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Abstract: Agrawal (1966) constructed a series of row column designs with row-

column incidence structure J − I . We show that there exist designs which strongly

dominate Agrawal’s designs for all v ≥ 4 and are therefore to be preferred with

respect to any optimality criterion. These dominating designs are E-optimal within

the entire class of such row-column designs and are also highly A- and D-efficient.

Some methods for constructing such designs are also developed.
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1. Introduction

The study of optimality of structurally incomplete row-column designs where
treatments are allocated to some but not all of the combinations of rows and
columns has recently drawn considerable attention — see for example, Saharay
(1986), Shah and Sinha (1990), Stewart and Bradley (1991), Heiligers and Sinha
(1993). Shah and Sinha (1990) and Heiligers and Sinha (1993) investigated opti-
mality aspects of the four types of structurally incomplete row-column designs,
constructed by Agrawal (1966), for which the row-column incidence matrix is
that of a balanced incomplete block design (BIBD). In most cases Agrawal de-
signs admit a completely symmetric (c.s.) C-matrix for each classification (i.e.
treatment, row or column). In view of the very strong optimality of BIBD’s one
would expect them to be optimal. Interestingly enough, Shah and Sinha (1990)
and Heiligers and Sinha (1993) came up with better designs for some values of v .
For the specific v × v row column set up with empty cells throughout the princi-
pal diagonal, used for comparing v treatments, Shah and Sinha (1990) obtained
better designs for v = 7 with respect to (w.r.t) the D-optimality criterion and
conjectured that Agrawal designs would be A-optimal for all v. In the present ar-
ticle we restrict our attention to this sort of structurally incomplete row-column
set up and examine the prospect of A- and E-optimality of Agrawal designs. It
is shown in Section 3 that there exist designs which strongly dominate Agrawal
designs for all v ≥ 4 and are therefore to be preferred to the latter designs
w.r.t any meaningful optimality criterion. Finally, these dominating designs are
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proven to be E-optimal for v ≥ 4 within the entire class and A- and D-optimal
for 4 ≤ v ≤ 14 within the binary and equireplicate class of connected row-column
designs of the above structure. For larger values of v these designs are highly
A- and D-efficient. The methods of constructing these designs are discussed in
Section 4.

2. Preliminaries

Let d denote a design used for comparing v treatments applied to experi-
mental units arranged in v rows and v columns such that in each row and in
each column there is exactly one empty cell. Without loss of generality (w.l.o.g),
the rows and the columns of the experimental set up can be rearranged so that
the row-column incidence structure assumes the form J − I. Throughout the
paper we assume the usual fixed effects additive model with uncorrelated and
homoscedastic errors. For a design d, let Ld = ((ldhj)), Md = ((mdhj)) and
Nd = J − I stand, respectively, for treatment-row, treatment-column and row-
column incidence matrices. The C-matrix for treatment effects of such a design
d can be written as (cf. Saharay (1986))

Cd = Drd
− (LdL

′
d)/v − (MdM

′
d)/v − ((Ld + Md)(Ld + Md)′)/v(v − 2)

+ (rdr
′
d)/(v − 1)(v − 2), (2.1)

where Drd
= diag(rd1, . . . , rdv), rd = (rd1, . . . , rdv) and rdi = replication of treat-

ment i.
Let Ω denote the class of all connected v × v (v ≥ 4) row-column designs

described above and V denote the set of v treatments. Any design d∈ Ω is said
to be binary if both Ld and Md are (0,1)-matrices. Let 0 = λd0 < λd1 ≤ λd2 ≤
· · · ≤ λd(v−1) denote the eigenvalues of the Cd matrix. A design d� is said to be
A-, D- and E-optimal in a relevant class Ω0 if it minimizes

∑v−1
i=1 λ−1

di ,
∏v−1

i=1 λ−1
di

and λ−1
d1 respectively among the designs in Ω0. The A- and D-efficiency of d ∈ Ω0

is defined to be
∑

λ−1
d�i/

∑
λ−1

di and {∏ λ−1
d�i/

∏
λ−1

di }1/(v−1) respectively. A design
d1 ∈ Ω is said to strongly dominate another design d2 if Cd1 − Cd2 is n.n.d.. We
refer to Shah and Sinha (1989) for a detailed discussion on optimality criteria.

