
Statistica Sinica 6(1996), 809-829

ASYMPTOTICS FOR A 2 × 2 TABLE

WITH FIXED MARGINS

S. G. Kou and Z. Ying

Rutgers University

Abstract: Two coins A and B are tossed N1 and N2 times, respectively. Denote

by M1 (M2) the total number of heads (tails) and X the number of heads from

coin A. It is well known that conditional on the Mi and Ni, X has a noncentral

hypergeometric distribution which depends only on the odds ratio θ between the

success probabilities of the two coins. This model is commonly used in the analysis

of a single 2 × 2 table, in which approximating X and estimating θ are of major

concerns. Based on a connection between the probability generating function of X

and the classical Jacobi polynomials, we show that X is equal in distribution to a

sum of independent, though not identically distributed, Bernoulli random variables.

It is then established that the central limit theorem (X − EX)/[Var (X)]1/2 →L
N(0, 1) holds if and only if M1M2N1N2/N

3 → ∞, where N = N1+N2. In addition,

this minimum condition is shown to be sufficient for (1) the maximum likelihood

estimator of θ and the empirical odds ratio to be consistent and asymptotically

normal, (2) some classical estimators for the asymptotic variance of the empirical

odds ratio, such as those suggested in Cornfield (1956) and Woolf (1955), as well

as a new variance estimator to be consistent. A Berry-Esseen-type bound is found,

and a necessary and sufficient condition for X to be approximated by the Poisson

distribution is established as well.

Key words and phrases: Noncentral hypergeometric distribution, empirical odds
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1. Introduction

Suppose an urn contains N1 white balls and N2 = N − N1 red balls. Ran-
domly draw M1 (≤ N) balls from the urn and denote by X the number of white
balls. It is well known that X follows a hypergeometric distribution:

P (X = x)=

(
N1

x

)(
N2

M1 − x

) / ( N

M1

)
, L ≤ x ≤ S, (1.1)

where L = max(0,M1 − N2) and S = min(N1,M1) (cf. Feller (1968), §2.6).
The name hypergeometric distribution comes from its relationship with the

family of hypergeometric functions (Feller (1968), p.44, footnote). Let (n)k be
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the Pochhammer symbol denoting (n)k = n(n + 1) · · · (n + k − 1) and (n)0 = 1.
The hypergeometric function with parameters a, b and c is defined by

F (a, b, c; z) =
∞∑

k=0

(a)k(b)k
(c)kk!

zk c �= 0,−1,−2, . . .

In particular, by setting a = −N1, b = −M1 and c = N2 −M1 + 1 and assuming
N2 ≥ M1, the function is reduced to a polynomial with degree at most S:

F (−N1,−M1, N2+1−M1; z)=
S∑

k=0

(−N1)k(−M1)k
(N2+1−M1)kk!

zk, N1+M1≤N. (1.2)

It is not difficult to see (Johnson, Kotz and Kemp (1992), pp. 237, 238 and 280)
that (1.2) is, when scaled by a constant, the probability generating function for
(1.1). On the other hand, it is easy to see that if N2 < M1 then(N1

M2

)
( N
M2

)zM1−N2F (−N2,−M2, N1 + 1 − M2; z)

=

(N1

M2

)
( N
M2

)zM1−N2

min(N2,M2)∑
k=0

(−N2)k(−M2)k
(N1 + 1 − M2)kk!

zk

becomes the probability generating function for (1.1).
Widespread use of the hypergeometric distributions in statistics is, at least

partly, attributed to another method of generating a hypergeometric random
variable. Suppose two coins A and B with the same success probability are
tossed N1 and N2 times, respectively, and let M1 (M2) denote the total number
of heads (tails) out of the N = N1 + N2 tosses and X the number of heads from
the N1 tosses of coin A. Then conditional on N1, N2, M1 and M2, X has the
hypergeometric distribution given by (1.1). Thus the hypothesis that the success
probabilities for the two coins are the same can be tested at a specified size by
using the hypergeometric distribution.

On the other hand, if the success probabilities, denoted by πA and πB , for the
two coins are different, then the conditional distribution of X given the Ni and
Mi is known to follow a noncentral hypergeometric distribution, which depends
on the success probabilities only through their odds ratio θ = πA(1−πB)/[πB(1−
πA)]. More precisely, the noncentral hypergeometric distribution is given by

P (X =x)=

(
N1

x

)(
N2

M1−x

)
θx
/ S∑

u=L

(
N1

u

)(
N2

M1−u

)
θu, L ≤ x ≤ S. (1.3)

One of the most common situations in which one needs to condition on the
Ni and Mi occurs in epidemiological case-control (retrospective) studies, where
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N1 and N2 are taken as the numbers of persons in exposed and unexposed groups,
respectively, and M1 and M2 represent the numbers of diseased and disease-free
individuals, respectively (cf. Breslow and Day (1980)). A 2 × 2 table illustrates
the design:

Diseased Disease-free
Exposed X N1 − X N1

Unexposed M1 − X X + N2 − M1 N2

M1 M2 N

The hypothesis of interest in this case is usually that the disease rates for the
exposed and the unexposed groups are the same. If this hypothesis holds, then
the distribution of X, conditioning on N1, N2, M1 and M2 (marginals), is again
the (central) hypergeometric given by (1.1). Otherwise, X has the noncentral
hypergeometric distribution given by (1.3). A key issue then becomes how to
estimate odds ratio θ.

