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Abstract: Nonlinear random coefficient models are used in many different applica-

tions, including population pharmacokinetics and econometrics. We describe the

minimum distance method of estimating the distributions of the random coeffi-
cients, as a substitute for the traditional least-squares type methods. We prove

the consistency of the nonparametric minimum distance estimators and the
√

n-

consistency of the parametric minimum distance estimators. The applications of

the new method in some population pharmacokinetic models are presented as exam-
ples. Numerical comparison of the minimum distance method and a least-squares

type method is also given.
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1. Introduction

This paper considers the general nonlinear random coefficient model as fol-
lows:

Yni = f(Xni, Ani), 1 ≤ i ≤ n, n = 1, 2, . . . , (1)

where Xni ∈ X ⊆ Rk, Ani ∈ A ⊆ Rd, and f a known function from Rk × Rd to
Rm. We assume that An1, . . . , Ann,Xn1, . . . ,Xnn are independent random vec-
tors, Ani ∼ Pθn , θn ∈ Θ, and Xni ∼ PX,n ∈ PX with both PX,n and θn unknown.
We further assume that Θ is a metric space equipped with its Borel σ-field. The
triangular array framework will allow us to study the bootstrap method. This
general model covers many special cases that are familiar to statisticians and
have broad applications.

Consider the case when f is linear, Y = CX + B, where the parameters
Cm×k and Bm×1 are random matrices with unknown distributions. Observations
are i.i.d. copies of (X,Y ). This model was first studied by Beran and Hall (1992)
where X, Y , B and C are scalars and B and C are independent. A moment-
matching method was suggested to estimate the distribution of the coefficients.
Beran (1993) and Beran and Millar (1994) studied the general case and used the
minimum distance method to estimate these distributions. The purpose of this
paper is to show that this method is still valid when f is nonlinear.
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Linear errors-in-variables models have been studied intensively. The liter-
ature on nonlinear errors-in-variables models is relatively limited, even though
these models are attracting the attention of economists. In addition to maximum
likelihood methods, the instrumental variable is also a popular method. This can
date back to Wald (1940) and Durbin (1954). Recent work includes Amemiya
(1985, 1990). Amemiya and Fuller (1988) and Fuller (1987) give more references.
To illustrate the idea, suppose we have observations (Yi,Xi) = (y0i + εi, x0i + ei)
and y0i = f(x0i, µ) with µ unknown, (εi, ei) being independent errors. This can
be written as: {

Yi = f(x0i, µ) + εi
Xi = x0i + ei.

If everything on the right hand side involves unknown parameters, this falls into
the form of (1).

Mixed effects models are among the sub-models of (1). If we view a fixed
parameter as a random one supported by a single point, mixed effects models
become random coefficient models. A very important example is the analysis
of repeated measures data, which becomes more and more important in appli-
cations. In the pharmaceutical industry, repeated measures data are seen in
population pharmacokinetics (PK) and population pharmacodynamics (PD). In
a typical population PK study, plasma concentration Yij of a certain drug is
measured for patient i at time tij , 1 ≤ i ≤ I, 1 ≤ j ≤ J , after having taken
the drug in a schematic way. These concentration measurements are modeled as:
Yij = f(tij, µij , ηi, εij), or in vector form:

Yi = f̃(ti, µi, ηi, εi), (2)

where εij is the measurement error, µi is the vector of controlled or observed co-
variates and ηi is the vector of unobserved variables of patient i that are believed
to have effects on the concentration. Although other models are being used,
compartment models by far are the most popular ones in PK studies because
of their clear pharmacological interpretations. The one compartment model with
first order absorption (with single dose), for example, can be written as:

Yij =
Dikia

Vi(kia − kie)
(e−kietij − e−kiatij ) + εij ; 1 ≤ j ≤ Ji, 1 ≤ i ≤ I.

Here µij = Di is the dose for patient i (for multiple doses, this might be a vector),
and ηi = (Vi, kia, kie) is the vector for the pharmacokinetic parameters of patient
i.

Population PK studies usually involve large inter-individual variations of the
PK parameters that we are interested in. Therefore it is necessary to treat ηi as
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random effects. This leads us to the assumption that (η1, ε1), . . . , (ηI
, ε

I
) are i.i.d.

random vectors generated by an unknown distribution Pθ, for some θ ∈ Θ. The
goal of the statistical analysis is to gain information and make inferences about
θ. For further information about the population PK models, see Gibaldi and
Perrier (1982), and more recently Grasela and Sheiner (1991a,b). Considering
(2) as a model in the form of (1) assumes that the sampling times tij are also
random. Assumptions of this kind are very common in regression analysis. One
often finds that a fixed design has the same asymptotic properties under mild
conditions.

The methods of estimating θ in nonlinear mixed effects models have been
studied in population PK. Beal and Sheiner and their co-authors have done a
series of work: Beal (1984), Beal and Sheiner (1988, 1985), Sheiner and Beal
(1980, 1981, 1983, 1987) and Sheiner and Ludden (1992). A software package
called NONMEM has even been developed (Beal and Sheiner (1989)). The meth-
ods suggested by them can be classified into two groups: the two-stage methods
and the ELS (Extended Least Square) methods (Sheiner and Beal (1987)). Two-
stage methods try to fit each individual patient by classical nonlinear regression
techniques to get estimates for η1, . . . , ηI

and then estimate θ from these inter-
mediate estimates. These methods yield good estimates when both I and the
Ji’s are large. They do not use all the information available since they ignore, in
the first stage, that the η’s come from the same distribution. The ELS methods
try to make use of this information. The first order (FO) method, the simplest of
ELS methods, is as follows: 1. Linearize model (2) by a Taylor expansion, which
gives us a linear model, called the first-order model; 2. Write down the likelihood
of the first-order model as if the random effects follow a multivariate normal dis-
tribution; 3. Use maximum likelihood methods to do the estimation. The major
advantage of ELS methods over two-stage methods is that they do not require
large Ji’s (sample sizes on each individual) to give reasonably good estimates.
However, one can find two obvious flaws in ELS methods too: 1. These methods
generally can only estimate the first two moments of the random effects. 2. More
importantly, there is little justification for the linearization step. This means that
ELS estimates have bias that cannot be reduced simply by increasing the sample
size. Two-stage methods and ELS methods are all variations of least-squares.
Least squares is designed for normal variables, and is very sensitive to outliers
and poor-quality samples. A more robust method is desirable in applications like
population PK/PD.

Other statisticians have studied nonlinear mixed effects models from different
aspects under various names, including repeated measures data, growth curve
data, longitudinal data. This research includes Dempster (1984), Lindstrom
(1984), Lindstrom and Bates (1990), Stiratelli, Laird and Ware (1984), Lange
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and Laird (1989), Lipsitz, Laird and Harrington (1990) and Laird (1991). The
research concentrated on likelihood-related least-squares type methods involves
computational issues, as do many other papers.

