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Abstract: Runs and patterns in a sequence of Bernoulli trials and multi-state trials

have broadly been used for various purposes and in many areas of statistics and

applied probability. Recently, Fu and Koutras (1994) developed a new method

based on finite Markov chain imbedding technique to study the exact distributions

for the number of specified runs and patterns in a sequence of Bernoulli trials.
In this manuscript, a “forward and backward principle” for the method of finite

Markov chain imbedding is introduced to study the exact and joint distributions

for the numbers of runs and patterns in a sequence of multi-state trials. Waiting

time distribution for a pattern is also obtained.
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1. Introduction

Run statistics and patterns in a sequence of Bernoulli trials have been suc-
cessfully used in various areas, such as hypothesis testing (run-test, Wald and
Wolfowitz (1940) and Walsh (1965)), statistical quality control (Mosteller (1941)
and Wolfowitz (1943)), DNA sequencing, psychology, and ecology (Schwager
(1983)). The distribution theory of runs seems to have started at the end of
the nineteenth century (Stevens (1939)). There were a considerable amount
of research works on the distribution theory of runs around 1940, for example,
Wishart and Hirsheld (1936), Cochran (1938), Mood (1940), Wald and Wolfowitz
(1940) and Wolfowitz (1943). Most of the research during this period was focused
on the study of the conditional distributions of runs given the total number of
successes. There was very little research on the exact and limiting distributions
of runs during the period between 1950 and 1970. However, there were some very
interesting approximate formulae for the distributions of runs and patterns de-
veloped during this period (Walsh (1965) and Gibbons (1985)). During the late
1980’s and early 1990’s , this area became very active again. Recent publications
in this area are mainly focused on studying the exact and limiting distributions
for certain patterns and runs in a sequence of independent identically distributed
(i.i.d.) Bernoulli trials.
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The number Nn,k of non-overlapping consecutive k successes (in the sense of
Feller’s counting (1968, Ch. XIII)) in a sequence of Bernoulli trials is probably
one of the most studied run statistic. In the context of distribution theory, the
distribution of Nn,k is called a binomial distribution of order k. The run statistic
Nn,k also plays an even more important role in finding the distributions for other
runs. Its distribution has been applied successfully in various areas, especially
to the reliabilities of some engineering systems. For example the probability
of Nn,k = 0 is the reliability of a consecutive-k-out-of-n : F system and the
tail probability of Nn,k < m is the reliability of a m-consecutive-k-out-of-n : F

system. It is heavily studied by many researchers in the area of reliability theory.
Traditionally, combinatorial methods were used to find the exact distribu-

tions for the numbers of runs and patterns. Even in the case of i.i.d. Bernoulli
trials, the formulae for the distributions of runs and patterns are often complex
and tedious. It is usually difficult to extend those i.i.d. results by combinatorial
methods to a sequence of independent but non-identical Bernoulli trials, or to
extend to a more complex case such as a sequence of m-step Markov dependent
multi-state trials. Recently, Fu and Koutras (1994) took a Markov chain ap-
proach to study the exact distributions for the numbers of runs and patterns
in a sequence of Bernoulli trials. Their ideas were largely borrowed from the
sequence of papers by Fu (1986) and Chao and Fu (1989, 1991) for studying the
reliabilities of linearly connected engineering systems. The exact distribution of
a specified run statistic is studied under the framework of a finite Markov chain,
and is expressed in terms of its transition probability matrices. In that paper,
they have obtained the exact distributions of five often used run statistics in a
sequence of i.i.d. Bernoulli trials (viz., the number En,k of success runs of size
exactly k, the number Gn,k of success runs of size greater than or equal to k,
the number Nn,k of non-overlapping consecutive k successes, the number Mn,k

of overlapping consecutive k successes, and the length Ln of the longest success
run).