For both theoretical and practical considerations, it is extremely important
to approximate both the central and noncentral hypergeometric distributions, as
they are essential to hypothesis testing and parameter estimation. Under certain
regularity conditions, we naturally expect that (X − EX)/

√
Var (X) converges

to the standard normal. In fact, when M1 is small relative to N and N1/N is not
close to 0 and 1, it is well known that the (central) hypergeometric distribution
can be approximated by the binomial, thus also by the normal in view of the
classical DeMoivre-Laplace central limit theorem. Lehmann (1975), Appendix 4,
gives an interesting proof of the asymptotic normality of X under the assumptions
that Var (X) → ∞ and N1/N is bounded away from 0 and 1. A sharper result,
hidden in Vatutin and Mikhailov (1982), states that Var (X) → ∞ is sufficient
for X to be asymptotically normal. The approach there is rather involved and is
essentially based on a method developed earlier by Harper (1967).

We are concerned in this paper with the family of noncentral hypergeometric
distributions as specified by (1.3). Our main goals are (1) to find minimum
conditions that guarantee the normal and the Poisson approximations for X and
(2) to develop a relatively complete theory for the maximum likelihood estimator
of the odds ratio θ and the empirical odds ratio.

In section 2, by observing a connection between the probability generating
function of the noncentral hypergeometric random variable X and the classical
Jacobi polynomials, we shall show that X of (1.3) is equal in distribution to
a sum of independent Bernoulli random variables. This representation can be
used for both theoretical and numerical purposes. In particular, it helps us to
prove that N1M1N2M2/N

3 → ∞ is both necessary and sufficient for X to be
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asymptotically normal. In this connection, a Berry-Esseen type bound is also
derived.

A substantial portion of this paper is devoted to the second problem, es-
timation of θ. Available eatimators are some classical ones, most notably, the
maximum likelihood estimator and the empirical odds ratio θ̂e = X(X + N2 −
M1)/((M1 −X)(N1 −X)). Note that θ̂e is the maximum likelihood estimator for
the unconditional model, i.e., only the Ni, but not the Mi, are conditioned. In
section 3 we shall prove rigorously that both the maximum likelihood estimator
and the empirical odds ratio are consistent and asymptotically normal under the
minimum condition N1M1N2M2/N

3 → ∞. To construct a confidence interval
for θ, Woolf (1955) argued that one might use log θ̂e, which could have limiting
normal distribution with variance approximated by

X−1 + (X + N2 − M1)−1 + (N1 − X)−1 + (M1 − X)−1. (1.4)

Moreover, Cornfield (1956) gave a heuristic derivation that (1.4) should be used
to estimate 1/Var (X).

Readers are referred to Breslow and Day (1980), §4.2, §4.5 for detailed dis-
cussions on the subject with interesting examples. Results by Woolf (1955) and
Cornfield (1956) will be justified rigorously under precise conditions in Section
3.2. Moreover, some bounds are also provided for the maximum likelihood esti-
mator in Section 4.

Approximation of the noncentral hypergeometric distribution by the Poisson
distribution will be discussed in Section 4, where a necessary and sufficient con-
dition for such approximation to be valid is also given. Section 5 contains some
technical developments.

2. Noncentral Hypergeometric Distributions

Let Gθ(z) = Eθ(zX) denote the probability generating function of noncentral
hypergeometric random variable X with parameter θ. Here and in the sequel,
subscript θ in Eθ and Var θ indicates that the expectation and variance are taken
with θ being the true parameter. It is readily seen that the probability generating
function of the noncentral hypergeometric random variable in (1.3) is given by

Gθ(z) =
φ(θz)
φ(θ)

, (2.1)

where

φ(z) =
S∑

u=L

(
N1

u

)(
N2

M1 − u

)
zu. (2.2)

Notice that φ(θ) is exactly the denominator in (1.3). We now introduce the
following key lemma.
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Lemma 2.1. All roots of polynomial φ(z) are real and nonpositive.

A proof of Lemma 2.1. is hidden in Vatutin and Mikhailov (1982), which
is in turn based on Harper (1967). The arguments there are quite involved. By
observing a connection between φ(z) and the family of Jacobi polynomials, we
are able to give here a much simpler and clearer proof. The Jacobi polynomials
are defined as

P (α,β)
n (x) =

1
2n

n∑
u=0

(
n + α

u

)(
n + β

n − u

)
(x − 1)n−u(x + 1)u, − 1 < x < 1, (2.3)

where α > −1 and β > −1. It is well known that for fixed α and β, the sequence
{P (α,β)

n , n ≥ 0} are orthogonal polynomials and, consequently, their roots must
all be real. For detailed discussions about the Jacobi polynomials, see Erdélyi et
al. (1953), §10.8 and p. 202 and Szegö (1959).

Proof of Lemma 2.1. We only need to show that all the roots are real, since
they cannot be positive. Four cases will be considered separately.
Case 1. M1 is the smallest among Mi, Ni, i = 1, 2. Then S = M1 and L = 0,
recalling that S = min(N1,M1) and L = max(0,M1 − N2). Letting α = N1 −
M1 ≥ 0, β = N2 − M1 ≥ 0 and n = M1, we conclude from (2.3) that

P (α,β)
n (x) =

1
2M1

M1∑
u=0

(
N1

u

)(
N2

M1 − u

)
(x − 1)M1−u(x + 1)u,

has M1 real roots, which must all be inside (−1, 1). Furthermore, letting y =
(x + 1)/(x − 1), we then have

1
(y − 1)M1

φ(y) =
1

(y − 1)M1

M1∑
u=0

(
N1

u

)(
N2

M1 − u

)
yu = P (α,β)

n (x).

Since P
(α,β)
n has M1 roots in (−1, 1) and since, as x goes from −1 to 1, y goes

from 0 to −∞, we conclude that φ(y) must have M1 roots in (−∞, 0).
Case 2. N1 is the smallest. In this case, we just rewrite φ(z) as

φ(z) =
N1∑
u=0

(
M1

u

)(
M2

N1 − u

)
zu,

set α = M1 − N1 ≥ 0, β = M2 − N1 ≥ 0 and n = N1 in (2.3), and then proceed
exactly as in case 1.
Case 3. If N2 is the smallest, we rewrite

φ(z) = zM1−N2 ·
N2∑
u=0

(
M2

u

)(
M1

N2 − u

)
zu,
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and put α = M2 − N2 ≥ 0, β = M1 − N2 ≥ 0 and n = N2 in (2.3), and then
proceed as before.
Case 4. M2 is the smallest. In this case, we use

φ(z) = zM1−N2 ·
M2∑
u=0

(
N2

u

)(
N1

M2 − u

)
zu,

and α = N2 − M2, β = N1 − M2, n = M2.

