a minimax theorem for games with a vector

loss and characterized sets such that a player has a strategy under which, whatever

strategy the other player uses, the average payoff approaches the set. Based on this

result, Blackwell (1956b) described a strategy for a sequence of plays of a game,

under which the average loss approaches the Bayes risk with respect to the relative

frequencies of the opponent’s actions. In both cases, the distance of the average

loss from a set, in repeated plays of the game, was proved to converge to 0 with

probability one. In both cases, we show that the rate of the convergence is better

than (n/ log1+t n)−1/2 for every positive t, obtain bounds for the L2 norm of the

distance and extend the results to cases in which past losses and actions are only

estimated.
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1. Introduction

Blackwell (1956a) considers a sequence of plays of a game with vector payoffs
and characterizes sets S such that Player I has a strategy under which, whatever
Player’s II strategy, the average payoff approaches S with probability 1. Blackwell
(1956b) ingeniously uses this result to construct a strategy for Player I that
guarantees, for a sequence of plays of a game with a one-dimensional payoff, that
the average payoff is at least β(pn)−ηn, where β(pn) is the Bayes expected payoff
with respect to the relative frequencies pn of Player II actions and ηn goes to 0,
whatever strategy Player II uses.

Most authors with motivation in statistics reverse the names of Player I and
II and this we shall also do now. Hannan (1957, addendum) has a bound for the
expected average loss for the Blackwell strategy (see Remark 3.9 below). Cover
and Gluss (1986) and Cover (1991) describe applications of the strategy in stock
market decisions.

The Blackwell (1956b) result is similar to that obtained by Robbins (1951),
with the main difference that Robbins considered sets of decision problems rather
than a sequence of plays of a game, expected average loss rather than average
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loss and Player II only estimated Player I actions. Hannan (1956) obtained a
similar result for sequences, again for expected average loss. Robbins (1956,
1983) obtained results for sequences of statistical problems in which nature plays
independently according to a prior; this for expected average loss. Fabian and
Špaček (1956) obtained such a result for average loss. Johns (1967), Cover and
Shenhar (1977) and Vardeman (1975, 1982) study methods based on relative
frequencies (or estimates of these) of overlapping s-tuples of Player I actions
which is advantageous if these form a dependent sequence.

This paper determines a rate of convergence to the set S in Blackwell (1956a)
and gives (non asymptotic) bounds on the expected squared distance of the
average loss from the set S. At the same time the condition that the loss lies in
a compact set X is weakened. These results are then used to strengthen results
of Theorem 3.6 in Blackwell (1956b) on the convergence to 0 of the excess of the
average loss over the Bayes risk. Again, we give rates of convergence and bounds
and we weaken the assumption on the loss lying in a compact space. We also
weaken considerably the assumptions in Blackwell (1956b) that the statistician is
told the action of nature and the loss after each play. We show that a change of
the geometry (see Remark 3.1 and Assumption 3.2) that is involved in Blackwell
(1956b) makes it possible to obtain better bounds.

J́ılovec (1970) obtained rates for the uniform almost everywhere convergence
for the excess of the average loss over the Bayes risk for the Hannan (1957)
compound sequential method; part of our Theorem 3.6 establishes the same
result for the Blackwell method.

Neyman (1962) considers Robbins (1951, 1956) two breakthroughs in statis-
tics and Efron (1994) wonders why this and some other principles do not get more
attention in the current literature. The answer seems to lie in that theory does
not develop in optimal way; attempts to improve this might make the situation
worse.

The paper is organized into four sections, of which the first is this introduc-
tion and the next two are concerned with the results of the two Blackwell papers,
respectively. The last section is devoted to an example. It may be worth men-
tioning that most of the tools used in proof evolved within the field of stochastic
approximation methods.

Notation. If f is a function, and A is a subset of the domain of f , then f [A] is
the image of A under f . The symbols ∨ and ∧ denote maximum and minimum,
a+ = a ∨ 0, a− = (−a)+. The brackets <> will be used to denote sequences;
a finite sequence of numbers is considered a column vector, a row vector will
be written using square brackets [ ]. In a context where a positive integer I is
defined, ei denotes, for each i in {1, . . . , I}, the I-dimensional vector with each
sth component eis equal to 1 if s = i and 0 for all other s.
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2. The Speed of Convergence to a Set

Definition 2.1. M is a game if M is an I by J matrix with elements m(i, j)
that are probability measures on Bk, the σ-algebra of all Borel subsets of the k-
dimensional Euclidean spaceRk, and such that each m(i, j) has a finite covariance
matrix. {1, . . . , I} is the set of possible actions for nature N, {1, . . . , J} is the
set of possible actions for the statistician S, the loss X is the random vector
with distribution m(i, j), if actions taken are i and j. A randomized action for
N means a probability p =<p1, . . . , pI > on {1, . . . , I}, a randomized action for
S is a probability q =<q1, . . . , qJ > on {1, . . . , J}.