In this paper, the minimum distance (MD) method is generalized to the
nonlinear model. Section 2 introduces the concepts of identifiability and differ-
entiability and presents the main results. The nonparametric MD estimator is
shown to be consistent, and the parametric MD estimator

√
n-consistent under

the assumption of differentiability. Section 3 applies these results to discrete
models and absolutely continuous models. Section 4 explains the computational
difficulties and compares the MD and FO estimators by simulation examples.
Section 5 contains some of the proofs.

2. Main Results

The minimum distance (MD) method goes back to Wolfowitz (1953, 1957)
and Kac, Kiefer and Wolfowitz (1955). Many statisticians have studied the min-
imum distance method since then. The author’s idea comes mainly from Pollard
(1980), Beran (1993) and Beran and Millar (1994). Other related papers include
Durbin (1954), Bolthausen (1977), Millar (1984), Donoho and Liu (1988a,b).

Pollard (1980) considered the problem of goodness-of-fit testing via an MD
approach. He proved the

√
n-consistency of the MD estimator and found its

asymptotic distribution. Although Pollard concentrated on the finite dimensional
parametric case, consistency of the MD estimator can be easily generalized to
the nonparametric case. Slightly more is needed in our context than in Pol-
lard’s. Pollard sought to minimize the distance between F̂n and F where F̂n, the
empirical distribution, is determined completely by the data and F completely
specified by the model. We minimize the distance between P̂XY,n and P (PX , θ),
whose definitions will be given later. Here P̂XY,n is determined by the sample
and P (PX , θ) depends on both the sample and the unknown parameter. This
difference has little impact on the proof of the consistency; but it forces us to
adopt another notion of differentiability—an important condition in proving the√
n-consistency.

For model (1), let P (PX , θ) be the distribution of (X,Y ) where X ∼ PX ,
A ∼ Pθ and X and A are independent, PXY = {P (PX , θ) : θ ∈ Θ, PX ∈ PX}.
Definition 1. Model (1) is called identifiable if θ, θ′ ∈ Θ, PX , P ′

X ∈ PX ,
and P (PX , θ) = P (P ′

X , θ
′) imply that θ = θ′ and PX = P ′

X . Let PX be the
collection of all probability measures that are either in PX or have finite support
on X . Model (1) is called strongly identifiable if for any θn, θ ∈ Θ, PX,n ∈ PX ,
PX ∈ PX :

P (PX,n, θn) ⇒ P (PX , θ) if and only if θn → θ and PX,n ⇒ PX .
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Definition 2. Let ρ be a metric on the space of all probability measures on
Rm+k. Let P̂X,n be the empirical distribution that assigns mass 1/n on each
Xni, i = 1, . . . , n, P̂XY,n the empirical distribution that puts mass 1/n on each of
(Xni, Yni), 1 ≤ i ≤ n. We call any measurable sequence θ̂n a minimum distance
estimator (with respect to ρ) if

ρ(P (P̂X,n, θ̂n), P̂XY,n) = inf
θ∈Θ

ρ(P (P̂X,n, θ), P̂XY,n) + o(
1√
n

),

and we call Tn =
√
n infθ∈Θ ρ(P (P̂X,n, θ), P̂XY,n) the minimum distance.

The following theorem gives an easy but useful relationship between identi-
fiability and strong identifiability.

Theorem 1. Model (1) is strongly identifiable if
1. it is identifiable,
2. Θ is a countably compact topological space, i.e., any sequence has a cluster
point,
3. for any θn, n ≥ 1 and θ in Θ, θn → θ if and only if Pθn ⇒ Pθ, and
4. f is continuous in both arguments.

Beran (1993) and Beran and Millar (1994) proved identifiability for linear
models under mild conditions. Such general results for nonlinear models seem to
be impossible. However, Liu (1994) showed that if the random coefficient has a
discrete distribution, identifiability can be proved.

Example 1. Under the following assumptions, Model (1) is identifiable.
1. X ⊆ Rk has non-empty interior,
2. f is continuous in both its arguments and if a1, a2 ∈ A satisfy f(x, a1) =
f(x, a2) for all t in some nonempty open set B ⊆ X , then a1 = a2,
3. any PX ∈ PX has full support over X,
4. {Pθ : θ ∈ Θ} consists of discrete distributions on A with finite support.

Beran (1993) showed that strong identifiability implies consistency of the
MD estimator for the linear model. This is still true for the nonlinear model.

Theorem 2. Let θ̂n be any MD estimator as defined in Definition 2. Suppose ρ
metrizes weak convergence of probability measures and θn → θ0 ∈ Θ, PX,n ⇒ PX .
Then θ̂n is consistent, i.e., θ̂n → θ0 in probability in Θ.

The proof is given in Liu (1994). Notice that the proof of Beran and Millar
(1994) for its linear counterpart could be carried through almost unchanged here.
This theorem does not make any assumptions about the form of Pθ; it applies
to the nonparametric distribution families. Beran and Millar (1994) also have
a consistency result for fitting a discrete model with an increasing number of



882 JINGOU LIU

supporting points, and this can certainly be generalized to the nonlinear case
based on Example 1. The major difficulty for the nonlinear model lies in estab-
lishing the strong identifiability. Liu (1994) gave a few techniques to do this.
The following example is taken from that dissertation.

Example 2. In population pharmacokinetics, the concentration of an intra-
venous injection drug is often assumed to follow the model: Y = Be−AX + ε, and
we observe i.i.d. copies of (X,Y ). Let us also assume that A, B, ε and X are
mutually independent, all nonnegative except ε, the support of X is [0,∞), B is
bounded and Eε = 0. Then this model is identifiable. Let F and G be two cdf’s
on R, F (0) = 0 and

∫ |x|G(dx) < ∞ and define, for a fixed M > 0, distribution
families

PA = {P : P{[0,∞)} = 1, P{(x,∞)} ≤ 1 − F (x), for any x > 0},
PB = {P : P{[0,M ]} = 1},
Pε = {P :

∫
xP (dx) = 0, P{(x,∞)} ≤ 1 −G(x), for any x > 0}.

Let us further assume that the distributions of A, B and ε belong to PA, PB and
Pε, respectively. Take the topology on Θ = {PA × PB × Pε : PA ∈ PA, PB ∈
PB , Pε ∈ Pε} to be that of weak convergence; then strong identifiability holds.
The MD estimator defined by any weak-convergence-measuring metric ρ for the
distribution of (A,B, ε) is consistent. We will give an example for such a ρ later.
It also can be shown that this result is true for models like Y =

∑N
1 Bje

−AjX +ε.

To get a further asymptotic result, we restrict ourselves to the parametric
case, where differentiability is easily defined. Let H be a separable Hilbert space,
Θ a subset of Rp.