We shall denote the roots of φ(z) by −λ1, . . . ,−λS , λi ≥ 0, 1 ≤ i ≤ S. In
addition, it is clear from (2.2) that there are exactly L of these roots equal to
0. Based on this lemma, we are able to show now that any noncentral hyperge-
ometric random variable X can be expressed as a sum of independent Bernoulli
random variables. Therefore, many available techniques developed for sums of
independent random variables can be readily applied.

Theorem 2.1. Consider a noncentral hypergeometric random variable X spec-
ified by (1.3). Let η1, η2, . . . , be a sequence of independent uniform(0, 1) random
variables. Then

X
d=

S∑
i=1

I(ηi ≤ (1 + θ−1λi)−1), (2.4)

where “ d=” denotes equality in distribution and I(·) the indicator function, recall-
ing S = min(N1, M1).

Proof. Lemma 2.1 implies that, for some constant c, φ(z) = c
∏S

i=1(z + λi),
which in turn leads to

Gθ(z) =
S∏

i=1

z + θ−1λi

1 + θ−1λi
, (2.5)

in view of (2.1) and Gθ(1) = 1. But the right-hand side of (2.5) is exactly
the probability generating function of the right-hand side of (2.4), whence (2.4)
holds, since a probability generating function uniquely determines a distribution
function.

Theorem 2.1 is useful not only because it decomposes a noncentral hypergeo-
metrical random variable into a sum of independent Bernoulli random variables,
but also because the λi depends only on the Ni and Mi, not on θ, as φ(z) does
not involve θ. This fact greatly reduces the computational burden in dealing with
noncentral hypergeometric distributions. Furthermore, (2.4) provides a conve-
nient way to simulate noncentral hypergeometric random variables, since roots
of the Jacobi polynomials are well studied and readily available in many software
packages.
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From (2.4) it follows that the mean and the variance of X can be expressed
in terms of the λi and θ:

EθX =
S∑

i=1

1
1 + θ−1λi

, Var θ(X) =
S∑

i=1

θ−1λi

(1 + θ−1λi)2
. (2.6)

Since θ = 1 corresponds to the case of a central hypergeometric distribution,
whose mean and variance are N1M1/N , N1N2M1M2/(N2(N − 1)), respectively,
we conclude that

S∑
i=1

1
1 + λi

=
M1N1

N
and

S∑
i=1

λi

(1 + λi)2
=

N1N2M1M2

N2(N − 1)
. (2.7)

Corollary 2.1. We have the following bounds for the mean and variance of the
noncentral hypergeometric random variable:

min(1, θ)M1N1/N ≤ EθX ≤ max(1, θ)M1N1/N, (2.8)

min(θ,
1
θ
)
N1N2M1M2

N2(N − 1)
≤ Var θ(X) ≤ max(θ,

1
θ
)
N1N2M1M2

N2(N − 1)
. (2.9)

Proof. These inequalities follow immediately from (2.7) and the following ele-
mentary inequalities

min(1,
a

b
)

1
1 + b−1λi

≤ 1
1 + a−1λi

≤ max(1,
a

b
)

1
1 + b−1λi

, (2.10)

min(a/b, b/a)
b−1λi

(1 + b−1λi)2
≤ a−1λi

(1 + a−1λi)2
≤ max(a/b, b/a)

b−1λi

(1 + b−1λi)2
, (2.11)

where 0 < a < ∞ and 0 < b < ∞.

Theorem 2.2. Let θ denote the true odds ratio parameter. Then the follow-
ing three statements are equivalent: (i) (X − EθX)/

√
Var θ(X) →L N(0, 1); (ii)

Var θ(X) → ∞; (iii) N1N2M1M2/N
3 → ∞.

Proof. The equivalence between (ii) and (iii) follows readily from (2.9). From
Theorem 2.1, we know that X is equal in distribution to a sum of independent
random variables. Thus, by the Lindeberg central limit theorem, (ii) implies (i).
Conversely, note that if (ii) does not hold, then we can find a subsequence such
that the support of (X − EθX)/

√
Var θ(X) will not be dense on the real line (in

fact it is not dense in any proper interval). Hence (i) cannot be true.
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Theorem 2.3. The following Berry-Esseen type result holds:

sup
x

∣∣∣Pθ

( X − EθX√
Var θ(X)

≤ x
)
− Φ(x)

∣∣∣ ≤ γ√
Var θ(X)

≤ γ max{θ1/2, θ−1/2} N(N − 1)1/2

(N1N2M1M2)1/2
, (2.12)

where Φ denotes the standard normal distribution and γ is the usual Berry-Esseen
constant.

Proof. According to the Berry-Esseen inequality (Chow and Teicher (1988),
p. 304) and the representation (2.4), the left-hand side of (2.12) is less than or
equal to

γ
∑S

i=1 Eθ|I(ηi ≤ (1 + θ−1λi)−1) − (1 + θ−1λi)−1|3
[
∑S

i=1 Var θ(I(η ≤ (1 + θ−1λi)−1))]3/2
.

Thus the first inequality holds by noting that

E|I(ηi ≤ (1 + θ−1λi)−1) − (1 + θ−1λi)−1|3 ≤ Var θ(I(ηi ≤ (1 + θ−1λi)−1)),

and the second one follows from (2.9).