Let X denote a closed convex subset of Rk such that m(i, j)(X) = 1 for all
i and j (Rk is such a subset) and P and Q the set of all randomized actions for
N and S, respectively. With a game M we associate an I by J matrix L with
components l(i, j), the expected loss under m(i, j), and

σ2 = sup
{ ∫

‖X − p′Lq‖2d(p′Mq); p ∈ P, q ∈ Q
}
. (1)

For p in P , set T (p) = {p′Lq; q ∈ Q}, the set of expected losses available to S.
Similarly, for any q in Q, set R(q) = {p′Lq; p ∈ P}.

We shall say that a compact subset S of X has property BL if there exist
functions π and ρ on X into S and into Q, respectively, with the following prop-
erties: For every x in S, π(x) = x. For every x in X−S, π(x) is a closest point in
S to x, and the hyperplane containing π(x) and orthogonal to x−π(x) separates
x and R(ρ(x)).

For a BL set S and π and ρ as above, denote by c the diameter of X (c = ∞
if X is not bounded) and set

C = sup{‖π(x) − r‖;x ∈ X, r ∈ R(ρ(x))}, θ =
C√

σ2 +C2
. (2)

Remark 2.2. A game can be considered a statistical problem with I states of
nature and J statistical methods. The finiteness of the covariances of X follows
from the assumption in Blackwell (1956a) that X is bounded, and implies the
boundedness of σ2 in (1). Also C is finite, because S is compact. Note that
C ∨ σ ≤ c and that C>0 except in rather degenerate situations.

Consider now playing M at times n = 1, 2, . . . For the play at time n + 1,
N selects his randomized action fn in P , and S its randomized action gn in Q.
Then the actions in+1 and jn+1 are selected according to the densities fn and gn.
Finally, the loss Xn+1 is determined by the probability m(in+1, jn+1). Blackwell
(1956a) assumes fn and gn are functions of <X1, . . . ,Xn >. In fact, his result
holds even when allowing N to use additional information, for example, allowing
N to choose the random action fn to depend on the random action gn of S. For
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certain arguments, we shall use the fact that the determination of Xn+1 includes
a preliminary stage, at which in+1, jn+1 are determined at a time n+ between
times n and n+ 1.

Definition 2.3. By a sequence of plays of M we mean a pair <M,<F0,F0+,F1,
F1+, . . .>> where M is a game and <F0,F0+, . . .> is a non-decreasing sequence
of sub-σ-algebras of a σ-algebra F. For such a sequence of plays, with the notation
for M as in Subsections 2.1 and 2.2, f is a strategy for N (or N-strategy) if
f =<f0, f1, . . . >where, for each n = 0, 1, . . . , fn is an Fn measurable function
into P and g is a strategy for S (or S-strategy) if g =< g0, g1, . . . >where, for
each n = 0, 1, . . . , gn is an Fn measurable function into Q. Xn, in and jn are the
loss, N-action and S-action in play n, in+1 and jn+1 are Fn+ measurable, Xn+1

is Fn+1 measurable.
If the strategies f and g are given, Pf,g is a probability on F under which,

for each n = 0, 1, . . . , in+1 and jn+1 are, given Fn, independent with discrete
densities fn and gn, respectively. The (regular) conditional distribution of Xn+1,
given Fn+, is m(in+1, jn+1). Instead of Fm+ we shall also write Fn− if n = m+1.
The average loss is X̄n = (X1 + · · · +Xn)/n.

If S has property BL, then an S-strategy g is called BL(S) if, with π and ρ
as in Definition 2.1, g0 ∈ ρ[S] and gn = ρ(X̄n) for each n>0.

If g is a strategy for S, and dn are Fn measurable random variables, then
we say that dn → 0 a.u. (almost uniformly) if, for every ε positive, there exists
an N such that

Pf,g{dn ≥ ε for some n ≥ N} ≤ ε

for every N-strategy f (in most cases we omit the subscripts f and g in the
probability and expectation notation).

Finally, a sequence < bn > of positive numbers is a norming sequence if
<n−2bn> is nonincreasing and summable (e.g. <n/ log1+t n> with t a positive
number).