Let P be a permutation matrix of order v which can be written in the form
P = [ei1 : ei2 : . . . : eiv ] where ei is a v × 1 vector with 1 at the ith position and
0’s at other positions. Then there exists a permutation π(P ) of {1, . . . , v} taking
j to ij, 1 ≤ j ≤ v. Whenever there is exactly one cycle in π(P ), we call P a cyclic
permutation matrix. Using the properties of P and π(P ) (see e.g. Birkhoff and
MacLane (1977) and Hohn (1957)) the following theorems, helpful in the sequel,
are immediate.

Theorem 2.1. The eigenvalues of a cyclic permutation matrix P of order v are
given by µj = cos 2πj/v + i sin 2πj/v, 0 ≤ j ≤ v − 1.
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Theorem 2.2. Let P be a permutation matrix of order v and π(P ) be a product
of k disjoint cycles of s distinct lengths, nt being the multiplicity of cycle length
lt, 1 ≤ t ≤ s,

∑s
i=1 ni = k and

∑s
i=1 nili = v. Then the eigenvalues of P are given

by µtj = cos 2πj/lt + i sin 2πj/lt, 1 ≤ t ≤ s, 0 ≤ j ≤ lt − 1, with multiplicity nt.

Lemma 2.3. Let P be a permutation matrix of order v. Then 2I − (P + P
′
) is

n.n.d..

Proof. The result follows immediately using the Cauchy Schwartz inequality for
all x ∈ R

v,

x′(P + P ′)x = x′Px + x′P ′x ≤‖ x ‖ ‖ Px ‖ + ‖ x ‖ ‖ P ′x ‖= 2x′x.

3. Designs Dominating Agrawal Designs

Agrawal (1966) constructed designs for v ≥ 4, (henceforth denoted by dA)
based on his method 3 with NdA

= LdA
= MdA

= J − I, which yields

CdA
= (v(v − 3)/(v − 2))(I − J/v). (3.1)

A simple way to construct dA is to start with a Latin Square design of order v

with diagonal elements all different and then to delete the diagonal.
Let d� ∈ Ω be a design with

Ld� = J − I = LdA
and Md� = J − P, (3.2)

where P is a cyclic permutation matrix of order v different from the identity
matrix. From (2.1) and (3.1),

Cd� = CdA
+ (1/v(v − 2))(2I − (P + P ′)). (3.3)

Using Lemma 2.3, it follows that Cd� − CdA
is n.n.d. and nonzero. This sug-

gests that d� is to be preferred to dA with respect to any meaningful optimality
criterion. In the following, we establish that d� is E-optimal and highly A- and
D-efficient. The various bounds that have been used in this context are listed
below:

λd1 ≤ (v/(v − 1))min
h∈V

Cdhh. (3.4)

Lemma 3.1. For given positive integers p and t, the minimum of
∑p

i=1 x2
i subject

to
∑p

i=1 xi = t, where the xi’s are nonnegative integers, is obtained when t−p[t/p]
of the xi’s are equal to [t/p] + 1, and p − t + p[t/p] of the xi’s are equal to [t/p].
([t/p] is the greatest integer ≤ t/p).
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Lemma 3.2. For given positive integer p ≥ 3, the minimum value of
∑p

i=1 x2
i

subject to
∑p

i=1 xi = p−1, where the xi’s are nonnegative integers and xi ≥ 2 for
at least one i, is equal to p + 1. It is attained when two of the xi’s are 0, p − 3
of the xi’s are 1 and one xi is 2.

Proof. For any feasible x = (x1, . . . , xp)

p∑
i=1

x2
i =

p∑
i=1

xi(xi − 1)

︸ ︷︷ ︸
≥2

+p − 1 ≥ p + 1

and
∑p

i=1 x2
i = p + 1 for the particular xi’s described in the lemma.