3. Asymptotics for Estimators of Odds Ratio

3.1. Maximum likelihood estimator

In epidemiological case-control studies, it is of fundamental interest to es-
timate the value of the odds ratio θ ∈ (0, ∞). An obvious candidate is the
maximum likelihood estimator (MLE) of θ, to be denoted henceforth by θ̂. Be-
cause the family of noncentral hypergeometric distributions parametrized by θ

forms an exponential family with X being the canonical sufficient statistics, θ̂

must satisfy

X =
S∑

i=1

(1 + θ̂−1λi)−1. (3.1)

Theorem 3.1. A necessary and sufficient condition guaranteeing the existence
and uniqueness of θ̂ is

L < X < S. (3.2)

Proof. We first show that (3.2) is sufficient. Since L(< S) is the number of the
λi being 0, it is obvious that,

∑S
i=1(1 + θ−1λi)−1 is strictly increasing in θ and

goes from L to S as θ goes from 0 to ∞. Thus, in view of (3.2), there exists a
unique θ̂ satisfying (3.1). The same argument also leads to the conclusion that
no such θ̂ exists when either X = L or X = S, whence the necessity holds as
well.
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Theorem 3.2. Suppose that Var θ(X) → ∞, or equivalently, N1N2M1M2/N
3 →

∞. Then θ̂ is consistent and asymptotically normal. More precisely, we have
θ̂ → θ in probability and

θ−1
√

Var θ(X)(θ̂ − θ) →L N(0, 1). (3.3)

Remark 3.1. Since we only have one 2×2 table and observations do not consist
of a sequence of independent random variables, the usual asymptotic results for
maximum likelihood estimators do not apply directly here.

Proof of Theorem 3.2. Let K = N1N2M1M2/N
2(N−1). To prove consistency,

it suffices to show that for any 0 < ε < θ, there exists δ = δ(ε) > 0 such that

P
(

inf
θ̃:|θ̃−θ|≥ε

|X −∑S
i=1(1 + θ̃−1λi)−1|

K
> δ

)
−→ 1, (3.4)

as Var θ(X) → ∞. In view of (2.9), the Markov inequality implies that (X −
Eθ(X))/K

p−→0. Therefore (3.4) holds if we can show that

inf
θ̃:|θ̃−θ|≥ε

|∑S
i=1(1 + θ−1λi)−1 −∑S

i=1(1 + θ̃−1λi)−1|
K

≥ 2δ. (3.5)

Now, the monotonicity implies that the “inf” in (3.5) can only be achieved at
θ̃ = θ ± ε. In addition, by the mean-value theorem

S∑
i=1

(1 + θ−1λi)−1 −
S∑

i=1

(1 + θ̃−1λi)−1 =
S∑

i=1

θ̃−2∗ λi

(1 + θ̃−1∗ λi)2
(θ − θ̃)

for some θ̃∗ between θ and θ̃. Thus we get

l.h.s. of (3.5) ≥
∑S

i=1(θ + ε)−2λi/(1 + (θ − ε)−1λi)2∑S
i=1 λi/(1 + λi)2

ε

≥ (θ − ε)(θ + ε)−2 min(θ − ε,
1

θ − ε
)ε,

thanks to the elementary inequality (2.11). Taking δ = 2−1(θ−ε)(θ+ε)−2 min{θ−
ε, (θ − ε)−1}, we have (3.5) and therefore the consistency of θ̂.

To show the asymptotic normality, we observe, again by the mean-value
theorem,

X − EθX =
S∑

i=1

1
1 + θ̂−1λi

−
S∑

i=1

1
1 + θ−1λi

=
S∑

i=1

θ−2∗ λi

(1 + θ−1∗ λi)2
(θ̂ − θ) (3.6)
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for some θ∗ between θ and θ̂. Because θ̂ → θ in probability, (2.11) can be used
to show

S∑
i=1

θ−2∗ λi

(1 + θ−1∗ λi)2
/ S∑

i=1

θ−2λi

(1 + θ−1λi)2
→ 1

in probability. Therefore, by (3.6), we have

θ−1
√

Var θ(X)(θ̂ − θ) =
∑S

i=1 θ−2λi/(1 + θ−1λi)2∑S
i=1 θ−2∗ λi/(1 + θ−1∗ λi)2

[ X − EθX√
Var θ(X)

]
,

which converges to N(0, 1) in view of Theorem 2.2.

Applying the usual delta method, we immediate have the following corollary.

Corollary 3.1. Suppose that N1N2M1M2/N
3 → ∞. Then√

Var θ(X)(log θ̂ − log θ) →L N(0, 1).

Remark 3.2. It should be pointed out that the square of the normalizing term
in (3.3) achieves the Fisher’s information; more precisely,

Var θ(X)
θ2

= E
[ ∂

∂θ
log f(θ,X)

]2
= E

[
− ∂2

∂θ2
log f(θ,X)

]
,

where f(θ,X) is the likelihood of X, as defined by the right hand side of (1.3)
with x replaced by X.

If we are going to use (3.3) to construct an asymptotic confidence interval
for the odds ratio parameter θ, then we may need to estimate Var (X). A natural
candidate to estimate it is

̂Var (X) =
S∑

i=1

θ̂−1λi

(1 + θ̂−1λi)2
.

Theorem 3.3. Under the condition that N1N2M1M2/N
3 → ∞, we have

̂Var (X)
Var θ(X)

p−→ 1, (3.7)

and therefore,
θ̂−1 · ( ̂Var (X))1/2 · (θ̂ − θ) →L N(0, 1). (3.8)

Proof. In view of inequality (2.11), we have

min(θ̂2/θ2, θ2/θ̂2) ≤
̂Var (X)

Var θ(X)
≤ max(θ̂2/θ2, θ2/θ̂2).
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From this and the fact that θ̂ → θ in probability we conclude (3.7).