Theorem 2.4. Consider a sequence of plays of a game M , a set S with property
BL and assume g is a BL(S) strategy. Then the distance δn of X̄n from S
satisfies, for all n = 1, 2, . . . and all N-strategies f

Eδ2n ≤ 1
n

(c2 ∧ ψ2
n) where ψn>0 and ψ2

n = (σ2 + C2)
(
1 +

5.0527√
n

θ
)
. (3)

Also, for every norming sequence <bn>,

bnδ
2
n → 0 a.u. (4)

Proof. For easier writing of recurrence relations set δ0 = 0. Let f be a strategy
for N. Let n be a non-negative integer. Suppose U is an Fn measurable k-
dimensional random vector and Z = E(Xn+1|Fn). Then, since Z − U is Fn
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measurable and because of (1),

E(‖Xn+1 − U‖2|Fn) = E(‖Xn+1 − Z‖2|Fn) + ‖Z − U‖2 ≤ σ2 + ‖Z − U‖2. (5)

Next we shall show that

E(δ2n+1|Fn) ≤ n− 1
n+ 1

δ2n +
c2 ∧ [σ2 + (δn + C)2]

(n+ 1)2
for n = 0, 1, . . . (6)

Consider n = 0. Note first that δ1 ≤ c. Secondly, g0 = ρ(s) for an s in S

and, since Z ∈ R(g0), ‖Z− s‖ ≤ C by (2). Thus, from (5) with U = s, we obtain
E(δ21 |F0) ≤ σ2 + C2 and (6) holds for n = 0.

For n>0, set U = X̄n. Note that Z is in R(ρ(X̄n)), thus ‖π(X̄n) − Z‖ ≤ C

again by (2). It follows that

‖Z − X̄n‖ ≤ ‖X̄n − π(X̄n)‖ + ‖π(X̄n) − Z‖ ≤ δn + C.

This, (5) and ‖Xn+1 − X̄n‖ ≤ c give

E(‖Xn+1 − X̄n‖2|Fn) ≤ c2 ∧ [σ2 + (δn + C)2]. (7)

On {δn = 0}, we have δn+1 ≤ ‖X̄n+1 − X̄n‖, X̄n+1 − X̄n = (Xn+1 − X̄n)/(n+ 1)
and the inequality in (6) follows from (7). On {δn>0}, (6) follows by retracing
the proof of Theorem 1 in Blackwell (1956a) up to the relation (5) there, and
using our (7) instead of the bound c2 there.

It is easy to show that lim sup supf nE(δ2n) ≤ c2 ∧ (σ2 + 2C2) by replacing,
in (6), (δn +C)2 by 2δ2n + 2C2, rearranging terms, taking expectation and using
a Chung Lemma (see Lemma 1 in Chung (1954) or relation (4.2.2) in Fabian
(1967)). The stronger nonasymptotic assertion (3) needs a different proof.

First, use (6) with the minimum replaced by c2, take expectations and obtain

(n+ 1)E(δ2n+1) ≤
n− 1
n

nE(δ2n) +
c2

n+ 1
;

by induction, for all n, nE(δ2n) ≤ c2.
Second, replace the minimum in (6) by the other term than c2, take ex-

pectations, replace E(δn) by the bound
√
E(δ2n) and rearrange to obtain that

vn = n2E(δ2n)/(σ2 + C2) satisfies v1 ≤ 1, vn+1 ≤ vn + 1 + (2θ/n)
√
vn. If θ = 0,

it follows that vn ≤ n for all n and (3) holds.
It remains to consider the case θ> 0. Set wn = n−1/2(vn − n)/θ and verify

that

w1 ≤ 0, wn+1 ≤ Tn(wn) where Tn(w) =
√

n

n+ 1
w +

2√
(n+ 1)n

√
1 +

w+√
n
,
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where w+ = w ∨ 0 was used as an upper bound for θw. If we set W1 = 0 and
Wn+1 = Tn(Wn), we obtain upper bounds for wn; from now on restrict Tn to
the domain [0,∞]. Set ϕn = 2(

√
(n+ 1)/n + 1). In the inequality Tn(w) ≤ w,

subtract the first term in the expression for Tn(w) and multiply by (n + 1)(1 +√
n/(n+ 1)) to obtain an equivalent set of inequalities w ≥ 0, ϕn

√
(1 + w/

√
n) ≤

w. We obtain

Tn(w) ≤ w if and only if
ϕ2

n

2
√
n

+

√
ϕ2

n +
ϕ4

n

4n
≤ w.