Until recently, there were not many general results on the exact and limit-
ing distributions for runs and patterns associated with a sequence of multi-state
trials. This was probably due to the complexity of combinatorial analysis in the
case of multi-state trials. Schwager (1983) gave a very interesting paper that
studied the probability of a simple run (run containing one or two symbols) in
a sequence of n multi-state trials each of which has s (s ≥ 2) possible outcomes
(symbols) by using the recursive method of renewal equations. He argued that
the recursive approach is superior to the generating function approach (see Feller
(1968), Ch. XIII) to treat the runs in the latter can only be used for the multiple
runs (viz., runs containing more than two symbols) and the generalized multi-
ple runs (viz., a collection of runs) for the i.i.d. multi-state trials. For finding
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the exact and joint distributions of runs under independent but non-identical
multi-state trials or Markov dependent multi-state trials, both methods become
tedious and intractable. There have been no general theorems to deal with those
dependent multi-state trials.

There were also considerable applications of waiting time (sooner or later)
distribution of a specified run to various areas of statistics, especially biostatis-
tics and quality control. Most of these results were focused on i.i.d. Bernoulli
trials (see Hahn and Gage (1983), Benevento (1984), Ebneshahrashoob and So-
bel (1990), and Balasubramanian, Viveros and Balakrishnan (1993)). There were
very few general results regarding the waiting time distribution for the case of
multi-state trials and there was no result in Markov dependent multi-state trials.

This article mainly introduces a “forward and backward principle” for the
method of finite Markov chain imbedding developed by Fu and Koutras (1994) to
study the exact and joint distributions for the runs and patterns in four different
cases; (1) i.i.d., (2) independent but non-identical, (3) homogeneous Markov
dependent, and (4) non-homogeneous Markov dependent sequences of multi-state
trials. It also demonstrates that this method could be used to obtain the waiting
time distribution of a specified run.

The rest of this manuscript is organized in the following ways. In Section 2,
the method of Markov chain imbedding for finding the exact distribution of runs is
introduced. In Section 3, the “forward and backward principle” for constructing
a Markov chain associated with a specified run in a sequence of multi-state trials
is systematically developed. Section 4 studies mainly the marginal and joint
distributions for success runs and failure runs in a sequence of Bernoulli trails.
Section 5 gives a general result regarding the waiting time distribution of the
mth occurrence of a specified pattern. In Section 6, several numerical examples
are given to illustrate the main results. In Section 7, several technical remarks,
discussions and possible extensions are given.

2. Finite Markov Chain Imbedding

Let Z1, . . . , Zn be a sequence of n i.i.d. multi-state trials, each of which
has s (s ≥ 2) states (or symbols), labeled b1, . . . , bs and their corresponding
probabilities p1, . . . , ps of occurring. Throughout this section, we denote the
random variable Xn(Xn = φ(Z1, . . . , Zn)) by the number of runs (or patterns)
in a sequence of n multi-state trials. For a given positive integer n, let Γn =
{0, 1, . . . , n} be a finite index set and Ω = {a1, . . . , am} be a state space having
m states.

Definition 2.1. The random variable Xn = φ(Z1, . . . , Zn), the number of a
specified runs occurring in a sequence of n multi-state trials Z1, . . . , Zn, is finite
Markov chain imbeddable if
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(i) there exists a finite Markov chain {Yt, t ∈ Γn} defined on a finite state space
Ω with transition matrices Mt, t ∈ Γn, and
(ii) there exists a partition {Cx, x = 0, 1, . . . , l} on the state space Ω (where Cx

and l may depend on n), such that, for every x = 0, 1, . . . , l,

P (Xn = x) = P (Yn ∈ Cx). (2.1)

It is well known that the probabilistic behavior of a Markov chain is uniquely
characterized by its own transition matrices. The following specially constructed
formula (2.2) for computing the probability of Yn ∈ Cx introduced by Fu and
Koutras (1994) is a matrix version of the Chapman-Kolmogorov Theorem. It
has been successfully used to obtain the exact distribution (also moments and
generating function) for the number of runs (or patterns) in Bernoulli trials.
It will play an even more important role for developing the distribution of the
number of runs in a sequence of multi-state trials. For this reason, we repeat the
formula here (see Fu and Koutras (1994) for details).