3.2. Empirical odds ratio

We have shown that the MLE for θ is consistent and asymptotically nor-
mal under the minimum condition N1M1N2M2/N

3 → ∞. An alternative and,
perhaps, more popular estimator of θ is the empirical odds ratio

θ̂e =
X(X + N2 − M1)

(N1 − X)(M1 − X)
,

which is certainly computationally more convenient and appears to be more nat-
ural. As we mentioned earlier, θ̂e is the maximum likelihood estimator for the
odds ratio in the 2 × 2 table when one of its margins is not fixed. Thus, it is
intuitively clear that θ̂e should be close to θ̂. For this reason θ̂e is also called
the asymptotic maximum likelihood estimator (Breslow and Day (1980), p. 130).
We shall show that θ̂e is, indeed, asymptotically equivalent to θ̂, again under the
minimum condition N1M1N2M2/N

3 → ∞. We shall also give rigorous justifica-
tions for some classical methods of constructing confidence intervals for θ. To do
so we need some preliminary results.

Lemma 3.1. For the noncentral hypergeometric random variable X, we have:
(i) Var θ(X) ≤ min{Eθ(X),Eθ(N1 − X),Eθ(M1 − X),Eθ(X + N2 − M1)}.
(ii) Eθ[X(X + N2 − M1)]/Eθ[(N1 − X)(M1 − X)] = θ.
(iii) Let Y be either X or N1 − X or M1 − X or X + N2 − M1 and θ be the true
odds ratio. Then Y/EθY → 1 in probability as N1M1N2M2/N

3 → ∞.

Proof. From (2.6), Var θ(X) ≤ Eθ(X). So, by symmetry, (i) holds. The identity
(ii) is implicitly stated in Harkness (1965, p. 939, (3)) for the case that N2 ≥ M1,
and obtained in the current form by Mantel and Hankey (1975). Part (iii) follows
readily from Theorem 2.2, the Markov inequality, and part (i).

Lemma 3.2. For any ε ∈ (0, 1), as N1M1N2M2/N
3 → ∞,

sup
ε≤θ≤ε−1

∣∣∣(Eθ(X)Eθ(X + N2 − M1)
Eθ(N1 − X)Eθ(M1 − X)

−θ
)( 1

Eθ(N1 − X)
+

1
Eθ(M1 − X)

)−1∣∣∣ = O(1).

(3.9)

Proof. First of all, note that by (2.8)

1
Eθ(N1 − X)

+
1

Eθ(M1 − X)
−→ 0.

With covariance formulas

Eθ[X(X + N2 − M1)] = Var θ(X) + Eθ(X)Eθ(X + N2 − M1),

Eθ[(N1 − X)(M1 − X)] = Var θ(X) + Eθ(N1 − X)Eθ(M1 − X),
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we have, using Lemma 3.1.(ii),

θ =
Eθ[X(X + N2 − M1)]

Eθ[(N1 − X)(M1 − X)]
=

A + B

A + 1
,

where

A =
Var θ(X)

Eθ(N1 − X)Eθ(M1 − X)
and B =

Eθ(X)Eθ(X + N2 − M1)
Eθ(N1 − X)Eθ(M1 − X)

.

Therefore, B − θ = A(θ − 1). However, uniformly in θ ∈ [ε, ε−1],

A = O
( 1
Eθ(N1 − X)

+
1

Eθ(M1 − X)

)
,

via Lemma 3.1.(i). Hence (3.9) follows.

Define

ηθ = [Eθ(X)]−1 + [Eθ(X + N2 − M1)]−1 + [Eθ(N1 − X)]−1 + [Eθ(M1 − X)]−1.

We have the following theorem.

Theorem 3.4. Let θ be the true parameter. Assume N1M1N2M2/N
3 → ∞.

Then
log θ̂e − log θ = ηθ(X − EθX) + Op(ηθ). (3.10)

Proof. It is clear from Lemma 3.2 and then Lemma 3.1 that

log θ̂e − log θ

= log X
Eθ(X) + log X+N2−M1

Eθ(X+N2−M1)
− log N1−X

Eθ(N1−X) − log M1−X
Eθ(M1−X) + O(ηθ)

= X
Eθ(X) − 1 + X+N2−M1

Eθ(X+N2−M1)
− 1 − N1−X

Eθ(N1−X) + 1 − M1−X
Eθ(M1−X) + 1 + O(ηθ)

+ Op

((
X

Eθ(X) − 1
)2

+
(

X+N2−M1

Eθ(X+N2−M1)
− 1

)2
+
(

N1−X
Eθ(N1−X) − 1

)2

+
(

M1−X
Eθ(M1−X) − 1

)2)
= (X − EθX)

( 1
Eθ(X) + 1

Eθ(X+N2−M1)
+ 1

Eθ(N1−X) + 1
Eθ(M1−X)

)
+ Op(ηθ),

where the last equality follows from the Markov inequality and

Eθ

( X

Eθ(X)
− 1

)2
=

Var θ(X)
(Eθ(X))2

≤ 1
Eθ(X)

,

etc. Hence (3.10) holds.



2 × 2 TABLE WITH FIXED MARGINS 821

Now, since X−EθX is asymptotically normal by Theorem 2.2, log θ̂e−log θ is
also asymptotically normal by Theorem 3.4. More precisely, we have the following
corollary.

Corollary 3.2. Let θ be the true parameter and assume N1M1N2M2/N
3 → ∞.

Then

log θ̂e − log θ

ηθ

√
Var θ(X)

→L N(0, 1),

θ̂e − θ

θηθ

√
Var θ(X)

→L N(0, 1). (3.11)

To construct a confidence interval, Woolf (1955) suggested that log θ̂e might
be asymptotically normal with variance being approximately equal to X−1+(X+
N2 − M1)−1 + (N1 − X)−1 + (M1 − X)−1. Cornfield (1956), on the other hand,
gave a heuristic derivation for the asymptotic variance of X to be approximated
by [x̃−1 +(x̃+N2−M1)−1 +(N1− x̃)−1 +(M1− x̃)−1]−1, where x̃ is the mode for
the distribution of X. Since X is asymptotically normal, x̃/EθX → 1. Therefore,
x̃ may be replaced by EθX, which in turn can be approximated by X. In the
rest of this section, we shall supply proofs for these asymptotics.

