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Abstract: For each n ≥ 1, let {Xn,j , j ≥ 1} be i.i.d. Bernoulli random variables

with P{Xn,1 = 1} = pn = 1 − qn = 1 − P{Xn,1 = 0}, 0 < pn < 1. Define

Wn,mn =
∑mn

j=1
(Rn,j −an), where Rn,j = inf{k ≥ 0 : Xn,j+k = 0} is the number of

success runs starting at j, mn is a sequences of positive integers, and an = pn/qn.

We show that, under the condition mnpn → ∞, the central limit theorem

Wn,mn

σmn

√
mnqn

d−→N(0, 1)

holds if and only if mnqn → ∞ as n → ∞, where σ2
n = 2a4

n + 5a3
n + 4a2

n + an. A

key observation here is that {Rn,j , 1 ≤ j ≤ mn} forms a regenerative process so

that some useful techniques from renewal theory can be utilized here.

Key words and phrases: Central limit theorem, number of success runs, regenerative

process, renewal theory.

1. Introduction

For each n ≥ 1, let Xn,1,Xn,2, . . . be independent identically distributed
(i.i.d.) Bernoulli random variables with

P{Xn,1 = 1} = pn = 1 − qn = 1 − P{Xn,1 = 0}, 0 < pn < 1.

Associated with these are random variables Rn,j, j ≥ 1, which are of paramount
interest in this paper, where

Rn,j = inf{k ≥ 0 : Xn,j+k = 0}, j ≥ 1,

or equivalently,

{Rn,j = k} = {Xn,i = 1 for j ≤ i < j + k and Xn,j+k = 0}.
In the literature Rn,j is called the number of success runs starting at j, and
it has some applications in Sequential Analysis and studying the match of two
sequences of DNA (see, for example, Aki (1985), Philippou and Makri (1986),
Goldstein (1990), and Hirano and Aki (1993)).
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For the special case of a single indexed sequence, in other words the case in
which we simply have Rj , X1, X2, p, q instead of Rn,j, Xn,1, Xn,2, pn,1, qn,1, etc.,
the almost sure convergence result of Rj was first obtained by D.J. Neuman (see
Chow and Teicher (1988), p. 61); and the Central Limit Theorem (CLT) and the
Law of Iterated Logarithm (LIL) was proved in Chow (1992a). In this paper we
consider the limiting behavior of Rn,j for the case of double arrays; or rather, to
be more precise, study the asymptotic distribution of the centered sum

Wn,k =
k∑

j=1

(Rn,j − an), 1 ≤ k ≤ mn, (1)

where an = pn/qn and mn is some sequence of positive integers.
If mnpn → some constant λ ∈ (0,∞) and mn → ∞, as n → ∞, then Chow

(1992b) gives the following result.

Theorem 1.1. Suppose mnpn → λ ∈ (0,∞) and mn → ∞, as n → ∞. Then

Wn,mn

d−→W − λ, (2)

where W is a Poisson random variable with mean λ.

Since the original proof is very short and is in Chinese, we shall reproduce
it here for completeness.

Proof. Observe that since

{Xn,j �= Rn,j} = {Xn,j = 1 = Xn,j+1}

we have

P
(mn∑

j=1

Xn,j �=
mn∑
j=1

Rn,j

)
≤ P

(mn⋃
j=1

{Xn,j �= Rn,j}
)

≤
mn∑
j=1

P (Xn,j �= Rn,j) = mnP (Xn,1 = 1 = Xn,2) = mnp2
n −→ 0,

as n → ∞. Hence,
mn∑
j=1

Xn,j −
mn∑
j=1

Rn,j
p−→0,

from which we have, by the classical Poisson theorem,
∑mn

j=1 Rn,j
d−→ W , and (2)

follows.

We deal exclusively in this paper with the case mnpn → ∞ as n → ∞. An
important observation here is that the summand in (1) can be split into many
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blocks so that the summation over each block forms a new i.i.d. sequence, upon
which the asymptotic analysis may be built up. Indeed, if we set up the blocks
by stopping times T

(1)
n = inf{j ≥ 1 : Xn,j = 0} and its copies T

(2)
n , T

(3)
n , . . ., then

the summations within each block, Yn,j = Wn,Tn,j − Wn,Tn,j−1 , are i.i.d. random
variables (see Lemma 3.1 and Lemma 3.2 below). A picture may illustrate the
idea better.