Write the last inequality as rn ≤ w. In particular, Tn(rn) ≤ rn (in fact, Tn(rn) =
rn), and, since Tn is isotone we obtain Tn(w) ≤ w ∨ rn. Direct computation
establishes that Wn ≤ W75 ≤ 5.0527 for all n = 1, . . . , 75 and r75 <W75. Note
that < rn > is a decreasing sequence. If Wn ≤ W75 is true for an n ≥ 75,
then Wn+1 = Tn(Wn) ≤ W75 ∨ rn = W75 and it follows that Wn ≤ W75 for all
n = 1, 2, . . .

Since nE(δ2n) = (σ2 + C2)(1 + θwn/
√
n), this completes the proof of (3).

It remains to prove (4). Set zn = bnδ
2
n and ξn = n−2bn. Since < bn > is a

norming sequence, <ξn> is summable and non-increasing. From the latter, we
obtain bn+1/bn ≤ [(n + 1)/n]2 and

bn+1

bn

(n− 1
n+ 1

+
2

(n+ 1)2
)
≤ 1 + n−2.

Use this, set A = σ2 + 2C2, replace the minimum in (6) by 2δ2n + A and obtain
E(zn+1|Fn) ≤ (1 + n−2)zn + Aξn+1. This implies, by Proposition 2 in Robbins
and Siegmund (1971), that for every ε positive and every positive integer N

P{zn ≥ ε for some n ≥ N} ≤ ε−1
[
E(zN ) +

∞∑
n=N

(Aξn + n−2)
]
. (8)

Note that NξN → 0, since (N − n)ξN ≤ ξn+1 + · · · + ξN . From (3) (we could
use the weaker statement we deduced by using the Chung Lemma), we have that
supf,n nE(δ2n)<∞. Thus E(zN ) = NξNNE(δ2N ) converges uniformly (in f) to
0. The other terms in the brackets in (8) do not depend on f , and, for N large
enough, the right-hand side is smaller than ε for all f . This proves (4).

3. The Compound Statistical Problem

Remark 3.1. Blackwell (1956b) considers a sequence of plays of a game M with
a one-dimensional loss. He constructs a method for S, for which the excess of the
average loss X̄n over the Bayes risk β(pn) converges to 0 no matter what is the N-
strategy, where pn denotes the frequency distribution of the N-actions i1, . . . , in.
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Methods of this type are called sequence-compound statistical methods. The
ingenious use, in Blackwell (1956b), of the results in Blackwell (1956a), consists
of changing the loss X in such a way that the changed loss contains information
about actions used by N.

It is assumed in Blackwell (1956b) that S learns the N-action and the loss
after each play. We shall show a weaker assumption suffices under which S

has available estimates of the N-actions and losses. The construction of such
estimates is well known (see, e.g. Van Ryzin (1966)): Consider I probability
measures µi on a σ-algebra and assume that they are linearly independent, i.e.,
c1µ1 + · · · + cIµI = 0 only if c1 = · · · = cI = 0. Then there exists a random
vector ξ such that the expectation of ξ with respect to µi is ei (see Notation
at the end of Section 1). Indeed, let ϕi be a density of µi with respect to
µ = µ1+ · · ·+µI . Then, under µi, ξ =<V1, . . . , VI>has the required expectation
ei if, in L2(µ), (Vs, ϕi) = eis. It is enough to determine Vs as a projection of
ϕs on {ϕ1, . . . , ϕs−1, ϕs+1, . . . , ϕI}⊥ multiplied by a suitable constant to have
(Vs, ϕs) = 1.

The densities ϕi can be chosen such that the I-tuple<ϕ1, . . . , ϕI > has values
in P , Vs are linear combinations of the ϕ1, . . . , ϕI and so there is a number K0

such that ‖ξ‖∞ ≤ K0.
If S is able to observe the loss X in the game M , and if, for each j, the mea-

sures m(1, j), . . . ,m(I, j) are linearly independent, then S, knowing his action j,
can estimate the action i by N using the estimate ξj described above.

Often, S is unable to observe the loss, but observes another random vector
γ, whose distribution depends on the N-action i (usually, γ is the information
provided to the statistical method S is using). Again, if these I probability
distributions are linearly independent, there is an estimate U = ζ(γ) with the
expectation ei, if N plays i. In this case, set Y equal to the jth column of U ′L
if S plays j; the expectation of Y , if the two actions are i and j, is l(i, j).

We shall assume below that estimates for in and Xn are used; this includes,
as a special case, the situation where S knows in or Xn.

In the assumption below, the game M̃ with the changed loss will depend on
a positive number κ that determines how the distance in the space that contains
the values of the loss is measured. Introducing this constant helps to obtain
better results in Theorem 3.6.