Definition 3. Let θ0 ∈ Θo be an inner point of Θ. A sequence of stochastic
processes ϕn : Θ → H is called asymptotically (norm) differentiable at θ0 if there
exists a vector D = D(θ0) ∈ Hp such that for any |hn| → 0 in Rp, ‖ϕn(θ0 +hn)−
ϕn(θ0) − h′nD‖ = o

Pn
(|hn|), as n→ ∞, or equivalently

sup
0≤|t|≤hn

1
|t|‖ϕn(θ0 + t) − ϕ(θ0) − t′D‖ Pn−→ 0, (3)

where Pn is the probability on which ϕn is defined. Call D the asymptotic
derivative at θ0.

This definition allows ϕn to be defined on different spaces but requires that
the asymptotic derivative D be deterministic.

Definition 4. A vector D ∈ Hp, whereH is a Hilbert space, is called nonsingular
if ‖t′D‖ > 0 for any non-zero t in Rp, or equivalently, the components of D are
linearly independent.
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From now on, we consider Hilbert spaces H that satisfy:
A1. H contains all probability measures on Rm+k, and there exists C1 > 0 such
that ‖P‖H ≤ C1 for any probability measure P .
A2. Convergence in H for probability measures is equivalent to weak conver-
gence.
A3. If X ∼ P , then E〈δX , h〉 = 〈P, h〉 for any h ∈ H and any probability P .
Here 〈·, ·〉 is the inner product in H and δX the point mass at X.

The metric of any H that fulfills these three conditions will serve for the
purpose of Theorem 2, see the discussion in Example 2. One example of such a
Hilbert space is as follows.

Example 3. Let Q0 be a probability measure on Rk+m and assume that the
support of Q0 is the full space. Take H to be the collection of all the complex-
valued functions on Rm+k that are square integrable under Q0. H is a Hilbert
space with the inner product 〈f, g〉H =

∫
f(s)g(s)Q0(ds). For any probability

measure µ on Rm+k, its characteristic function ϕµ(s) =
∫
eis

′xµ(dx) maps it into
H. If we identify µ with ϕµ, it can be shown that H satisfies A1, A2 and A3
with C1 = 1. Both Beran (1993) and Liu (1994) used this space, but the results
for the MD estimator do not require any other special properties of H.

Becasuse of this natural link between µ and ϕµ, we write the ch.f. of P (PX , θ)
as ϕ(PX , θ)(t, s) and that of P̂XY,n as ψn(t, s). So the MD estimator can be taken
as any measurable sequence θ̂n such that

‖ϕ(P̂X,n, θ̂n) − ψn‖ = inf
θ∈Θ

‖ϕ(P̂X,n, θ) − ψn‖ + o(
1√
n

),

and we denote the minimum distance
√
n infθ∈Θ ‖ϕ(P̂X,n, θ) − ψn‖ by Tn.

Theorem 3. Let H be a Hilbert space satisfying A1, A2 and A3, θ0 ∈ Θ ⊆ Rp

an inner point of Θ, Wn =
√
n(ϕ(P̂X,n, θn) − ψn). If |θn − θ0| = O(1/

√
n) and

PX,n ⇒ PX ∈ PX and the following conditions hold:
1. model (1) is strongly identifiable,
2. as a stochastic process in H, P (P̂X,n, θ) is asymptotically differentiable at θ0
with derivative D0 = D(θ0),
3. the asymptotic derivative D0 is non-singular.
Then,
1. there exists a mean zero Gaussian random element W in H such that Wn →
W ,
2. the minimum distance Tn converges weakly to inft∈Rp ‖W + t′D‖ and

√
n(θ̂n−

θ0) converges in distribution to −(
〈D,D′〉)−1
〈W,D〉, where 
 represents the
real part.
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Besides the
√
n-consistency of the MD estimator θ̂n, this theorem also gives

the asymptotic distribution of the minimum distance Tn, which can be used as a
goodness-of-fit statistic. The asymptotic distribution of T 2

n is a weighted sum of
χ2 distributions whose computation is analytically tedious as shown by Durbin
(1954). However, the triangular form of Theorem 3 implies that θ̂n and Tn can be
bootstrapped. In particular, the following theorem is readily shown to be true.

Theorem 4. Suppose PX,n = PX , θn = θ0 and that Conditions 1-3 of Theorem 3
hold. Let θ̂n and Tn be the MD estimator and the minimum distance respectively.
Let S∗

n = {(X∗
n,k, Y

∗
n,k) : 1 ≤ k ≤ n} be i.i.d. samples from the random measure

P (P̂X,n, θ̂n) and θ̂∗n and T ∗
n be the MD estimator and minimum distance from

S∗
n respectively. Denote G0 and J0 as the asymptotic distributions of θ̂n and Tn

respectively and G∗
n and J∗

n as the distributions of θ̂∗n and T ∗
n respectively. (G∗

n

and J∗
n are random measures.) Then

G∗
n ⇒ G0, J∗

n ⇒ J0

in probability. In particular, for 0 < α < 1, if Uα and U∗
α,n are the upper α-

quantiles of J0 and J∗
n respectively, U∗

α,n → Uα in probability.

3. Further Applications

In this section, we study two direct applications of the general
√
n-consistency

result in the last section. We make use of the Hilbert space H defined in Ex-
ample 3 and deduce the properties of the MD estimator for discrete models and
absolutely continuous models.

Model (1), when Θ is parametric, is called absolutely continuous if {Pθ :
θ ∈ Θ} consists of absolutely continuous distributions. It is called discrete if
{Pθ : θ ∈ Θ} consists of discrete distributions with M supporting points for some
known M . We will be particularly interested in two sampling schemes: i.i.d.
sampling when θn = θ0 and PX,n = PX and standard bootstrap sampling defined
as the S∗

n in Theorem 4.

3.1. Discrete models

Discrete models can be used as approximations of nonparametric models.
The impact of using an approximation model on the asymptotic behavior of the
MD estimator is studied in Liu (1994). Beran (1993) and Beran and Millar
(1994) use discrete models as approximations when the parametric form of Pθ is
unknown. Discrete models are also useful when the underlying distribution is a
mixture. When there is a certain unmeasured biological factor that has significant
effects on the pharmacokinetic parameters (e.g., a related disease) patients with
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and without that disease may have quite different mean parameters. Fitting
discrete models can help to detect this.

Our first task is to parametrize discrete distributions. Define an order in Rd

as follows: for x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd, x > y if for some 1 ≤ i ≤ d,
xi > yi and xj = yj for all j < i. This is called the alphabetic order. For any A ⊆
Rd, let Θ ⊆ RM(d+1) be the set of all points (b1, . . . , bM ), bi = (pi, ai,1, . . . , ai,d)
such that pi > 0,

∑M
i=1 pi = 1, ai = (ai,1, . . . , ai,d) ∈ A and a1 > · · · > aM .