• • • • • •
T

(1)
n︷ ︸︸ ︷ T

(2)
n︷ ︸︸ ︷ T

αn(n)
n︷ ︸︸ ︷

1 n

In the above picture αn(n) = inf{j ≥ 1 :
∑j

i=1 T
(i)
n > mn}. Expressing this in

standard terminology, for each n ≥ 1, {Rn,j, 1 ≤ j ≤ mn} forms a regenerative
process with the regenerative cycle lengths T

(1)
n , T

(2)
n , etc. (we refer the reader

to Asmussen (1987) for the background of regenerative processes).
Unfortunately, the standard results for the regenerative processes can not be

applied directly to our case. Perhaps more to the point, we deal with a concrete
example in an explicit and constructive fashion, giving exactly a necessary and
sufficient condition for the CLT to hold, as well as obtaining a closed form of
mean and variance in the CLT (cf. Theorem 2.1), whereas the literature on
regenerative processes usually gives relatively abstract statements. Moreover,
the double array setting also brings a few technical difficulties; for example,
some analogies of classical renewal theory have to be established.

The rest of paper is organized as follows. In Section 2, a CLT is given along
with the proof of its necessary part. Some explicit calculation regarding the
distribution of regenerative cycles and the analogies of some classical renewal
results are derived in Section 3. The last section is devoted to the proof of the
sufficient part of the CLT.

2. Main Results

Theorem 2.1. Suppose that mnpn → ∞ as n → ∞. Then the CLT

Wn,mn

σmn

√
mnqn

d−→N(0, 1) (3)

holds if and only if mnqn → ∞ as n → ∞, where σ2
n = 2a4

n + 5a3
n + 4a2

n + an and
an = pn/qn.

Remark. To lighten our notation burden, we may, without loss of generality,
take mn ≡ n from now on, as the arguments are the same.



160 S. G. KOU AND Y. S. CHOW

Proof of the necessary part. We shall prove this by contradiction. Suppose
nqn �→ ∞. Then there exists a subsequence {n′} ⊂ {n}, such that n′qn′ → λ, λ ∈
[0,∞). We may replace {n′} by n, again for notation simplicity.

For any ε > 0, we can find an integer k ≥ 0, such that
k∑

j=0

λj

j!
e−λ > 1 − ε

3
.

Introduce, for every n ≥ 1, the sets

An = {the number of 0’s in the sequence Xn,1, . . . ,Xn,n is at least (k + 1)}.
Then, by the classical Poisson theorem, we have for all sufficiently large n

P (An) = 1 − P (Ac
n) ≤ 1 −

k∑
j=0

λj

j!
e−λ +

ε

3
≤ 2ε

3
< ε. (4)

Note that we take k = 0 if λ = 0; and in that case (4) still holds since P (An) ≤
nqn → 0 as n → ∞. Considering the sets

Bn = {∃ 1 ≤ j ≤ n − 1 such that Xn,j = 0 and Xn,j+1 = 0}, n ≥ 1,

we get

P (Bn) ≤
n−1∑
j=1

P (Xn,j = 0, Xn,j+1 = 0) = (n − 1)q2
n −→ 0, (5)

as n → ∞. For all x < ∞, we can easily see that

P
( Wn,n

σn
√

nqn
> x

)
≥ P

({ Wn,n

σn
√

nqn
> x

}
∩ Ac

n ∩ Bc
n

)

≥ P
({minAc

n∩Bc
n

Wn,n

σn
√

nqn
> x

}
∩ Ac

n ∩ Bc
n

)

≥ 1 − P
(minAc

n∩Bc
n

Wn,n

σn
√

nqn
≤ x

)
− P (An) − P (Bn). (6)

Note, for all large n, the minimum in (6) is attained by Xn,i1 = 0,Xn,i2 =
0, . . . ,Xn,ik = 0, Xn,j = 1, for all other j ≤ n, and Xn,j = 0, ∀ j > n, where

i1 ∼ n/(k + 1), i2 ∼ 2n/(k + 1), . . . , ik ∼ kn/(k + 1).

We have therefore, by the definition of Wn,n,

minAc
n∩Bc

n
Wn,n

σn
√

nqn
∼ (k + 1){(1/2)(n/(k + 1))(n/(k + 1) + 1)} − npn/qn

σn
√

nqn

=
n2q2

n/(2k + 2) + nq2
n/2 − npnqn√

(σ2
nq4

n)nqn

≥ −pn

√
nqn

σ2
nq4

n

−→ −
√

λ

2
, (7)
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as n → ∞. Thus, we obtain

lim inf
n→∞ P

( Wn,n

σn
√

nqn
> −

√
λ
)
≥ 1 − ε,

in view of (4), (5), (6) and (7). We then arrive at a contradiction to (3) by letting
ε → 0.