Assumption 3.2. Assume κ is a positive number. Assume M is a game with
one-dimensional non-negative loss. Set

β(p) = Min{p′Lq; q ∈ Q} for every p in P ,

and
B = {<p, x>; p ∈ P, x ∈ X, 0 ≤ x ≤ β(p)}.
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Assume that m(i, j) are restrictions of probability measures µij on F1, and
that U is an F1 measurable I-dimensional random vector and Y an F1 measurable
random variable such that∫

Udµij = ei,

∫
‖U − ei‖2dµij ≤ K2

U , (9)

∫
Y dµij = l(i, j),

∫
(Y −X)2dµij ≤ K2

Y and K2 = κ2K2
U +K2

Y . (10)

Assume M̃ is a game with the same I and J as M and with loss <U,Y >.
Note that m̃(i, j) are the distributions of <U,Y > under µij. For the range of
U we select the inner product ((u1, u2)) = κ2(u1, u2) and for X̃ the innerproduct
((<u1, y1>,<u2, y2>)) = ((u1, u2))+y1y2. The corresponding norms are |||| u |||| = κ‖u‖
and |||| <u, y> |||| 2 = κ2‖u‖2 + y2.

For repeated plays ofM and M̃ we assume a common sequence<F0,F1, . . .>.
Definition 2.3 specifies the meaning of <Un, Yn>= X̃n. We assume that m̃(i, j)
is the conditional distribution of <Un, Yn>, given Fn−, on {in = i, jn = j}. The
concept of the two strategies is the same for both games. We assume g is a BL(B)
strategy for M̃ (B has property BL for M̃ , see below). For each n = 1, 2, . . . , Ūn

and Ȳn are the arithmetic means of the first n members of the sequences <Un>

and <Yn> and pn is the arithmetic mean of ei1 , . . . , ein .

Remark 3.3. Let Assumption 3.2 hold. The constants σ, c and C and the set
X in Definition 2.1, but referring to M̃ , will be denoted by σ̃, c̃, C̃ and X̃. For
the game M̃ with κ = 1, B is a compact convex set with property BL as noted
by Blackwell (1956b): the intersection of B and T (p) is non-empty for every
p ∈ P which implies property BL (see Theorem 3 and its proof in Blackwell
(1956a)). However the case with κ 
= 1 corresponds to the change of <U,Y > to
κ<U, Y/κ>, so that what we stated above assuming κ = 1 holds without this
assumption.

The hypotheses of Theorem 2.4 hold and results there apply to the distance
δ̃n mutatis mutandis (we shall use ψ̃n from Theorem 2.4).

Consider a point x̃ =< p, x > with p in P and x > β(p). The point π̃(x̃)
can be written as β̃(p0) where β̃(p) denotes < p, β(p) >. We shall show that
p′0Lρ̃(x̃) = β(p0), i.e., ρ̃(x̃) is a randomized Bayesian action against p0. This
makes the determination of ρ̃(x̃) easy if there is only one such action. If not,
a suitable ρ̃(x̃) can be found (as implicitly described in the proof of Theorem
3 in Blackwell (1956a)) based on a minimax randomized action for S for the
game with payoff the inner product ((x̃ − β̃(p0), l̃(i, j))). Note that this payoff is
proportional to the coefficient α of the projection α(x̃ − β̃(p0)) of the expected
loss l̃(i, j) on the line containing the segment joining x̃ and β̃(p0).
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To prove the property p′0Lρ̃(x̃) = β(p0), begin with the identity

(x−β(p))(x−β(p0))=((x̃−β̃(p), x̃−β̃(p0)))=((β̃(p0)−β̃(p), x̃−β̃(p0)))+ |||| x̃− β̃(p0) |||| 2.

On the right-hand side, the inner product is nonnegative, because the hyper-
plane H (through β̃(p0) and orthogonal to x̃−β̃(p0)) separates x̃ from β̃(p). It
follows that x>β(p0). H also separates x̃ from p′0L̃ρ̃(x̃), thus 0 ≥ ((x̃− β̃(p0),<
p0, p

′
0Lρ̃(x̃) > −β̃(p0))) = (x − β(p0))(p′0Lρ̃(x̃) − β(p0)) and the property holds

since x>β(p0).

Lemma 3.4. Under Assumption 3.2, for every strategy f of N and for all n,

E( |||| <Ūn, Ȳn>−<pn, X̄n> |||| 2) ≤ K2/n; (11)

for every norming sequence <bn>,

bn |||| <Ūn, Ȳn>−<pn, X̄n> |||| 2 → 0 a.u. (12)

Proof. We have

Ūn+1 − pn+1 =
n

n+ 1
(Ūn − pn) +

Un+1 − ein+1

n+ 1
.