For any θ = (b1, . . . , bM ) ∈ Θ, Pθ, the probability measure that assigns mass pi

to (ai,1, . . . , ai,d), 1 ≤ i ≤ M , defines a one-to-one correspondence between Θ
and all the discrete distributions on A with exactly M supporting points. When
using this parmaetrization, we often write θ = {(pi, ai) : 1 ≤ j ≤M}.

Because of the constraint
∑M

i=1 pi = 1, Θ is in a subspace of RM(d+1) with
dimension M(d+1)−1. When doing computations, we always substitute for p

M

with 1 − ∑M−1
i=1 pi. However, this substitution would not affect the differentia-

bility or the nonsingularity of the derivatives. We proceed as if this constraint
does not exist. A linear constraint will not change the differentiability by the
chain rule. Assume the derivatives w.r.t. p1, . . . , pM are fp1, . . . , fpM

respectively;
then the derivatives w.r.t. p1, . . . , pM−1

will be fp1 − fp
M
, . . . , fp

M−1
− fp

M
under

the constraint. Therefore, the constrained derivatives exist if the unconstrained
ones exist, and the constrained derivatives are linearly independent if the uncon-
strained ones are.

Fix θ0 = {(p0j , a0j) : 1 ≤ j ≤ M} in the interior of Θ. This interior should
be considered as an open set in RM(d+1)−1, not RM(d+1).

Theorem 5. Let H and ϕµ be defined as in Example 3, θ̂n be the MD estimator
and Tn be the minimum distance defined by H. Let ϕn(θ)(s) = ϕP (P̂X,n,θ)(s),
ψn(s) = ϕP̂XY,n

(s). Suppose the data are from either i.i.d. sampling or standard
bootstrap sampling. In addition, suppose the following conditions hold :
1. X ⊆ Rk has non-empty interior and A is compact,
2. PX has positive, continuous density almost everywhere on X ,
3. if a1, a2 ∈ A, and f(x, a1) = f(x, a2) for all x in some open ball B ⊆ X , then
a1 = a2,
4. f(x, a) is twice differentiable in a,
5. Q0 has finite 4th moments,
6. for any a ∈ A, there exists a δ > 0 such that

EPX
sup
|h|≤δ

∣∣∣∂f
∂a

(X,a + h)
∣∣∣4 <∞, EPX

sup
|h|≤δ

∣∣∣∂2f

∂a2
(X,a + h)

∣∣∣2 <∞,

7. the columns of the matrix ∂f
∂a (x, a0j) are linearly independent as functions of

x for every 1 ≤ j ≤M , and
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8. f(x, a0j), 1 ≤ j ≤M , are distinct for almost every x ∈ X .
For any possible distribution P of X and any θ ∈ Θ, let D(θ, P ) be a K =
M(d+ 1) − 1 vector with components in L2(Q0) defined formally as

EP g(aj , t, u,X) − EP g(aM , t, u,X), j = 1, . . . ,M − 1,

ipju
′EP

∂f

∂a
(X,aj)g(aj , t, u,X), j = 1, . . . ,M,

where g(a, t, u, x) = exp{it′x + iu′f(x, a)} and {(pj , aj) : 1 ≤ j ≤ M} are the
coordinates of θ. Write D0 = D(θ0, PX).

Define Wn =
√
n(ϕn(θn) − ψn), ϕ̃(t, u, x)=

∑M
j=1 p0j exp{it′x+ iu′f(x, a0j)}

= Eθ0g(A, t, u, x) and let W be a mean-zero Gaussian random element in H with
covariance operator:

E|〈h,W 〉|2 =
∫
h(t, u)h(s, v)S(t, u, s, v)Q0(dt, du)Q0(ds, dv),

where S(t, u, s, v) = EPX
ϕ̃(t − s, u − v,X) − EPX

ϕ̃(t, u,X)ϕ̃(−s,−v,X). Then
Wn ⇒W and

Tn = inf
θ∈Θ

‖ϕn(θ) − ψn‖ =⇒ inf
t∈RK

‖W + t′D0‖,
√
n(θ̂(1)

n − θ(1)
n ) =⇒ −(
〈D,D′〉)−1
〈W,D〉,

for any MD estimator θ̂n, where θ̂
(1)
n and θ

(1)
n represent the reduced vectors by

leaving out the pM -coordinates, so as to make the parameters free.

The idea of the proof will be sketched later. It helps to understand these
conditions. Conditions 1, 2, 3 imply strong identifiability. Condition 3 seems to
be the strongest one, but it is satisfied by any f that is analytic in x. Conditions
4, 5, 6 are for the differentiability. Condition 8 is very crude. This theorem by
no means looks for the weakest conditions. Conditions 2, 7, 8 will ensure the
non-singularity of the derivative.

Example 4. Multi-exponential model f(x, a) =
∑r

1 bje
−ajx + ε often appears in

pharmacokinetics; here a = (a1, b1, . . . , ar, br, ε). Let X = [0,∞), and A be the
set of (a1, b1, . . . , ar, br, ε) satisfying:
1. 0 < δ ≤ aj , bj ≤M , 1 ≤ j ≤ r, and |ε| ≤M , and
2. aj + δ ≤ aj+1, 1 ≤ j ≤ r − 1,
for some δ and M . This assumption has a few implications. First, it says
the components of a vary over a finite range. It also bounds them away from
zero. Moreover, it requires that the exponential rates not be too close to each
other. In practice, this means that if two rates were too close, we would not
be able to distinguish them, just as if a rate were too close to zero, we would
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not be able to distinguish that term from the constant term. Let {Pθ : θ ∈ Θ}
be the collection of all discrete distributions on A with M supporting points
parameterized by the alphabetic order, and PX be that of all distributions on
X with positive density. Let Q0 be a distribution on R2 with full support such
that

∫ |x2 + y2|2Q0(dx, dy) < ∞. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. samples
from P (PX , θ0) with PX ∈ PX , θ0 ∈ Θ, ψn(t, u) = 1/n

∑n
j=1 exp{itXj + iuYj}

and ϕn(t, u; θ) = 1/n
∑n

j=1

∑M
l=1 pl exp{itXj + iu(

∑r
m=1 bmle

−amlXj + εl)}, where
θ = {(pl, a1l, b1l, . . . , arl, brl, εl), 1 ≤ l ≤ M}. Then the MD estimator θ̂n defined
by ∫

|ψn(t, u) − ϕn(t, u; θ̂n)|2Q0(dt, du)

= inf
θ∈Θ

∫
|ψn(t, u) − ϕn(t, u; θ)|2Q0(dt, du) + o(

1√
n

)

is
√
n-consistent.
Liu (1994) also showed that if A1, B1, . . . , Ar, Br and ε are independent, all

with discrete distribution and Eε = 0, the MD estimator remains
√
n-consistent.