Remark. Since we shall deal exclusively in the remaining sections with the
sufficient part of the theorem, we may assume npn → ∞ and nqn → ∞ from now
on.

3. Preliminaries

Lemma 3.1. For each n ≥ 1, define

T (1)
n ≡ Tn = inf{j ≥ 1,Xn,j = 0}

and consider the copies of T
(1)
n , namely, T

(2)
n , T

(3)
n , . . ., along with their partial

sum Tn,m = T
(1)
n + · · · + T

(m)
n (we take Tn,0 ≡ 0). Then we have:

(i) for each n ≥ 1, T
(1)
n , T

(2)
n , . . . are independent, identically distributed;

(ii) for each n ≥ 1, Tn is geometrically distributed,

P (Tn = j) = qnpj−1
n , j ≥ 1 (8)

and, therefore, E(Tn) = an + 1 = 1/qn, E(T 2
n) = 2a2

n + 3an + 1, E(T 3
n) =

6a3
n + 12a2

n + 7an + 1, E(T 4
n) = 24a4

n + 60a3
n + 50a2

n + 15an + 1;
(iii) Rn,j = Tn,m+1 − j, for Tn,m < j ≤ Tn,m+1.

Proof. (i) follows from Lemma 5.3.3 in Chow and Teicher (1988), and an ele-
mentary computation leads to (ii). For (iii), if Tn,m+1 = k, then Rn,j = k− j via
the definition of Rn,j.

Lemma 3.1 suggests that we may use the stopping times {T (j)
n , j ≥ 1}

to separate the whole process Wn,n, and then consider the resulting random
variables Yn,j = Wn,Tn,j − Wn,Tn,j−1, j ≥ 1, individually, where, recalling from

Lemma 3.1, Tn,j = T
(1)
n + · · · + T

(j)
n .

Lemma 3.2. For each fixed n ≥ 1, {Yn,j, j ≥ 1} are independent, identically
distributed random variables,

Yn,j =
1
2
(T (j)

n )2 − (
1
2

+ an)T (j)
n , (9)

with E(Yn,1) = 0, E(Y 2
n,1) = 2a4

n + 5a3
n + 4a2

n + an = σ2
n, E(Y 4

n,1) = 864a8
n +

3888a7
n + 7046a6

n + 6517a5
n + 3197a4

n + 772a3
n + 71a2

n + an.
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Proof. By definition, for j ≥ 1,

Yn,j = WTn,j − WTn,j−1 =
Tn,j∑

m=Tn,j−1+1

Rn,m − anT (j)
n

=
Tn,j∑

m=Tn,j−1+1

(Tn,j − m) − anT (j)
n (by (iii) in Lemma 3.1)

=
1
2
(T (j)

n )2 − (
1
2

+ an)T (j)
n .

Therefore, {Yn,j, j ≥ 1} are independent, identically distributed for each fixed
n ≥ 1; and a little algebra using (ii) in Lemma 3.1 gives the desired moments.

Remark. Lemma 3.1 and Lemma 3.2 tell us {Rn,j, 1 ≤ j ≤ mn} is a regenerative
process with regeneration occurring at Tn,j, the points at which the process Rn,j

starts all over again, and Yn,j are the summations within regeneration cycles.
In order to study the asymptotic behavior of the regenerative process wn,n

we need to control the overshoots

βn(n) =
αn(n)∑
j=1

T (j)
n − n, (10)

where

αn(n) = inf
{
j ≥ 1 :

j∑
i=1

T (i)
n > n

}
.

The reader may want to look at the previous picture in Section 1 for a better
intuition. Note that for each fixed n ≥ 1, Eαn(n) < ∞ and βn(n) > 0.

Remark. Since T
(j)
n are geometric random variables, the “memoryless” property

tells us that the distribution of the overshot βn(n) is the same as that of Tn. In
particular,

Eβn(n)
n

=
an + 1

n
−→ 0 and

E(βn(n))2

n2
=

2a2
n + 3an + 1

n2
−→ 0, (11)

as n → ∞.
The following version of the elementary renewal theorem for αn(n) will be

used later.