Theorem 3.5. Suppose that N1M1N2M2/N
3 → ∞. Then for any 0 < θ < ∞,

Var θ(X)
( 1
Eθ(X)

+
1

Eθ(X + N2 − M1)
+

1
Eθ(N1 − X)

+
1

Eθ(M1 − X)

)
−→ 1.

To prove Theorem 3.5, we need following bounds on θ̂e and θ̂.

Lemma 3.3. Consider the following inequalities:

A.1. θ̂e ≤ θ̂ ≤ θ̂e + X(M1N1−NX)
M1N1(M1−X)(N1−X) ,

A.2. θ̂e ≤ θ̂ ≤ θ̂e + (X−M1+N2)(M1N1−NX)
M2N2(N1−X)(M1−X) ,

B.1. θ̂e

(
1 + NX−M1N1

M2N1(M1−X)

)−1 ≤ θ̂ ≤ θ̂e,

B.2. θ̂e

(
1 + NX−M1N1

M1N2(N1−X)

)−1 ≤ θ̂ ≤ θ̂e.

(i) If N1 is the smallest among Mi, Ni, i = 1, 2, then{
A.1 holds, if L < X ≤ M1N1/N

B.1 holds, if M1N1/N ≤ X < M1

}
.

(ii) If M1 is the smallest among Mi, Ni, i = 1, 2, then{
A.1 holds, if L < X ≤ M1N1/N

B.2 holds, if M1N1/N ≤ X < N1

}
.
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(iii) If M2 is the smallest, then{
A.2 holds, if L < X ≤ M1N1/N

B.1 holds, if M1N1/N ≤ X < N1

}
.

(iv) If N2 is the smallest, then{
A.2 holds, if L < X ≤ M1N1/N

B.2 holds, if M1N1/N ≤ X < N1

}
.

When X = M1N1/N , θ̂e = θ̂ = 1 , and the above bounds become equalities.
Lemma 3.3.(i) and the first inequality in (ii) are taken from Harkness (1965) (See
also Johnson, Kotz and Kemp (1992), p.281). Note that we have corrected an
error in Harkness (1965), equation (13) which is perpetuated in Johnson, Kotz
and Kemp (1992), p.281. Since the proof in the original paper of Harkness is
also rather sketchy, we shall provide a detailed proof for the preceding lemma in
Section 5.

Since Lemma 3.1.(ii) and Corollary 2.1 imply

X(M1N1 − NX)
M1N1(X − M1)(X − N1)

= Op(
N3

N1M1N2M2
),

NX − M1N1

M2N1(M1 − X)
= Op(

N3

N1M1N2M2
),

among others, we get, from Lemma 3.3 and Theorem 3.2, the following corollary.

Corollary 3.3. Suppose that N1M1N2M2/N
3 → ∞. Then for any 0 < θ < ∞,

|θ̂e − θ̂| = Op

( N3

N1M1N2M2

)
= Op([Var θ(X)]−1), (3.12)

and therefore

θ−1
√

Var θ(X)(θ̂e − θ) →L N(0, 1), (3.13)√
Var θ(X)(log θ̂e − log θ) →L N(0, 1).

Proof of Theorem 3.5. The result follows by combining (3.12) with (3.11).

Corollary 3.4. With 0<θ<∞ being the true parameter, as N1M1N2M2/N
3 →

∞, ( 1
X + 1

X+N2−M1
+ 1

N1−X + 1
M1−X

)
Var θ(X)

p−→ 1, (3.14)( 1
X

+ 1
X+N2−M1

+ 1
N1−X

+ 1
M1−X

)−1/2
(log θ̂e − log θ) →L N(0, 1), (3.15)

θ̂−1
e

( 1
X

+ 1
X+N2−M1

+ 1
N1−X

+ 1
M1−X

)−1/2
(θ̂e − θ) →L N(0, 1). (3.16)
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Proof. In view of Lemma 3.1,

[Eθ(X)]−1 + [Eθ(X + N2 − M1)]−1 + [Eθ(N1 − X)]−1 + [Eθ(M1 − X)]−1

X−1 + (X + N2 − M1)−1 + (N1 − X)−1 + (M1 − X)−1

p−→ 1.

Our conclusion then follows from Theorem 3.5 and Corollary 3.2.

Results (3.14) and (3.15) provide justifications, under the minimum condi-
tion, for the variance approximations proposed by Cornfield (1956) and Woolf
(1955). Furthermore, (3.15) and (3.16) are two classical ways to construct asymp-
totic confidence intervals for θ. We are currently studying, both numerically and
analytically, the two constructions as well as the one given by (3.8). The results
will be reported elsewhere.

4. Poisson Approximation

We next discuss the Poisson approximation to the noncentral hypergeometric
distribution. Since X ≥ (M1 −N2)+, where (M1 −N2)+ = max{M1 −N2, 0}, we
need to consider X − (M1 −N2)+. To avoid this, we may select the cell for X so
that N1 ≤ N2 and M1 ≤ M2, effectively putting (M1 − N2)+ = 0. The following
theorem gives a simple necessary and sufficient condition on such approximation.

Theorem 4.1. Let X be noncentral hypergeometric with parameter θ. Assume
N1 ≤ N2 and M1 ≤ M2. Then a necessary and sufficient condition for

sup
k≥0

∣∣∣P (X = k) − αk
N

k!
e−αN

∣∣∣→ 0 as N → ∞ (4.1)

for some {αN} bounded away from 0 and ∞, i.e. 0 < infN αN ≤ supN αN < ∞,
is that

min(M1, N1) → ∞ and M1N1/N is bounded away from 0 and ∞. (4.2)

Remark 4.1. In the case of αN → α, (4.1) becomes X →L Poisson(α).