Theorem 3.3. Suppose that for given v, d� defined by (3.2) exists. Then d� is
E-optimal in Ω.

Proof. Let us partition the collection of designs of Ω in the following way:

Ω1 = {d : d ∈ Ω, d is equireplicate and binary},
Ω2 = {d : d ∈ Ω, d is equireplicate and nonbinary},
Ω3 = {d : d ∈ Ω, d is nonequireplicate}.

We organize our proof in three steps.
Step 1. Let d be a design in Ω1. Since there are exactly v − 1 feasible cells in
each row and in each column and rdi = r̄ = v − 1 for all i, note that

Ld = J − P1d and Md = J − P2d, (3.5)

where P1d and P2d are permutation matrices of order v. Using (2.1) and Lemma
2.3 it can be easily verified that

Cd = (v(v − 3)/(v − 2))(I − J/v) + (1/v(v − 2))(2I − (P1dP
′

2d + P2dP
′

1d))

= CdA
+ Ad ≥ CdA

,

where Ad = (1/v(v−2))(2I − (P1dP
′

2d +P2dP
′

1d)) and P1dP
′

2d = Qd (say) is again
a permutation matrix. Let the notations used in the context of Theorem 2.2 hold
for Qd. Then the eigenvalues of Ad are

θij = (2/v(v − 2))(1 − cos 2πj/li), 0 ≤ j ≤ li − 1, 1 ≤ i ≤ s,

with multiplicity ni. Note that θi0 = 0, 1 ≤ i ≤ s and
∑s

i=1 ni = k. Since CdA

and Ad commute, these two matrices can be simultaneously diagonalised and
hence the nonzero eigenvalues of Cd are obtained by adding v(v − 3)/(v − 2) to
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the θij’s, (i, j) �= (1, 0) (assuming w.l.o.g that the eigenvectors corresponding to
the eigenvalue 0 of CdA

and the eigenvalue θ10(= 0) of Ad are the same). Thus,

λd1 =

{
v(v − 3)/(v − 2) = λdA1, for k ≥ 2,
v(v − 3)/(v − 2) + (2/v(v − 2))(1 − cos 2π/v), for k = 1.

(3.6)

Note that d� corresponds to k = 1. Thus d� is E-best in Ω1.
Step 2. Suppose d is a design in Ω2. Relying on (2.1), we obtain

Cdhh = r̄−
v∑

j=1

l2dhj/v−
v∑

j=1

m2
dhj/v−

v∑
j=1

(ldhj +mdhj)2/v(v−2)+ r̄2/(v−1)(v−2).

(3.7)
Since d is nonbinary, using Lemmas 3.1 and 3.2, we get for some treatment h0 ∈ V,

v∑
j=1

l2dh0j +
v∑

j=1

m2
dh0j ≥ (v − 1) + (v + 1) = 2v

and
v∑

j=1

(ldh0j + mdh0j)2 ≥ 4v − 6.

Applying these two bounds in (3.7), note that

Cdh0h0 ≤ (v3 − 4v2 + v + 6)/v(v − 2) ≤ (v3 − 4v2 + 3v)/v(v − 2) = CdAh0h0

for all v ≥ 4. Thus, (3.4) and the fact that CdA
is c.s. yield

λd1 ≤ (v/(v − 1))CdAh0h0 = λdA1 < λd�1. (3.8)

Thus d� is E-better than any design in Ω2.
Step 3. Finally, for a design d ∈ Ω3 we see that there exists a treatment h0, such
that rdh0 < r̄ = v − 1 and, using (3.4),

λd1 ≤ (v/(v − 1))Cdh0h0. (3.9)

We now obtain an upper bound for Cdh0h0 referring to Saharay (1986), p.51. Let
g be a function defined by

g(r) = max
{d:d∈Ω,rdh=r}

Cdhh (3.10)

Saharay (1986) derived that

g(r) =

{
g1(r), if 1 ≤ r < v/2,
g2(r), if v/2 ≤ r ≤ v − 1,

(3.11)
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where

g1(r) = r2/(v − 1)(v − 2) + r(v2 − 4v + 2)/v(v − 2),
g2(r) = r2/(v − 1)(v − 2) + r(v2 − 4v − 2)/v(v − 2) + 2/(v − 2).