Let {Yt,Ω,Mt : t ∈ Γn} be a Markov chain with initial probabilities π0 =
(p1, . . . , pm), where pj = P (Y0 = aj), for j = 1, . . . ,m, U(ai) = (0, . . . , 0, 1, 0,
. . . , 0) be a unit vector with 1 at ith place and 0 elsewhere. For given n, if Xn is
finite Markov chain imbeddable, then

P (Xn = x) = πo

( n∏
t=1

Mt

)
U ′(Cx), (2.2)

where U(Cx) =
∑

ai∈Cx
U(ai). Similarly, the moments and the generating func-

tion of the random variable Xn can be obtained by replacing the vector U ′(Cx)
in (2.2) with vectors V ′

r and W ′(s) respectively, where Vr =
∑l

x=0 xrU(Cx) and
W (s) =

∑l
x=0 sxU(Cx).

Remark. The random variable Xn is finite Markov chain imbeddable for every
n that does not imply the sequence {Xn} is a Markov chain.

3. Forward and Backward Principle

The Markov chain imbedding technique for finding the distribution of a spec-
ified run introduced by Fu and Koutras (1994) for Bernoulli trials involves basi-
cally three essential steps: (i) the construction of a proper state space Ω based on
the structure of the specified run, (ii) the construction of a finite Markov chain
and its transition probability matrices, and (iii) the construction of a partition
{Cx} on the state space Ω which is one to one corresponding to the random
variables Xn in the sense that P (Xn = x) = P (Yn ∈ Cx) for all x. Even in the
case of a sequence of i.i.d. Bernoulli trials, the task of finding the exact distribu-
tion of a specified pattern (run) by using the Markov chain imbedding technique
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may not always be trivial. There is no good definition about what is a pattern
(or run). Wolfowitz (1943) wrote “ · · · we shall not give a general definition
here, because new advances and application of new criteria to new problems will
probably soon render most definitions obsolete”. In this manuscript we consider
mainly two types of often used patterns:

Definition 3.1. Λ is a simple pattern if Λ is composed of a specified sequence
of k symbols, i.e. Λ = bi1 , . . . , bik (the length of the pattern k is fixed, and the
symbols in the pattern are allowed to be repeated).

Define Λ1 ∪ Λ2 to be either the pattern Λ1 occurred or the pattern Λ2 oc-
curred.

Definition 3.2. Λ is a compound pattern if it is a union of m distinct simple
patterns, i.e. Λ = Λ1 ∪ . . . ∪ Λm (m is fixed).

To find the exact distribution for a specified pattern not only requires a
deep understanding of the structure of the specified pattern but also its counting
procedure throughout the sequence of n multi-state trials. In order to facilitate
our study of the general finite Markov chain imbedding technique for simple
and compound patterns in multi-state trials without heavy mathematics, let
us consider a sequence of n i.i.d. three-state trials Z1, . . . , Zn, each of which
has three possible outcomes (symbols), labeled b1, b2, and b3 with corresponding
probabilities p1, p2, and p3 of occurring. Suppose we are interested in finding
the exact distribution of the random variable Xn, the number of non-overlapping
specified simple patterns Λ = b1b1b2 in a sequence of n three-state trials.

In the following we introduce the forward and backward principle for the
finite Markov chain imbedding technique to find the exact distribution of a given
simple pattern Λ.

(i) Decompose the pattern Λ = b1b1b2 forward into three sub-patterns labeled
0, 1 = b1, and 2 = b1b1, where the label “0” stands for neither sub-pattern “1”
nor sub-pattern “2”. We shall refer to these three sub-patterns’ 0, 1, and 2 as
ending blocks.

(ii) Let ω = (z1, . . . , zn) be a realization of a sequence of n three-state trials
where zi is the outcome of the ith trials. We define the Markov chain {Yt : t =
1, . . . , n} operating on ω as Yt(ω) = (u, v) for every t = 1, . . . , n, where

u = the total number of non-overlapping patterns Λ that occurred in the
first t trials (counting forward from the first trials to the tth trials),

v = the sub-pattern (ending block), counting backward from t.

The following diagram illustrates the definitions of u and v in a sequence of t

trials:
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For example, let us consider a realization ω = (b3b1b1b2b1b1b3) of a sequence
of seven three-state trials. Applying the forward and backward principle, then
the realization of the imbedded Markov chain Yt on ω is given by {Y1(ω) = (0, 0),
Y2(ω) = (0, 1), Y3(ω) = (0, 2), Y4(ω) = (1, 0), Y5(ω) = (1, 1), Y6(ω) = (1, 2) and
Y7(ω) = (1, 0)}. Note that for every given ω, the realization of the imbedded
Markov chain Yt(ω) = (u, v) is uniquely by determined by (i) and (ii) under
non-overlapping counting.