The conditional expectation, given Fn+, of the last term is 0, and thus

E(‖Ūn+1 − pn+1‖2|Fn+) ≤
( n

n+ 1

)2‖Ūn − pn‖2 +
K2

U

(n+ 1)2
.

Taking expectations of both sides and a simple induction gives E(‖Ūn − pn‖2) ≤
K2

U/n; the same property holds for Ȳn − X̄n with KU replaced by KY , and (11)
follows. Then (12) follows by Proposition 2 in Robbins and Siegmund (1971) in
a way shown in more detail in the proof of Theorem 2.4.

Lemma 3.5. Under Assumption 3.2, the distance dn of <pn, X̄n> from the set
B satisfies, for every N-strategy f and all n, E(d2

n) ≤ (1/n)(K + c̃ ∧ ψ̃n)2 and,
for every norming sequence <bn>, bnd2

n → 0 a.u.

Proof. Both assertions follow from Lemma 3.4 and Theorem 2.4, applied as
described in Remark 3.3, because dn ≤ δ̃n + |||| < Ūn, Ȳn > − < pn, X̄n > |||| . The
second assertion follows immediately, and the first assertion by the Minkowski
inequality.

Theorem 3.6. Let Assumption 3.2 hold, η(p, x) = (x − β(p))+, Kη be the
Lipschitz constant of η and let ηn = η(pn, X̄n). Then, for every N-strategy f and
every n,

E(η2
n) ≤ 1

n
K2

η(K + c̃ ∧ ψ̃n)2. (13)
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and, for every norming sequence <bn>, bnη2
n → 0 a.u.

Proof. The assertion follows from the preceding lemma and the relation ηn ≤
Kηdn.

Remark 3.7. Bounds for some constants. If Kβ is the Lipschitz constant for β,
then

K2
η ≤ 1 +K2

β . (14)

Indeed, set x = x1−x2, y = |||| p1−p2 |||| , z = β(p2)−β(p1) and obtain z2/y2 ≤ K2
β;

the Schwartz inequality, applied to < x, y > and < 1, z/y >, gives (x + z)2 ≤
(x2 + y2)(1 + z2/y2) and (14) follows.

Next, let lj denote the jth column of L and set l∗j = lj − a where a is the
average of the components of lj . Consider p1 and p2 in P and a Bayes action
j corresponding to p2. Then β(p1) − β(p2) ≤ (p1 − p2, lj) = (p1 − p2, l

∗
j ) ≤

‖p1 − p2‖ ‖l∗j‖ = κ−1 |||| p1 − p2 |||| ‖l∗j‖. By symmetry, and with λ = Maxj ‖l∗j‖,

Kβ ≤ κ−1λ, λ ≤
√
I/4 Max

j
[Max

i
l(i, j) − Min

i
l(i, j)]. (15)

The square diameter of P is 2κ2, because for y = p1 − p2 with pi in P ,
the convex function y → ‖y‖2 attains its maximum at an extremal point of its
domain. It follows that

c̃2 = 2κ2 + c2. (16)

Remark 3.8. Choice of κ. Suppose Assumption 3.2 holds and K = 0. Then
Theorem 3.6 implies

nE(η2
n) ≤ K2

η c̃
2. (17)

Using (14), (15) and (16), we obtain nE(η2
n) ≤ (1 + κ−2λ2)(2κ2 + c2) = (λ

√
2 +

c)2 + (κ
√

2− cλ/κ)2. Using the value of κ that minimizes the last expression, we
obtain

nE(η2
n) ≤ (λ1

√
2 + c)2 if cλ/

√
2 ≤ κ2 ≤ cλ1/

√
2. (18)

Indeed, the assertion for the two extreme choices of κ follows by the argument
above and its modification in which λ is replaced by a larger number λ1. (18)
then follows easily. The value κ determines the innerproduct in X̃ and thus the
BL(B) strategy g.

A similar improvement by a choice of κ is possible even if K is not zero
and if ψ̃n is used instead of c̃. This would usually require the knowledge of the
numerical values of the constants involved and then easy numerical minimization.

Remark 3.9. A special case. Consider now the special case of the loss equal to
its expectation (i.e., degenerate m(i, j)) and S being told the loss and N-actions
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after each play. This means that K = 0 and c = Maxij l(i, j)−Minij l(i, j) is the
diameter of the set {l(i, j)}. By (15), λ2 ≤ c2I/4 and (18) gives

nE(η2
n) ≤ c2(

√
I/2 + 1)2 if cλ/

√
2 ≤ κ2 ≤ c2

√
I/8; (19)

in a specific situation when λ is known rather than its upper bound only, we
would get a better bound than (19) for a different κ2.