It can be easily checked that g1 and g2 are nondecreasing functions in r, 1 ≤ r ≤
v − 1 and

g1(v/2) = g2(v/2), if v is even,

g1((v − 1)/2) < g2((v + 1)/2), if v is odd.
(3.12)

Using (3.9), (3.10), (3.11) and the properties of g1 and g2 we conclude the proof
as follows:

λd1 ≤ (v/(v−1))g(rdh0) ≤ (v/(v−1))g2(v−2) ≤ v(v−3)/(v−2) = λdA1 < λd�1.

4. Construction of d�

In this section, we develop systematic methods of constructing d�. For con-
venience, the rows, columns and treatments are numbered as 0, 1, . . . , v − 1.

Case(i): v even
We construct d� by assigning treatment symbol x(mod v) to the (i, j)th cell

as indicated below:

cell x

0 ≤ i < v − 2 0 ≤ j < i i + j + 1
i < j ≤ v − 1 i + j

i = v − 2 0 ≤ j ≤ v/2 − 2 2j
v/2 − 1 ≤ j ≤ v − 3 2j + 1

j = v − 1 v − 3
i = v − 1 0 ≤ j ≤ v/2 − 2 2j + 1

v/2 − 1 ≤ j ≤ v − 2 2j

Case(ii): v odd
In this case, we first make an array Av×v by assigning treatment symbols to

the first (v−2) rows following the rule described just above. The remaining cells
of A are filled as shown below:

cell x

i = v − 2 0 ≤ j ≤ v − 3, j �= (v − 5)/2 2j
j = (v − 5)/2 v − 4

j = v − 1 v − 3
i = v − 1 0 ≤ j ≤ v − 3, j �= (v − 5)/2 2j + 1

j = (v − 5)/2 v − 5
j = v − 2 v − 4
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Finally, d� is obtained from A by interchanging treatment symbols v − 5 and
v − 3 in the column numbers 0, 2, 4, . . . , 2(p− 1) and 4p when v = 4p + 1, and in
the column numbers 2p, 2p + 2, . . . , 4p when v = 4p + 3.

In both cases, it can be easily verified that in d�, treatment i does not occur
in the ith row as well as in the (i + 1)th (mod v) column, 0 ≤ i ≤ v − 1, and
hence (3.2) is ensured.

Example 1.

d� :

v = 8
- 1 2 3 4 5 6 7
2 - 3 4 5 6 7 0
3 4 - 5 6 7 0 1
4 5 6 - 7 0 1 2
5 6 7 0 - 1 2 3
6 7 0 1 2 - 3 4
0 2 4 7 1 3 - 5
1 3 5 6 0 2 4 -

d� :

v = 7
- 1 4 3 2 5 6
2 - 3 4 5 6 0
3 4 - 5 6 0 1
4 5 6 - 0 1 2
5 6 0 1 - 2 3
0 3 2 6 1 - 4
1 2 5 0 4 3 -

Remark. It is interesting to note that for v = 7, d� is A- and D-better than the
nonequireplicate design proposed by Shah and Sinha (1990).

5. Concluding Remarks

It is clear that d� is not completely symmetric and has maximum tr(Cd) in
the binary and equireplicate class Ω1. A computer search for A- and D-optimal
designs for v ≤ 20 within Ω1 indicates that d� remains A- and D-optimal for
4 ≤ v ≤ 14, whereas from v = 15 onwards the structures of A- and D-optimal
designs depend on v . For example, for v = 15, d0 with Ld0 = J − I,Md0 =
J − P0, π

(P0) = π6π9 is A- and D-optimal, whereas for v = 16, d� is A-optimal,
d0 with Ld0 = J − I,Md0 = J −P0, π

(P0) = π5π11 is D-optimal. However, the A-
and D-efficiencies of d� in Ω1 turn out to be greater than 0.99 for v ≥ 15. The
determination of exact A- and D-optimal designs in Ω is still an open problem.
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