Based on (i) and (ii), the state space Ω associated with the imbedded Markov
chain is defined by

Ω = {(u, v) : u = 0, 1, . . . , l, and v = 0, 1, . . . , k − 1} (3.1)

with m = (l + 1)k states, where k is the length of the simple pattern Λ and
l = [n/k] is the maximum number of patterns Λ possible in the sequence of n

multi-state trials.
(iii) For t = 1, . . . , n, the transition probabilities of the transition matrix Mt

is determined by the following two equations : for u = 0, 1, . . . , l − 1,

P (Yt = (u + 1, 0)|Yt−1 = (u, k − 1)) = pj , (3.2)

where pj is the probability of bj the last symbol of the specified pattern Λ, for
u = 0, 1, . . . , l and v, v′ = 0, 1, . . . , k − 1,

P (Yt = (u, v′)|Yt−1 = (u, v)) =
∑

v→v′
pi, (3.3)

where
∑

v→v′ sums over all pi corresponding to bi of which the ending block v is
changed to the ending block v′, and zero otherwise.

(iv) The partition {Cx = [(x, v) : (x, v) ∈ Ω, v = 0, 1, . . . , k − 1], for x =
0, 1, . . . , l} on Ω is one-to-one corresponding to the random variable Xn in the
sense that P (Xn = x) = P (Yn ∈ Cx) for every x = 0, 1, . . . , l.

It follows from our construction that the transition probabilities given by
(3.2) and (3.3) depend only on Yt−1 = (u, v); hence the sequence {Yt} is a
Markov chain. The four steps (i), (ii), (iii), and (iv) of construction mentioned
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above establish that the random variable Xn, the number of simple patterns Λ in
a sequence of n independent multi-state trials, is finite Markov chain imbeddable.

For our example of n = 7 and Λ = b1b1b2, it follows from the forward and
backward principle that the imbedded Markov chain {Yt : t = 1, . . . , 7} defined
on the state space Ω = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}
has transition probability matrices

Mt =




p2 + p3 p1 0 | 0 0 0 | 0 0 0

p2 + p3 0 p1 | 0 0 0 | 0 0 0

p3 0 p1 | p2 0 0 | 0 0 0

−−− − − | − − − − − | − − − − −
0 0 0 | p2 + p3 p1 0 | 0 0 0

0 0 0 | p2 + p3 0 p1 | 0 0 0

0 0 0 | p3 0 p1 | p2 0 0

−−−− − − | − − − − − | − − − − −
0 0 0 | 0 0 0 | p2 + p3 p1 0

0 0 0 | 0 0 0 | p2 + p3 0 p1

0 0 0 | 0 0 0 | 0 0 1




(3.4)

for t = 1, 2, . . . , 7. The partition associated with the random variable X7 is
generated by the subsets Cx = {(x, v) : v = 0, 1, 2}, x = 0, 1, 2. The distribution
of X7 could be easily computed by using the equation (2.2). The numerical result
is given in Section 6.

To demonstrate the usefulness of this approach for the compound pattern, let
us consider an example of n = 5 and the specified compound pattern Λ = Λ1∪Λ2

being a union of two simple patterns Λ1 = b1b2 and Λ2 = b3b1. We are interested
in the distribution of the random variable X5, the number of patterns either
Λ1 or Λ2 occurring in a sequence of five i.i.d. three-state trials. Note that the
compound pattern Λ1 ∪ Λ2 can be decomposed into 0, 1 = b1, and 2 = b3 three
ending blocks, where the ending block “0” stands for neither the ending block
“1” nor the ending block “2”. The imbedded Markov chain associated with the
compound pattern has a state space Ω = {(u, v) : u = 0, 1, 2 and v = 0, 1, 2} and
transition probability matrices