Lemma 3.3. As n → ∞,
αn(n)
nqn

L2−→1.
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Proof. Wald’s equation and (10) lead to

E(αn(n)) = E
(αn(n)∑

i=1

T (j)
n

)
/E(Tn) = {n + E(βn(n))}qn. (12)

On the other hand,

1
2
E(αn(n)/qn − n)2 ≤ E

(αn(n)
qn

−
αn(n)∑
j=1

T (j)
n

)2
+ E

(αn(n)∑
j=1

T (j)
n − n

)2

= Var(Tn)E(αn(n)) + E(βn(n))2

= Var(Tn)qn(n + E(βn(n))) + E(βn(n))2,

by (12) and the second order Wald’s equation in Chow and Teicher (1988), p.
142. Note that (ii) in Lemma 3.1 yields

qnVar(Tn)
n

≤ qn(2a2
n + 3an + 1)

n
=

2p2
n

nqn
+

3pn + qn

n
−→ 0,

as n → ∞. Therefore,
E(αn(n) − nqn)2

n2q2
n

−→ 0

as n → ∞, via (11).

An immediate consequence of Lemma 3.3 is that it essentially enables us to
replace Wn,Tn,αn(n)

, the summation of the regenerative cycles right after Wn,n, by
a relative simple process Wn,Tn,[nqn]

in an asymptotic sense.

Lemma 3.4. For the random time change, we have

Wn,Tn,αn(n)
− Wn,Tn,[nqn]

σn
√

nqn

L2−→ 0 as n → ∞,

where [x] is the integer part of x.

Proof. Again, the second order Wald’s equation yields

E(Wn,Tn,αn(n)
− Wn,Tn,[nqn]

)2 = E
(αn(n)∑

j=1

Yn,j −
[nqn]∑
j=1

Yn,j

)2

= E
( max(αn(n),[nqn])∑

j=min(αn(n),[nqn])+1

Yn,j

)2
= σ2

nE|αn(n) − [nqn]| = o(1)σ2
nnqn,

via Lemma 3.3.
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4. Proof of the Sufficiency in Theorem 2.1

We want first to show that the CLT holds for the cycle sum Yn,j:

∑[nqn]
j=1 Yn,j

σn
√

nqn

d−→N(0, 1). (13)

Lemma 3.2 and a little algebra yield

E(Y 4
n,1)

σ4
n

=
432a4

n + 864a3
n + 499a2

n + 67an + 1
σ2

n

≤ 864 +
1
σ2

n

.

Therefore,

( 1
nqn

)E(Y 4
n,1)

σ4
n

≤ 864
nqn

+
1

nqnσ2
n

≤ 864
nqn

+
1

npn
−→ 0,

as n → ∞; and (13) follows by checking the Lindeberg condition (cf. Chow and
Teicher (1988), p. 308, Excercise 9.1.2). Indeed, for any ε > 0,

1
σ2

n[nqn]

[nqn]∑
j=1

E
(
Y 2

n,jI(|Yn,j |>εσn

√
[nqn])

)
=

1
σ2

n

E
(
Y 2

n,1I(|Yn,1|>εσn

√
[nqn])

)

≤
( 1
ε2[nqn]

)E(Y 4
n,1)

σ4
n

−→ 0,

as n → ∞.
By the definition of Yn,j, (13) implies

Wn,Tn,[nqn]

σn
√

nqn

d−→N(0, 1).

Hence, in view of Lemma 3.4,

Wn,Tn,αn(n)

σn
√

nqn

d−→N(0, 1).

We can also write

Wn,n = Wn,Tn,αn(n)
−

βn(n)∑
j=1

Mn,n+j,

where Mn,j = Rn,j − an. Therefore,

Wn,n

σn
√

nqn

d−→N(0, 1),
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if we are able to show

1
σn

√
nqn

βn(n)∑
j=1

Mn,n+j
p−→0 as n → ∞. (14)

It remains to verify (14). The definition of Rn,j gives

βn(n)∑
j=1

Mn,n+j =
βn(n)∑
j=1

(βn(n) − j) − anβn(n) =
1
2
(βn(n))2 − (

1
2

+ an)βn(n),

which, by (9), has the same distribution as Yn,1. Since

E(Yn,1)2

σ2
nnqn

=
1

nqn
−→0,

as n → ∞, we get
Yn,1

σn
√

nqn

p−→ 0

as n → ∞, and (14) follows.

Remark. Both Theorem 1.1 and Theorem 2.1 are also valid for the number
of runs on finitely many Bernoulli variables R′

n,j = min(Rn,j, n − j), or more
precisely, for W ′

n,k =
∑k

j=1(R
′
n,j − an). For example, since

0 ≤ Wn,n − W ′
n,n ≤

βn(n)∑
j=1

Mn,n+j,

(3) follows by (14). This extension is indicated by the referee.
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