3.2. Absolutely continuous models

Absolutely continuous models are often used in practice. In pharmacokinet-
ics, for example, it is often assumed that the parameters have normal distribu-
tions. Write dPθ = h(a, θ)η(da), θ ∈ Θ ⊆ Rp for some σ-finite measure η and take
θ0 an inner point of Θ. Unlike the discrete case, where identifiability is guaran-
teed by Conditions 1, 2 and 3 in Theorem 5, identifiability has to be proved case
by case. Liu (1994) established identifiability for the multi-exponential models
with normal assumptions.

Example 5. Consider a multi-exponential model Y =
∑k

j=1Bje
−AjX + ε.

Assume that A1, B1, . . . , Ak, Bk, ε and X are independent; Aj ∼ N(µj , σ
2
j ),

Bj ∼ Pλj
, λj ∈ Λ, ε ∼ Pω, ω ∈ Ω, with µj , σ2

j , λj and ω unknown. Sup-
pose X > 0, the support of X has a convergent point or has a subsequence
diverging to +∞, that Pλ has bounded support for any λ ∈ Λ and we observe
(X,Y ). Then this model is identifiable w.r.t. θ = (µ1, σ

2
1 , λ1, . . . , µk, σ

2
k, λk) up

to the order of (µj , σj , λj) in θ provided EPωε = 0 for any ω ∈ Ω. This model
remains identifiable if we assume Aj ∼ LogNormal(µj, σ

2
j ) instead of N(µj , σ

2
j ).

The proof of this example depends on the result of identifiability for linear
models established by Beran and Millar (1994). For most applications, identifi-
ability is natural.

Theorem 6. Under the absolutely continuous model, let H, ϕn, ψn, Wn, θ̂n and
Tn be as in Theorem 5. Suppose data are collected by i.i.d. sampling or standard
bootstrap sampling and the following conditions hold :
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1. the absolutely continuous model is strongly identifiable,
2. the second derivative (∂2h/∂θ2)(a, θ) exists around θ0 for every a,
3. for some δ > 0,

∫
sup|θ−θ0|≤δ |(∂jh/∂θj)(a, θ)|2η(da) <∞, j = 1, 2,

4. PX has positive, continuous density over X , and
5. as functions of t and u the components of the vector

D =
∫ ∫

∂h

∂θ
(a, θ0)p(x) exp

{
it′x+ iu′f(x, a)

}
η(da)dx

are linearly independent.
Let ϕ̃(t, u, x) =

∫
h(a, θ0) exp{it′x+ iu′f(x, a0j)}η(da) = Eθ0g(A, t, u, x) and

W be a mean zero Gaussian random element in H with covariance operator

E|〈h,W 〉|2 =
∫
h(t, u)h(s, v)S(t, u, s, v)Q0(dt, du)Q0(ds, dv),

where S(t, u, s, v) = EPX
ϕ̃(t − s, u − v,X) − EPX

ϕ̃(t, u,X)ϕ̃(−s,−v,X). Then
Wn ⇒W ,

Tn ⇒ inf
t
‖W + t′D‖ and

√
n(θ̂n − θn) ⇒ −(
〈D,D′〉)−1
〈W,D〉.

Example 6. Consider the multi-exponential model for the absolutely continuous
case. Take f(x, a) =

∑r
j=1 bje

−ajx + ε, a = (a1, b1, . . . , ar, br, ε) and assume:
1. X = [0,+∞), PX = {distributions on X with positive density}.
2. A1, B1, . . . , Ar, Br, ε are mutually independent, and all normally distributed:
Aj ∼ N(µj, σ

2
j ), Bj ∼ N(ηj , ω

2
j ) and ε ∼ N(0, λ2).

3. The parameter spaceΘ is defined as all the (µ1, σ
2
1 , η1, ω

2
1, . . . , µr, σ

2
r , ηr, ω

2
r , λ

2)
satisfying: µj > 0, ηj > 0; the sequence of pairs (µ1, σ

2
1), . . . , (µr, σ

2
r ) is strictly

increasing in alphabetic order; and each µi, ηi, σ2
i , ω

2
i and λ is bounded.

Let Sn ={(Xk, Yk) : 1≤k≤n} be an i.i.d. sample of size n from P (PX , Pθ0), θ0 ∈
Θ and ψn(t, u)=1/n

∑n
k=1 exp{itXk+iuYk}, ϕn(t, u; θ)=1/n

∑n
k=1EPθ

exp{itXk

+iuf(X,A)} for any θ ∈ Θ. Let Q0 be a distribution on R2 with full support
such that

∫ |x2 + y2|2Q0(dx, dy)<∞. Then the MD estimator defined by∫
|ψn(t, u) − ϕn(t, u; θ̂n)|2Q0(dt, du)

= inf
θ∈Θ

∫
|ψn(t, u) − ϕn(t, u; θ)|2Q0(dt, du) + o(

1√
n

)

is
√
n-consistent.

4. Simulations

Estimating the distribution of the random coefficients nonparametrically is
very difficult. Beran and Millar (1994) and Liu (1994) argued that, for the simple
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linear regression model, it is more difficult than the problem of the inverse Radon
transform, which has been known in applications such as computerized tomogra-
phy, Deans (1983). It seems that the more feasible method is to use parametric
approximations. Discrete models are therefore studied for their simplicity and
the ability to approximate arbitrary distributions. Beran and Hall (1992) also
used discrete models though their estimating criterion is moment matching.

Liu (1994) gave two numerical examples. One of these was for discrete mod-
els, and he showed that multiple minimal points were a very general phenomenon
for even the simple models and concluded that some good optimization techniques
had to be employed in order to get around this. It is worth knowing that this is
also true for least-squares type estimators implemented in NONMEM.

The second example tried to compare the MD method with the simplest
ELS method — the FO method. Consider the model Yi = exp {−AiXi} + εi,
1 ≤ i ≤ n. The assumptions on the distributions are: (Yj ,Xj , Aj , εj), 1 ≤ j ≤ n

are i.i.d.; Xj , Aj and εj are mutually independent; Aj ∼ N (µ, σ2
A), εj ∼ N (0, σ2

ε ),
Xj ∼ PX , 0 < µ, σ2

A, σ
2
ε ≤ M , support(PX) ⊆ [0,M ] and has a cluster point.

Suppose (X1, Y1) = (x1, y1), . . . , (Xn, Yn) = (xn, yn) are observed and we want
to estimate θ = (µ, σ2

A, σ
2
ε ).