Mt =




p2 p1 p3 | 0 0 0 | 0 0 0

0 p1 p3 | p2 0 0 | 0 0 0

p2 0 p3 | p1 0 0 | 0 0 0

− − − | − − − | − − −
0 0 0 | p2 p1 p3 | 0 0 0

0 0 0 | 0 p1 p3 | p2 0 0

0 0 0 | p2 0 p3 | p1 0 0

− − − | − − − | − − −
0 0 0 | 0 0 0 | p2 p1 p3

0 0 0 | 0 0 0 | 0 1 0

0 0 0 | 0 0 0 | 0 0 1




(3.5)
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for t = 1, . . . , 5. The numerical results are given in Section 6.
With some modifications of the forward and backward principle, the method

could also be extended to a sequence of homogeneous (or non-homogeneous)
Markov dependent multi-state trials. We provide the following example. Let
{Zi; i = 1, . . . , n} be a three-state {a, b, c} homogeneous Markov chain with a
3 × 3 transition probability matrix (pij), where i, j = a, b, and c. Let Λ = aa

be the pattern of interest and the random variable Xn(Λ) be the number of
patterns Λ in a sequence of n Markov dependent trials. Define the state space
Ω = {(x, y) : x = 0, 1, . . . , [n/2], and y = a∗, a, b, c} and partition {Cx = [(x, y) :
y = a∗, a, b, c], for x = 0, 1, . . . , [n/2]}. For every t and ω = (z1, . . . , zn), define
Yt(ω) = (x, y), where

x = number of a full pattern Λ in the sequence z1, . . . , zt,

y =




a∗, if a full pattern Λ occurs at the tth trial in non-overlapping,

a, if a half pattern occurs at the tth trial in non-overlapping,

b or c, if the tth trial Zt = b or c respectively.

We give the three key cases of transition probabilities of Yt+1 = (u, v) given
Yt = (x, y) below; for x = 0, 1, . . . , ([n/2] − 1),

(i) P (Yt+1 = (x + 1, a∗)|Yt = (x, a)) = paa,
(ii) P (Yt+1 = (x, a)|Yt = (x, a∗)) = paa,

and
(iii) P (Yt+1 = (x, v)|Yt = (x, y)) = pyv, for y = b, c, and v = a, b, and c,

and leave the remaining cases to the readers. The exact distribution of Xn(Λ)
can be obtained by equation (2.2) with ease.

For n s-state (s ≥ 2) trials, the total number of possible realizations {ω =
(z1, . . . , zn)} is sn which tends to infinity exponentially fast. When n the number
of trials is relatively large, say n ≥ 50, the total number of possible realizations
becomes extremely large and the computer cannot handle the case. For the case
of a simple pattern, the forward and backward principle classifies a realization ω

according to the number of patterns occurring in the realization and its ending
block. It reduces the number of states to a linear function of n (at most m = (l+
1)k states). This reduction is significant and makes the computation manageable.

4. Exact and Joint Distributions of Runs in Bernoulli Trials

In this section, the “forward and backward principle” and the Markov chain
imbedding technique are used to study the marginal and joint distributions of the
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random variable R(n, S), the number of success runs, and the random variable
R(n,F ), the number of failure runs, under three different types of Bernoulli
trials; (i) i.i.d., (ii) independent but not identically distributed, and (iii) one-step
homogeneous or non-homogeneous Markov chain dependency.

4.1. Exact distributions

Let Z1, . . . , Zn be n i.i.d. Bernoulli trial and for each trials with probability
p(0 < p < 1) for S (Success) and probability q (q = 1 − p) for F (Failure).

(i) In the sequential counting procedure, the pattern “success run” can be
decomposed into two ending blocks (or sub-patterns) F and S respectively (it
means that a sequence ends with either F or S).

(ii) For 1 ≤ t ≤ n, define the Markov chain Yt(ω) = (u, v), with the under-
standing that the sequence ω has u success runs with an ending block v (v = F

or S) in the first t trials. Therefore the state space Ω can be defined as

Ω = {(0, F )} ∩ {(u, v) : u = 1, . . . , [(n + 1)/2] and v = S,F}, (4.1)

where the state (0, F ) indicates that either all the outcomes are failures or when
the system is at the initial time, t = 0. The partition of the state space Ω
associated with the random variable R(n, S) is given by

{C0, C1, . . . , Cl; l = [(n + 1)/2]}, (4.2)

where C0 = {(0, F )} and Cu = {(u, S) and (u, F )}, for u = 1, . . . , l.
(iii) The transition probability matrix associated with the Markov chain is

(0, F ) (1, S) (1, F ) · · · · · · (l, S) (l, F )

M(S) =

(0, F )
(1, S)
(1, F )

...