An improvement is possible. It is known that ηn does not change if the loss X
in game M is changed to X− ti in case i is the N-action. If ti = Minj l(i, j), then
the change leaves c unchanged or, in most cases, makes it smaller. Playing the
BL(B) strategy in the sense of the changed game would result in an improvement
of bound (19). (A similar improvement might be possible even when the loss is
random, but the above choice of ti may fail.)

In this special case, and within the context of Minj l(i, j) = 0 for each i, Han-
nan (1957, addendum) wrongly claimed

√
nE(ηn) ≤ c(

√
2I + 1) for the strategy

with κ = 1. The inequality is weaker than that in (19), thus holds for the strat-
egy with κ as in (19) or, by (18), even κ in a larger interval. Hannan’s claim is
cited and used in Cover and Shenhar (1977) in a situation where it is correct.

4. An Example

4.1. The games M and M̃

We shall consider a 2 by 2 game M with the loss

Loss for game M
i\j 1 2
1 γ.2 − .2 γ.2 + .8
2 γ.8 + .2 γ.8 − .8

where γt is a Bernoulli(t) random variable and S observes γ = γ.2 if N selects
action i = 1 and γ = γ.8 if N selects i = 2. The matrices of expected losses for
M and M̃ are

L =

[
0 1
1 0

]
and L̃ =

[
<1, 0, 0>, <1, 0, 1>
<0, 1, 1>, <0, 1, 0>

]
.

We shall treat special cases with various estimates U and Y . However, without
these specified, we obtain that R̃(q1, q2) is the segment connecting < 0, 1, q1 >
and <1, 0, q2> and that

β(p1, p2) = p1 ∧ p2, B = {<p, x>; p ∈ P, 0 ≤ x ≤ β(p)}
λ2 = 1/2, K2

η ≤ 1 + κ−2/2, C̃2 = 1 + 2κ2. (20)
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The expressions for β, B and λ are obvious, the bound for K2
η follows from (15)

and (14). In the present case, K2
η is equal to the bound, as seen by setting

α = 1/(2κ2) and considering two points <p1, 1−p1, 1/2>, <p1−αε, 1+αε−p1,
1/2 + ε > with p1 = 1/4 and sufficiently small ε. C̃ is at most the maximum
distance

√
1 + 2κ2 of two elements of L̃; this distance is actually achieved if

π̃(x̃) =<0, 1, 0>.
In the special cases that follow we shall assume that S uses a BL(B) strategy

g for the corresponding M̃ ; the property bnη2
n → 0 a.u. always holds. The bounds

for E(η2
n) differ, however each such bound holds again for all n and all N-strategies

f . We shall determine κ for which the limiting bound is optimal. In most cases,
such a κ has to be determined numerically, and will be selected optimal among
values of the form m/100 with m integers.

The BL(B) strategy is determined by the function ρ which can be described
now. We shall assume that U =<U1, 1 −U1>, a relation satisfied by all specific
choices of U below. For any point x̃ =<a, 1 − a, x> in X̃ −B and with a ≤ 1/2
(the case a>1/2 is symmetric), ρ̃(x̃) depends on the projection π̃(x̃) of x̃ on B

and is as follows:
(i) π̃(x̃) =<b, 1 − b, 0>, with 0<b ≤ 1/2 : ρ̃(x̃) =<1/2, 1/2>
(ii) π̃(x̃) =<b, 1 − b, b>, with 0 ≤ b<1/2 : ρ̃(x̃) =<0, 1>
(iii) π̃(x̃) =<1/2, 1/2, 1/2>: ρ̃(x̃) =<q, 1 − q> with q = 2κ2(2a−1)+2x−1

2(2x−1) .
Verification is somewhat easier if we consider a two-dimensional graph obtained
by omitting the second component in points of X̃. If we extend the unit of
the horizontal axis by a factor of κ

√
2, then distances and orthogonality will be

preserved in the graph.
Call H∗ the hyperplane containing the base of the triangle B and Hq the

hyperplane containing R̃(q). Thus the left-hand side of the triangle B is contained
in R̃(0) and that is contained in H0. Let H be the hyperplane going through
π̃(x̃) and orthogonal to x̃ − π̃(x̃). In case (i), verify that H is equal to H∗
which separates x̃ from every R̃(q). In case (ii), verify that H can be obtained
by rotating H∗ clockwise around the point < 0, 0>, but not past H0 and that
ρ̃(x̃) = 0 is a possible, and if H has a non empty intersection with (0, 1]2 the only
possible, choice. In case (iii) x̃− π̃(x̃) is orthogonal to Hq with q given.