We use the Hilbert space as in Theorem 6 with the kernel probability Q0

having independent normal marginals N(0, σ2
t ) and N(0, σ2

u). Thus σt and σu

can be used as parameters for the MD method.
For fixed θ0 and PX , {(yj , xj) : 1 ≤ j ≤ n} were generated by the mechanism

described in the model; then both FO and MD estimates were computed. To
observe the effect of the kernel Q0 on the MD estimator, four combinations of
σt and σu were used: (1, 1), (1, 3), (3, 1) and (3, 3). Thus five estimators were
obtained, one from the FO method, four from the MD method with different
choices of (σt, σu). In order to compare these estimates, this process was repeated
m times, each run resulting in five estimates. Then the m FO estimates were used
to compute an average θFO vector and the vector of their standard deviations
of its components, and similarly we computed θMD,(1,1), . . . , θMD ,(3,3) and their
corresponding SD vector. Some results are as follows:
1. The underlying model was taken as: θ0 = (1, 0.22, 0.12), PX = Uniform(0, 1),
n = 20, and m = 100. To compare under the same scale, we used the estimates
for σA and σε rather than their squares in the table. The seven columns are for
estimating methods, corresponding average estimates and the estimated standard
deviations. Table 1 shows the results.
2. The underlying model was taken as: θ0 = (2, 0.22, 0.12), PX = Uniform(0, 1),
n = 20, and m = 100. The output of the simulation is given in Table 2.
3. The underlying model was taken as: θ0 = (1, 0.22, 0.12), PX = Uniform(0, 1),
n = 100, and m = 20. The output of the simulation is given in Table 3.
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From these simulations and our understanding of the two methods, a few
conclusions can be drawn:
1. Both of the methods can estimate the mean of the unknown parameter, µ,
reasonably well. Estimates for the variance of the additive error become good
when the sample size is very large (n = 100 in this case). Estimation for the
variance of the unknown rate parameter is very difficult. Neither of the methods
gives satisfactory results. Fortunately, µ is the most interesting parameter in
most applications.
2. In the first two cases above, the FO method outperforms the MD method
regardless of which kernel is used. The MD method also consumes considerably
more computer time than the FO method does. Therefore, the FO method should
be preferred when one has a strong belief in the model and the sample size is not
too large. The reason is that if the sample size gets very large, we know that the
FO method would lead to wrong answers because of the linear approximation.
This is seen in Example 3 when the sample size is 100. The FO estimate of the
mean has relatively larger bias. On the other hand, the MD estimate converges
to the true parameter. The FO method may still be favored for its simplicity but
in comparing it with the MD estimate we note its inconsistency.
3. The choice of kernel in estimating µ is an important factor for the MD method.
For example, in Table 1, the estimates from the kernels with σu = 1 are always
better than those with σu = 3. But in Table 2, we find that using σu = 3
would give us more accurate results. It is not clear how the kernel affects the
estimations. It is suggested that a couple of kernels be tried.

Robustness of the two methods were investigated by contaminated data.
The computer generated data just as before except that the distribution of ε was
“contaminated”. That is, ε follows a distribution of pN (0, σ2

1) + (1− p)N (0, σ2
2),

whose density is defined as

1√
2πσ1

exp
{
− x2

2σ2
1

}
p+

1√
2πσ2

exp
{
− x2

2σ2
2

}
(1 − p)

with 0 < p < 1. The two methods are used to estimate the three parameters.
Some results are given below. In Table 4 we present the results of estimating
µ, using sample size n = 20, m = 1000 repetitions. In these simulations, the
contamination percentage p is always taken to be 0.1 and σ1 = .1, σ2 = .3 and
σA = 0.2.

These results show great robustness of the MD method. When contamination
is present, the FO method performs very poorly. In applications like population
pharmacokinetics, one often is interested in A, whose distribution depends on the
parameters µ and σA in this example. Parameters involved in the distribution of
ε are usually nuisance parameters. It is not desirable for a statistical procedure
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to give very poor estimates for the interesting parameters when the assumptions
about the nuisance parameters are violated. In nonlinear models that are derived
through many approximations, these violations of the assumptions are very likely
to happen.

Table 1. Simulation results with parameters θ0 = (1, 0.22, 0.12), n = 20 and
m = 100.

Method µ SDµ σA SDσA σε SDσε

FO 0.98931 0.09205 0.17215 0.15923 0.08473 0.03346
(σt, σu) = (1, 1) 1.05148 0.17552 0.27380 0.35650 0.06444 0.05645

MD (σt, σu) = (1, 3) 1.06688 0.26612 0.26692 0.37247 0.08225 0.03834
(σt, σu) = (3, 1) 1.03714 0.13584 0.25399 0.30258 0.06371 0.05329
(σt, σu) = (3, 3) 1.11055 0.32855 0.32984 0.46398 0.08406 0.04015

Table 2. Simulation results with parameters θ0 = (2, 0.22, 0.12), n = 20 and
m = 100.

Method µ SDµ σA SDσA σε SDσε

FO 2.00530 0.14385 0.23794 0.27905 0.086945 0.12098
(σt, σu) = (1, 1) 2.12508 0.22941 0.46389 0.50995 0.05735 0.04888

MD (σt, σu) = (1, 3) 2.05437 0.15120 0.27743 0.28812 0.06964 0.04294
(σt, σu) = (3, 1) 2.12481 0.22922 0.46165 0.51139 0.057047 0.04921
(σt, σu) = (3, 3) 2.05702 0.15562 0.28571 0.29268 0.06823 0.04378

Table 3. Simulation results with parameters θ0 = (1, 0.22, 0.12), n = 100 and
m = 100.

Method µ SDµ σA SDσA σε SDσε

FO 0.96947 0.04265 0.14028 0.09598 0.11751 0.02594
(σt, σu) = (1, 1) 0.98904 0.03756 0.16253 0.16169 0.08815 0.03517

MD (σt, σu) = (1, 3) 0.98312 0.03572 0.16396 0.12256 0.10285 0.01704
(σt, σu) = (3, 1) 0.99028 0.03793 0.17129 0.17347 0.08397 0.03594
(σt, σu) = (3, 3) 0.98212 0.03500 0.16354 0.12324 0.10327 0.01688

Table 4. Robust simulation with parameters µ = 1.0, σA = 0.2, n = 20 and
m = 1000.

µ=1.0 µ=2.0
Method µ SDµ µ SDµ

FO 0.72954 0.27003 1.47927 0.43534
(σt, σu) = (1, 1) 0.96185 0.25921 1.94327 0.34026

MD (σt, σu) = (1, 3) 1.17453 0.40106 2.08274 0.27145
(σt, σu) = (3, 1) 0.96924 0.26033 1.96326 0.35178
(σt, σu) = (3, 3) 1.12756 0.37694 2.09218 0.28099



892 JINGOU LIU

The MD estimator is much more difficult to compute. This is due to the
fact that each evaluation of the distance function requires O(n2) computations
while the number for FO estimate is O(n). It may be possible by choosing a
better distance and algorithm to reduce the computational complexity for MD
procedure. However, that is not the purpose of this paper. The two factors in
choosing between FO and MD are computing time and data-model quality. When
the data-model is of high quality the FO method is certainly more appealing. But
when data and model have moderate discrepencies, one may have to sacrifice
speed in order to produce a more robust result.