...
(l, S)
(l, F )




q p 0 · · · 0
0 p q 0 · · · 0

0
. . . q p 0 0

...
. . . . . . . . . . . .

...
0 0 q p 0
0 · · · 0 p q

0 0 0 · · · 0 0 1



, (4.3)

where the states (u, v) are arranged lexicographically. It is a (2l + 1) × (2l + 1)
stochastic matrix. Given π0 = (1, 0, . . . , 0), it follows from our construction and
equation (2.2) that the distribution of success runs is specified by the following
equation, for r = 0, 1, . . . , l,

P (R(n, S) = r) = π0M
n(S)U ′(Cr). (4.4)
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For independent but non-identically distributed Bernoulli trials with pi and
qi being success and failure probabilities respectively, the exact distribution of a
success run can be represented by,

P (R(n, S) = r) = π0

( n∏
t=1

Mn(S)
)
U ′(Cr) for r = 0, 1, . . . , l, (4.5)

where the transition probability matrix Mt(S) has the same form as M(S) except
that p is replaced by pt and q is replaced by qt.

Further the result can also be easily extended to a sequence of one-step
homogeneous Markov dependent Bernoulli trials {Zt : t = 1, . . . , n} having a
transition probability matrix

A =

(
pSS pSF

pFS pFF

)
. (4.6)

Given the initial condition that P (Z1 = S) = p and P (Z1 = F ) = q, the exact
distribution of success runs can also be represented by the equation (4.5) with
M1 = M(S) and

Mt =




pFF pFS

pSS pSF 0
pFF pFS

. . . . . .
. . . . . .

0 pSS pSF

1




for t = 2, 3, . . . , n. (4.7)

The above results (4.4), (4.5) and (4.7) can be easily extended to the distri-
bution of a failure run R(n,F ) by interchanging the S with F . Note that all the
results derived from this method are simple and tractable whether they are in a
sequence of i.i.d., or non-identical, or one-step homogeneous Markov dependent
Bernoulli trials. They differ only in the transition matrices which are rather
minor.

4.2. Joint distribution

Let R(n) be the total number of success runs and failure runs in a sequence
of n Bernoulli trials. It follows that for every n

R(n) = R(n, S) + R(n,F ). (4.8)
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Note that the random variables R(n, S) and R(n,F ) are highly related in the
following ways. If there are x of success runs, then there can only be x+ 1, x, or
x+1 of failure runs. If R(n) = 2x is an even number, then R(n, S) = R(n,F ) = x,
and if R(n) = 2x−1 is an odd number, then either R(n, S)+1 = R(n,F ) = x or
in the situation R(n, S) = R(n,F )+ 1 = x. Hence, for any sequence of Bernoulli
trials it can only be classified into one for the following four types of states:
(i) (x, x − 1) being a sequence which has x success runs and (x − 1) failure runs
with an ending block S.
(ii) (x, x + 1) being a sequence which has x success runs and (x + 1) failure runs
with an ending block F .
(iii) (x, x, F ) being a sequence which has x success runs and x failure runs with
an ending block F .
(iv) (x, x, S) being a sequence which has x success runs and x failure runs with
an ending block S.

For finding the distribution of R(n), we could first find the joint distribution
of R(n, S) and R(n,F ), then project the joint distribution of (R(n, S), R(n,F ))
on the partition generated by R(n, S) + R(n,F ).