Remark 4.2. Theorem 4.1 is useful in considering when it is appropriate to
apply the normal approximation or the Poisson approximation. If M1N1/N is
bounded, then we know that M1M2N1N2/N

3 ≤ M1N1/N is also bounded. In
this case the necessary and sufficient condition for the normal approximation
is violated but the Poisson approximation is appropriate due to the preceding
theorem. On the other hand, if M1M2N1N2/N

3 is large, then the normal ap-
proximation is appropriate but the Poisson is not.
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Remark 4.3. In general, if we do not require M1 ≤ M2 and N1 ≤ N2, then
the theorem should be rephrased. The necessary and sufficient condition for
X − (M1 −N2)+ to be approximately Poisson is that min(Mi, Ni, i = 1, 2) → ∞
and M1N1/N − (M1 −N2)+ is bounded away from 0 and ∞. The same proof as
given below with minor variations applies to the general case.

Proof of Theorem 4.1. We first prove the necessity. Suppose (4.1) holds. Then
clearly M1 → ∞ and N1 → ∞ since X ≤ min(M1, N1). Therefore we only need
to show that M1N1/N is bounded away from 0 and ∞. Clearly M1N1/N must
be bounded away from 0 because otherwise there is a subsequence along which
Eθ(X) → 0, a contradiction to (4.1). We may assume (again by the subsequence
argument) αN → α > 0. Now if we can show that the summands in (2.4) are
uniformly asymptotically negligible (Loève (1977), p. 302), which is equivalent
to

max
1≤i≤S

(1 + θ−1λi)−1 → 0, or min
i

λi → ∞, (4.3)

then the Poisson Convergence Criterion (Loève (1977), p. 329) entails EθX → α.
By (2.8) we then know that M1N1/N is bounded away from ∞.

To show (4.3), rearrange the λi so that 0 < λ1 ≤ · · · ≤ λS . Suppose (4.3)
does not hold, we can then, by the subsequence argument, assume λ1 → λ∗ < ∞.
Define U = I(η1 ≤ (1 + θ−1λ1)−1) and V = X − U . We have U →L U∗, a
Bernoulli random variable with the success probability p∗ = (1 + θ−1λ∗)−1, and
V →L V ∗, for some proper disitribution V ∗, because U and V are independent
and U + V = X →LPoisson(α). Therefore, we obtain the following equation
about the probability generating function:

[(z − 1)p∗ + 1]Eθ(zV ∗
) = e(z−1)α,

which, however, can not hold at (z − 1)p∗ + 1 = 0 or z = (p∗ − 1)/p∗. Hence,
(4.3) must be true.

We prove next the sufficiency. It follows from (4.2) that N2/N → 1 and
M2/N → 1. Therefore,

N1M1/N − N1M1N2M2/[N2(N − 1)] → 0. (4.4)

(4.4) and (2.7) give us
∑

1/(1+λi)2 → 0, which implies (4.3); and thus the sum-
mands in (2.4) are uniformly asymptotically negligible. Let αN =

∑S
i=1 1/(1 +

θ−1λi). Note that αN is bounded away from 0 and ∞, as it is also so for M1N1/N .
We may then assume without loss of generality that αN → α. Now (4.1) fol-
lows readily by checking the two conditions in the Poisson Convergence Criterion
(Loève (1977), p. 329).
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5. Proof of Lemma 3.3

Let us denote the noncentral hypergeometric distribution by Hyper(N1, N2,
M1,M2, θ). First of all we point out that only part (i) needs to be shown. Indeed,

(1) if N1 is the smallest, then we can rewrite X
d= Hyper(M1,M2, N1, N2, θ),

and both the empirical odds ratio and the MLE will not be altered afterwards;
(2) if N2 is the smallest, then it can be seen plainly that X = M1 −N2 + Y,

where Y is distributed as Hyper(M2,M1, N2, N1, θ), whence, the empirical odds
ratio and the MLE of Y are exactly equal to those of X;

(3) similarly, if M2 is the smallest, then we use X = M1 − N2 + Y, where Y

is distributed as Hyper(N2, N1,M2,M1, θ).
The proof of part (1) consists of two parts.
Part 1. The case 0 = L < X < M1N1/N .
In this case, clearly M1 ≥ 2 and N1 ≥ 2. We get from Lemma 3.1.(ii) that

(1 − θ)(Eθ(X))2 + cEθ(X) − θN1M1 + (1 − θ)Var θ(X) = 0, (5.1)

where c ≡ N − (N1 + M1)(1 − θ). Therefore,

f(θ) ≡ Eθ(X) =
−c +

√
c2 + 4θ(1 − θ)N1M1 − 4(1 − θ)2Var θ(X)

2(1 − θ)
.

So if 0 < θ < 1, then

f(θ) ≤ −c +
√

c2 + 4θ(1 − θ)N1M1

2(1 − θ)
= r(θ) (say). (5.2)

Note here f(θ) is a monotone function, and for the MLE θ̂, f(θ̂) = X. Moreover,
r(θ) is exactly the only nonnegative root of the quadratic equation of y,

(1 − θ)y2 + cy − θN1M1 = 0, (5.3)

or equivalently, the unique positive root of

y(y + N − (M1 + N1))
(N1 − y)(M1 − y)

= θ. (5.4)

It is interesting to see the similarity between (5.4) and the definition of the
empirical odds ratio. Denote by r−1(θ) and f−1(θ) the positive root of (5.4) and
the expectation of X, respectively, with N1, M1, N each reduced by 1 while N2,
M2, θ are kept the same (this is feasible since M1, N1 ≥ 2). Clearly, both r(θ)
and r−1(θ) are monotone increasing functions. Moreover,

r(θ̂e) = X. (5.5)
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Taking the derivatives of (1.2), we get