5. Proofs

Proof of Theorem 1. If θn → θ0 and PX,n ⇒ PX , then Pθn ⇒ Pθ by Condition
3 and P (PX,n, θn) ⇒ P (PX , θ0) by the continuity of f .

Suppose P (PX,n, θn) ⇒ P (PX , θ0), i.e. we have PX,n ⇒ PX as marginal
distributions. By Condition 2, let θ̃ be any cluster point of θn; then there exists
a subsequence θn′ such that θn′ → θ̃. So, from the first part of the proof,
P (PX,n′ , θn′) ⇒ P (PX , θ̃). Identifiability then forces θ̃ = θ0 and this proves
θn → θ0.

Proof for Example 1. Let X ∼ PX , A1 ∼ PA and A2 ∼ QA such that
f(X,A1)

d= f(X,A2). Suppose PA has support {ci : i ≥ 1} and QA has support
{di : i ≥ 1}. To prove PA and QA have the same support, it suffices to show
that from each cn, there exists j such that cn = dj . Pick any closed ball B ⊆ X
with positive radius and let

Bnj = {x ∈ B : f(x, cn) = f(x, dj)}.

Then Bnj is closed and ∪j≥1Bnj = B. Therefore one of the Bnj’s contains a non-
empty ball. Otherwise, one can find a sequence of closed balls C1 ⊇ C2 ⊇ · · ·
in B such that radius(Ci) goes to zero and Ci ∩ (∪j≤iBnj) = ∅. These closed
balls have a non-empty intersection which is not covered by any Bnj; this is a
contradiction. Thus Condition 2 implies ci = dj for some j and PA and QA have
the same support. This sequence of closed balls can be constructed as follows: C1

exists because Bn1 does not cover B and Bn1 is closed. When C1 ⊇ C2 ⊇ · · · ⊇ Ck

have been constructed, in Ck find a point x that is not in Bn,k+1. This is possible
because Bn,k+1 does not cover Ck. Then there exists a closed ball Ck+1 around
x with positive radius and Ck+1 ∩ Bn,k+1 = ∅ because Bn,k+1 is closed. We can
also make sure that Ck+1 ⊆ Ck and radius(Ck+1)<radius(Ck)/2.

Let PA(ci) = pi, QA(ci) = qi, i ≥ 1. Assume {ci : 1 ≤ i ≤ N} are distinct
and define closed sets Cij = {x ∈ B : f(x, ci) = f(x, cj)}, j ≥ i. Since for any
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j �= i, Cij does not contain any ball (Condition 2), there is a point x ∈ B and a
neighborhood Bx of x such that Bx ∩Cij = ∅ for any j �= i. This gives

P (Y = f(x, ci),X ∈ Bx) = piPX(X ∈ Bx) = qiPX(X ∈ Bx).

Thus pi = qi because PX has full support.

Proof for Example 2. We need only prove identifiability. The strong iden-
tifiability claim will then be obvious from Theorem 1 and the fact that Θ =
{PA × PB × Pε : PA ∈ PA, PB ∈ PB , Pε ∈ Pε} is countably compact.

The conditional expectation of Y given X=x is E(Y |X=x)=(EB)(Ee−Ax),
so Ee−Ax = E(Y |X = x)/E(Y |X = 0). Therefore PXY uniquely determines
q(x) = Ee−Ax on [0,∞). But q(x) uniquely determines the distribution of A
by Proposition 8.5.1 of Breiman (1968). Now we can take e−AX as our new X
and the model reduces to a linear one, from which identifiability can be concluded
by the result of Beran and Millar (1994).

Proof for Theorem 3. Let δx be the point mass at x, we then have

Wn =
√
n(ϕP (P̂X,n,θn) − ϕP̂XY,n

) =
1√
n

n∑
j=1

(ϕP (δXnj
,θn) − ϕδ(Xnj ,Ynj )

).

This is a mean zero triangular array sum, each term is bounded by 2 and the sum-
mands converge in distribution to ϕP (δX ,θ0) − ϕδX,Y

where (X,Y ) ∼ P (PX , θ0).
So by the triangular array version of the CLT in Hilbert space, Wn converges
weakly to a Gaussian variable W .

Let hn = θn−θ0, ĥn = θ̂n−θ0 and R(t) = ϕP (P̂X,n,θ0+t)−ϕP (P̂X,n,θ0)
−t′D0 =

o
Pn

(|t|) (differentiability). Apply this expansion to θ̂n and θn:

ϕP (P̂X,n,θ0)
− ϕP̂XY,n

=
Wn√
n
−(ϕP (P̂X,n,θn)−ϕP (P̂X,n,θ0)

)=
Wn√
n
−h′nD0−R(hn),

ϕP (P̂X,n,θ̂n) − ϕP (P̂X,n,θ0)
= ĥ′nD0 −R(ĥn),

ϕP (P̂X,n,θ̂n) − ϕP̂XY,n
= (ϕP (P̂X,n,θ̂n) − ϕP (P̂X,n,θ0)

) + (ϕP (P̂X,n,θ0)
− ϕP̂XY,n

)

= ĥ′nD0 −R(ĥn) +
Wn√
n
− h′nD0 −R(hn).

It is not hard to see that the nonsingularity of D0 is equivalent to the existence
of a constant C > 0 such that ‖t′D0‖ ≥ C|t| for any t ∈ Rp, then

‖ϕP (P̂X,n,θ̂n) − ϕP̂XY,n
‖ − ‖ϕP (P̂X,n,θ0)

− ϕP̂XY,n
‖

≥ ‖ĥ′nD0‖ − ‖R(ĥn)‖ − 2
Wn√
n
− 2‖h′nD0‖ − 2‖R(hn)‖

≥ C|ĥ′n| − oPn
(|ĥn|) − 2

Wn√
n
− 2‖D0‖‖h′n‖ − 2oPn

(|hn|).
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The fact that this quantity is non-positive and |hn| = O
Pn

(1/
√
n), ‖Wn‖ =

O
Pn

(1) imply that |ĥn| = O
Pn

(1/
√
n).

Let t̂n =
√
n(ĥn − hn) =

√
n(θ̂n − θn); then it follows that

√
n[ϕP (P̂X,n,θ̂n) − ϕP̂XY,n

] = Wn + t̂′nD0 + o
Pn

(1). (4)

Let us compare the two functions
√
n‖ϕ(PX,n, θ0 + t/

√
n) − ϕP̂XY,n

‖ and

‖Wn + (t − √
n(θn − θ0))′D0‖. Since t̂n = O

Pn
(1), both of them, with high

probability, attain their minimum in a finite range. On the other hand, for any
finite N > 0,

√
n sup

|t|≤N

∣∣∣∣‖ϕP (PX,n,θ0+t/
√

n) − ϕP̂XY,n
‖ − ‖Wn√

n
+ (

t√
n
− (θn − θ0))′D0‖

∣∣∣∣
≤ N sup

|t|≤N

1
N/

√
n
‖ϕP (PX,n,θ0+t/

√
n) − ϕP (PX,n,θn) − (

t√
n
− (θn − θ0))′D0‖

≤ N sup
0<|t|≤N

1
t/
√
n
‖ϕP (PX,n,θ0+t/

√
n) − ϕP (PX,n,θ0) −

t′√
n
D0‖ +

√
n‖R(θn − θ0)‖

= o
Pn

(1), by (3).