Let {Yt} be a Markov chain defined on the state space specified by (i) to
(iv),

Ω = {(1, 0), (0, 1), (1, 1, S), (1, 1, F ), . . . , (l, 1, S), (l, 1, F )}. (4.9)

For each ω = (SSFS . . . FF ), we define Yt(ω) = (the number of success runs, the
number of failure runs, ending sub-pattern) as an element of Ω. In the case of
independent but non-identical Bernoulli trials, the definition of Yt, t = 1, . . . , n
yields the initial distribution π1 = (p1, q1, 0, . . . , 0) of Y1 and the transition prob-
ability matrices for t = 2, 3, . . . , n

Mt =

(1, 0)
(0, 1)

(1, 1, S)
(1, 1, F )

·
·
·

(l, l − 1)
(l − 1, l)
(l, l, S)
(l, l, F )




pt 0 0 qt

qt pt 0 0 0
pt 0 0 qt

qt pt

· · · ·
· · · ·

· · · ·
pt 0 0 qt

qt pt 0
0 1 0

1




. (4.10)

The exact distribution of the total number of runs can be represented by

P (R(n) = r) = (p1, q1, 0, . . . , 0)
( n∏

t=2

Mt

)
U ′(Cr), for r = 1, . . . , l, (4.11)
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where Cr = {(r/2, r/2, S), (r/2, r/2, F )}, if r is an even number, and Cr =
{((r + 1)/2, (r − 1)/2), ((r − 1)/2, (r + 1)/2)}, if r is an odd number.

The marginal distributions of R(n, S) and R(n,F ) can also be obtained by
projecting the joint distribution to the partitions generated by random variables
R(n, S) and R(n,F ) respectively. Again, with some simple modifications, the
result (4.11) also holds for the both homogeneous and non-homogeneous Markov
dependent Bernoulli trials.

5. Waiting Time Distribution

Consider a simple pattern Λ = bi1 , . . . , bik composed of a sequence of k

specified symbols, bi1 , . . . , and bik . The pattern Λ can always be decomposed
forward as k + 1 ending blocks 0,1 = bi1 , . . . , k − 1 = bi1 , . . . , bik . We define the
state space Ωm,k associated with the pattern Λ as

Ωm,k = {(x, y) : x = 0, 1, . . . ,m − 1 and y = 0, 1, . . . , k − 1} ∪ {α}, (5.1)

where the α is an absorbing state. Construct a Markov chain {Yt : t = 1, . . . , n}
on the state space Ωm,k with

Yt(ω) =




(x, y), if there are x Λ patterns with an ending block y in the
first t trials,

α, if there are m or more than m Λ patterns in the first t

trials,

and the transition probability matrix

Mt(m) =

(0, 0)
(0, 1)

...
(m − 1, k − 1)
−−−−−−−

α




|
|

p(x,y),(u,v)(t) | p(x,y),α(t)
|

−− −−−−− − − −−−−
0 · · · 0 | 1



, (5.2)

where α is an absorbing state and Mt(m) is a (mk + 1) × (mk + 1) matrix
whose transition probabilities p(x,y),(u,v)(t) and p(x,y),α(t) are determined by the
equation (3.2) and (3.3). Let Xn(Λ) be the number of patterns occurring in a
sequence of n multi-state trials and W (m,Λ) be the waiting time ( the number
of trials required) for the mth (m = 1, 2, . . .) pattern to have occurred. For
example, W (1,Λ) = 5 means the first time the pattern Λ occurred at the 5th
trial.
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Given Λ, m and n(mk ≤ n), it follows from the definitions that the two
random variables Xn(Λ) and W (m,Λ) are one-to-one related in the following
way:

W (m,Λ) ≤ n if and only if Xn(Λ) ≥ m. (5.3)

Since the exact distribution of Xn(Λ) can be obtained by using the method of
Markov chain imbedding, hence the relationship (5.3) yields the distribution for
the waiting time W (m,Λ):

P (W (m,Λ) = n) = π0

( n−1∏
t=1

Mt(m)
)
(I − Mn(m))U ′(m) (5.4)

for n ≥ m × k, where π0 = (1, 0, . . . , 0) is a 1 × (km + 1) vector, Mt(m) is given
by (5.2), k is the length of the pattern Λ, and U ′(m) =

∑m−1
x=0 U ′(Cx).