Eθ(X) =
αβ

γ
· θF (α + 1, β + 1, γ + 1, θ)

F (α, β, γ, θ)
,

Eθ(X2) − Eθ(X) =
α(α + 1)β(β + 1)

γ(γ + 1)
· θ2F (α + 2, β + 2, γ + 2, θ)

F (α, β, γ, θ)
,

from which we find that

Eθ(X)f−1(θ) = Eθ(X2) − Eθ(X), N1 + M1 ≤ N, (5.6)

where α = −N1, β = −M1, γ = N2 + 1 − M1. Thus, (5.6), in conjunction with
(5.1), yields a recurrence relation

f(θ) = Eθ(X) =
N1M1θ

(1 − θ)f−1(θ) + c + (1 − θ)
, 0 < θ < 1, N1 + M1 ≤ N. (5.7)

A key fact to be used later on is

g(θ) ≤ EθX = f(θ) ≤ r(θ), 0 < θ < 1, N1 + M1 ≤ N, (5.8)

where g(θ) is a monotone increasing function defined by

g(θ) =
N1M1r−1(θ)

r−1(θ) + N1M1 − N1 − M1 + 1
.

To show (5.8) we only need to verify f(θ) ≥ g(θ), noting that (5.2) implies
f(θ) ≤ r(θ). But since f−1(θ) ≤ r−1(θ), (5.7) yields

f(θ) ≥ N1M1θ

(1 − θ)r−1(θ) + c + (1 − θ)
. (5.9)

Recalling (5.3), we get

r2
−1(1 − θ) + (c + 1 − 2θ)r−1 − θ(N1M1 − N1 − M1 + 1) = 0,

from which we see that the right-hand side of (5.9) is exactly equal to g(θ), and
(5.8) is obtained.

Since X < M1N1/N , θ̂ < 1. substituting θ by θ̂ in (5.8), we get g(θ̂) ≤
f(θ̂) = X ≤ r(θ̂), whence r−1(X) ≤ θ̂ ≤ g−1(X), where r−1(·) and g−1(·) are
inverse functions of r(·) and g(·), respectively. Immediately, (5.5) implies that
r−1(X) = θ̂e. Setting

D =
X(N1 − 1)(M1 − 1)

N1M1 − X
, θ(1) =

D(D + N − (N1 + M1) + 1)
(D − N1 + 1)(D − M1 + 1)

,
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we then get

N1M1D

D + N1M1 − N1 − M1 + 1
= X, r−1(θ(1)) = D.

Therefore, g(θ(1)) = X or, equivalently, g−1(X) = θ(1). Hence, we conclude

θ̂e ≤ θ̂ ≤ θ(1). (5.10)

After some algebra, we see that

D − N1 + 1 =
M1(N1 − 1)(X − N1)

N1M1 − X
,

D − M1 + 1 =
N1(M1 − 1)(X − M1)

N1M1 − X
,

D + N − (N1 + M1) + 1 =
N1M1

N1M1 − X
(X + N − NX

M1N1
− N1 − M1 + 1),

from which we obtain

θ(1) = θ̂e +
X(M1N1 − NX)

M1N1(X − M1)(X − N1)
,

and the proof for this part is completed by invoking (5.10).
Part 2. The case N1 > X > M1N1/N .
By symmetry, it is easy to see that E(X|N1,M1, N, θ) = N1−E(X|N1,M2,

N, 1/θ). Therefore, analogous to (5.8),

N1 − g̃(θ) ≤ EθX = f(θ) ≤ N1 − r̃(θ), 1 < θ < ∞, N1 + M2 ≤ N, (5.11)

where r̃(θ) is the unique positive root of the equation

1
θ

=
y(y + N − (M2 + N1))

(N1 − y)(M2 − y)
, (5.12)

and we set
g̃(θ) =

N1M2r̃−1(θ)
r̃−1(θ) + N1M2 − N1 − M2 + 1

,

where r̃−1(θ) denotes the positive root of (5.12) with N1, M2, N each reduced by
1 while N2, M1, θ are kept the same. Note that (5.11) requires that N1+M2 ≤ N ,
because it comes from (5.8). We point out that this requirement was ignored in
Harkness (1965), making a major result there invalid as stated. Clearly, r̃(θ),
r̃−1(θ), g̃(θ) are all monotone decreasing functions.

Since X > M1N1/N , θ̂ > 1, therefore, we get from (5.11)

N1 − g̃(θ̂) ≤ f(θ̂) = X ≤ N1 − r̃(θ̂).
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Thus we just need to invert the above functions. Set

E =
(N1 − X)(N1 − 1)(M2 − 1)

N1M2 − (N1 − X)
, θ(2) =

(E − N1 + 1)(E − M2 + 1)
E(E + N − (N1 + M2) + 1)

.

It follows that

N1 − N1M2E

E + N1M2 − N1 − M2 + 1
= X, r̃−1(θ(2)) = E,

whence N1− g̃(θ(2)) = X. This, in conjunction with the fact that N1− r̃(θ̂e) = X,
gives θ(2) ≤ θ̂ ≤ θ̂e. Some algebra yields

E − N1 + 1 =
M2(N1 − 1)((N1 − X) − N1)

N1M2 − (N1 − X)
,

E − M2 + 1 =
N1(M2 − 1)((N1 − X) − M2)

N1M2 − (N1 − X)
,

E+N−(N1+M2)+1 =
N1M2

N1M2−(N1−X)

(
(N1−X)+N−N(N1−X)

M2N1

−N1−M2+1
)
.

Thus
θ(2) = θ̂e

(
1 +

NX − M1N1

M2N1(M1 − X)

)−1
,

and part 2 of the proof is finished.
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