This means the two functions are uniformly close to each other over any finite
region. Thus we conclude:

Tn =
√
n inf

θ∈Θ
‖ϕP (PX,n,θ̂n) − ϕP̂XY,n

‖
= inf

t∈Rp
‖Wn + (t−√

n(θn − θ0))′D0‖ + oPn
(1)

= inf
t∈Rp

‖Wn + t′D0‖ + o
Pn

(1) =⇒ inf
t∈Rp

‖W + t′D0‖.

Let tn = −(
〈D0,D
′
0〉)−1
〈Wn,D0〉, tn ⇒ −(
〈D0,D

′
0〉)−1
〈W,D0〉. By

(4), Tn = ‖Wn + t̂′nD0‖ + o
Pn

(1). But we also know that Tn = inft∈Rp ‖Wn +
t′D0‖ + o

Pn
(1). By a simple quadratic form calculation, it can be seen that this

inf is attained by tn, therefore: ‖Wn + t̂′nD0‖ = ‖Wn + t′nD0‖ + o
Pn

(1), and

2t̂′n
〈Wn,D0〉 + t̂′n
〈D0,D
′
0〉t̂n = 2t′n
〈Wn,D0〉 + t′n
〈D0,D

′
0〉tn + o

Pn
(1).

Let t̃n = t̂n − tn to get

2t̃′n
〈Wn,D0〉 + t̃′n
〈D0,D
′
0〉t̃n + 2t̃′n
〈D0,D

′
0〉tn = o

Pn
(1).

Substitute tn = −(
〈D0,D
′
0〉)−1
〈Wn,D0〉,

t̃′n
〈D0,D
′
0〉t̃n = oPn

(1).
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By the non-singularity of D0, this gives t̂n = tn + o
Pn

(1) which completes the
proof.

Proof for Theorem 5. We only give the main idea of the proof (details are
given in Liu (1994)). We check the three conditions for Theorem 3. Strong
identifiability is a consequence of Example 1 and the fact that A is compact.
Conditions 2, 7 and 8 guarantee the differentiability, by making the exchange of
integration and differentiation valid. So the asymptotic derivatives are given, for
the unconstrained parameters, by∫

h(x) exp{it′x+ iu′f(x, aj)}dx,

and
ipju

′
∫
h(x)

∂f

∂a
(x, aj) exp{it′x+ iu′f(x, aj)}dx, 1 ≤ j ≤M,

where h(x) is the density of PX . It follows from the discussion preceding Theo-
rem 5 that, for nonsingulaity, we need only show these functions to be linearly
independent. Suppose they are not linearly independent as functions of t and u;
then it can be argued by Fejér’s theorem that

h(x) exp{iu′f(x, aj)}, 1 ≤ j ≤M,

u′h(x)
∂f

∂a
(x, aj) exp{iu′f(x, aj)}, 1 ≤ j ≤M,

are linearly dependent in x and u. Here we have left out the non-zero factor ipj.
We can further leave out h(x). Therefore there exist constants c1, . . . , cM and
constant vectors α1, . . . , αM such that

M∑
k=1

ck exp
{
iu′f(x, ak)

}
=

M∑
k=1

exp
{
iu′f(x, ak)

}
u′

[ ∂f
∂ak

]
αk,

or equivalently,

M∑
k=1

ck exp
{
iλu′0f(x, ak)

}
= λ

M∑
k=1

exp
{
iλu′0f(x, ak)

}
u′0

[ ∂f
∂ak

]
αk,

for any x, λ and |u0| = 1. This implies, when λ → ∞,
∑M

k=1 exp{iλu′0f(x, ak)}
u′0[∂f/∂ak]αk → 0. For any fixed x and u0, this function is a sum of periodic
functions; hence it has to be zero in order to vanish at infinity. So

M∑
k=1

exp
{
iλu′0f(x, ak)

}
u′0

[ ∂f
∂ak

]
αk = 0, (5)
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and
∑M

j=1 cj exp{iλu′0f(x, aj)} = 0, for any x, λ and |u0| = 1.
Differentiate (5) l times w.r.t. λ:

M∑
k=1

exp
{
iλu′0f(x, ak)

}
(iu′0f(x, ak))lu′0

[ ∂f
∂ak

]
αk = 0, 0 ≤ l ≤ s− 1. (6)

Let bj = iu′0f(x, aj), dk(x, λ, u0) = exp {iλu′0f(x, ak)}u′0[∂f/∂ak]αk. Define the
s × s matrix B by bjk = bj−1

k and s × 1 vector d(x, λ, u0) = (d1, . . . , ds)′, then
(6) can be written as Bd = 0. It is a well known result of linear algebra that if
b1, . . . , bM are distinct, B is invertible and d = 0. From Condition 3, bj(x, u0),
j = 1, . . . ,M are distinct for almost every x and u0, so d(x, λ, u0) = 0 for almost
every x and u0. By continuity, d(x, λ, u0) = 0 for any x, λ and u0. Therefore
[∂f/∂ak]αk = 0 for any 1 ≤ k ≤ s, any x, which again, by Condition 3, implies
αk = 0, any k.

A similar argument shows that cj = 0, j = 1, . . . ,M . Therefore the compo-
nents of D are linearly independent.

The only thing left to show is the covariance function of W and this is not
difficult to check.

Proof of Example 4. We check the conditions for Theorem 5. Conditions 1, 2,
5, 6 and 7 clearly hold. Condition 3 holds because f(x, a) is analytic in x. Now

∂f

∂a
= (−b1xe−a1x, e−a1x, . . . ,−brxe−arx, e−arx, 1), (7)

(∂2f

∂a2

)
= diag

(( b1x
2e−a1x −xe−a1x

−xe−a1x 0

)
, . . . ,

( brx
2e−arx −xe−arx

−xe−a1x 0

)
, 0

)
, (8)

where diag(A1, . . . , Ak) denotes the quasi-diagonal matrix with diagonal blocks
A1, . . . , Ak. The linear independence for (∂f/∂a) as functions of x is obvious.
Condition 8 holds because all the elements in the derivatives are bounded by
constants not depending on x.

Proof of Example 5. The proof is similar to that of Example 2, using the
result of Beran and Millar (1994). To prove E(Y |X = x) for x ∈ support(X)
uniquely determines the parameter in the distributions of Aj , j = 1, . . . , r, we
use some elementary calculus as in proof of Theorem 5.

Theorem 6 and Example 6 are self evident and the proofs are not given in
this paper.
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