4.2. Case 1

Assume S estimates the action i of N by U =<U1, 1 − U1> and the loss by
Y where, with j the action by S, U1 = 1

3(4−5γ), Y = (1−U1)χ{j=1}+U1χ{j=2}.
We shall show that

c̃2 =(25/9)(1+2κ2), K2 =(.16/9)(64+50κ2), σ̃2 = (25/36)(1+2κ2), θ2 =36/61.

The range of U1 is {−1/3, 4/3} and the expression for c̃2 follows. The random
variable Y −X is of the form a+ bγ with different numbers a and b depending
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on i and j. For j = 1, b = 2/3 and for j = 2, b = −8/3; thus (10) is satisfied
with K2

Y = (64/9)(.16). Similarly, (9) is satisfied with K2
U = (50/9)(.16)κ2 and

K2 is as asserted.
To determine σ̃2 (cf. (1)), let E and V denote, temporarily, the expecta-

tion and variance under p′M̃q and Eij and Vij the conditional expectation and
variance given actions i and j. Under p′M̃q, γ is Bernoulli with the maximal
variance 1/4 when p =< 1/2, 1/2 > and the maximal value of E |||| <U, 1 − U >

−E < U, 1 − U > |||| 2 is (50/36)κ2 . Next, V (Y ) = E(Vij(Y )) + V (Eij(Y )). But
Vij(Y ) = (25/9)(.16) and Eij(Y ) is Bernoulli with the maximum variance 1/4 if
p =<1/2, 1/2>; for this p, V (Y ) = (25/9)(.16) + 1/4 = 25/36. This proves the
relation above for σ̃2.

Since Assumption 3.2 holds, the assertions of Theorem 3.6 hold. In particu-
lar,

nE(η2
n)≤(1+κ−2/2)

{ .4
3

√
64+50κ2+

√
1+2κ2

(5
3
∧

√
61
36

(1+
3.882√
n

)
)}2

.

The minimum of the two terms is 5/3 for n ≤ 36, and the second term for all
other n. κ = .77 minimizes the limit of the right-hand side above. For this κ,

nE(η2
n) ≤ 5.0982 ∧

[
4.365 + 2.613

(√
1 +

3.882√
n

− 1
)]2

.

(The κ minimizing the bound for n ≤ 36 is .76 with the same bound as above
when rounded up to three decimals.)

4.3. Case 2

We assume S is told the past N-actions, and that he chooses Un = ein ,
Yn = l(in, jn), X̃ = P × [0, 1]. We obtain, similarly as in Case 1,

c̃2 = 1 + 2κ2, K2 = .16, σ̃2 = .25(1 + 2κ2), θ2 = .8.

Since c̃2 = C̃2, we have c̃ < ψ̃n and the bound in Theorem 3.6 becomes
nE(η2

n) ≤ (1 + κ−2/2)(.4 +
√

1 + 2κ2)2. This is minimal for κ = .80, when it
becomes

nE(η2
n) ≤ 2.5502 = 6.5025. (21)

4.4. Case 3

We assume S is told the past N-actions and losses and he chooses U as in
Case 2, and Y = X. We have X̃ = P × [−.8, 1.8] and obtain

c=2.6, c̃2 =6.76+2κ2, K=0, σ̃2 = .41+.5κ2, θ2 = (1+2κ2)/(1.41+2.5κ2);
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the loss for M̃ is now <ei,X > under m̃ij; the variance of the first component
is at most .5κ2, of the second component at most .16 + .25, both attained at
p =< 1/2, 1/2>. In the limit, the bound involving ψn is better than the other
and minimal for κ = .73. We obtain

nE(η2
n) ≤ 15.169 ∧ [5.316(1 + 4.386/

√
n)] if κ = .73.

For n ≥ 387, the bound is better than that in (21), obtained for another estimate
of the loss.

4.5. Case 4

Consider the gameM but changed by assuming the same L but a non random
loss (i.e., the loss for M is l(i, j) under mij). Assume S is told past N-actions
and uses U and Y as in Case 2. Then c = 1, c̃2 = 1 + 2κ2, σ̃2 = .5κ2, θ2 = .8,
c̃∧ ψ̃n = c̃, and (18) gives nE(η2

n) ≤ 4 if κ = 1/2. The same bound holds for the
original game M without the change that X is non-random, if U and Y are as
above and ηn = (E(X̄n) − pn)+.
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