By properly defining the transition matrix, this general theorem covers many
well-known results about the waiting time distributions given by Hahn and Gage
(1983), Benevento (1984), Ebneshahrashoob and Sobel (1990), Balassubrama-
nian, Viveros and Balakrishnan (1993), and Fu and Koutras (1994). For ex-
ample, let Λ = SS . . . SS be a pattern of consecutive k successes in a sequence
of i.i.d. Bernoulli trials having probabilities p and q for success and failure re-
spectively. The simple pattern Λ = SS . . . SS of consecutive k successes can be
decomposed into k ending blocks 0 = F , 1 = S, 2 = SS, . . . , k − 1 consecutive
successes. The state space Ω = {(0, y) : y = 0, 1, . . . , k − 1} ∪ {α} contains k + 1
states having α as absorbing state. For the i.i.d. Bernoulli trials, the transition
matrices defined by (5.2) become,

M =

(0, 0)
(0, 1)
·
·

(0, k − 1)
α




q p · · · 0 0
q 0 p · · 0 0
· · · · · · ·
· · · · · · ·
q 0 0 · · 0 p

0 0 0 · · 0 1




for all t = 1, . . . , n. (5.5)

It follows immediately from (5.4) that the distribution of the waiting time for
the first occurrence of the pattern Λ = SS . . . SS, is given by

P (W (1,Λ) = n) = π0M
n−kU ′pk, (5.6)

where π0 = (1, 0, . . . , 0), U = (1, 0, . . . , 0), and M is given by (5.5). By the same
token, the above result (5.4) is also true for the compound pattern.
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6. Numerical Examples

Several numerical examples are given here to illustrate our method and re-
sults developed in previous sections.

Example 1. Consider 10 i.i.d. Bernoulli trials each with p = 0.4 and q =
1 − p = 0.6. By (2.2) and transition matrix (4.10), the following Table 1 gives
the joint distribution and marginal distributions of success runs and failure runs
respectively.

Table 1. Joint and marginal distributions of runs R(10, S) and R(10, F )

R(10, F ) 1 2 3 4 5 R(10, S)
R(10, S)

0 .006047 .006047
1 .000105 .023557 .073503 .097165
2 .020726 .169656 .175211 .365593
3 .079272 .225210 .096082 .400564
4 .054057 .059985 .009157 .123199
5 .005839 .000796 .006635

R(10, F ) .000105 .050330 .322431 .454478 .161907 .009953 1.0000

Projecting the joint distribution of R(10, S) and R(10, F ) on the partition
generated by R(10) = R(10, S) + R(10, F ), this yields the distribution of the
total number of success and failure runs shown by the following Table 2.

Table 2. Distribution of the total number R(10) of runs in ten trials.

R(10) 1 2 3 4 5 6 7 8 9 10

Prob. .006152 .023557 .094229 .169656 .254483 .225210 .150139 .059985 .001505 .000796

Example 2. Consider a sequence of i.i.d. trials each of them having three states
b1, b2, and b3 and corresponding probabilities of occurring p1 = p2 = 0.3 and
p3 = 0.4. Suppose we are interested in finding the exact distribution for the
number of a specified compound pattern Λ = b1b2 ∪ b3b1 in n trials. Applying
the forward and backward principle, this yields a Markov chain Yt defined on
the state space Ω = {(u, v) : u = 0, 1, . . . , l, l = [n/2] and v = 0, 1, 2}, having
transition matrices

Mt =




A B 0 0 0 0
0 A B 0 0 0
· · · · · ·
· · · · · ·
· · · · · ·
0 0 0 0 A B

0 0 0 0 0 A∗



, for t = 1, . . . , n,
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where

A =


 0.3 0.3 0.4

0 0.3 0.4
0.3 0 0.4


, B =


 0 0 0

0.3 0 0
0.3 0 0


, and A∗ =


 0.3 0.3 0.4

0 1 0
0 0 1


,

and the partition {Cx = [(x, v) : v = 0, 1, 2];x = 0, 1, . . . , l.}. The following Table
3 provides numerical results for the distributions of the number of patterns Λ for
n = 7, 11, and 21.

Table 3. Exact distributions for the number of patterns Λ in n = 7, 11 and 21
three-state trials.

n x p(x) n x p(x)
7 0 .241887 21 0 .0092905

1 .468508 1 .0600785
2 .257324 2 .1680750
3 .032281 3 .2654140

4 .2587810
11 0 .095315 5 .1600370

1 .307973 6 .0620535
2 .365549 7 .0143712
3 .189825 8 .0017987
4 .039238 9 .0000999
5 .002100 10 .155×107

The above numerical results were done with Mathematica on an IBM 386
PC. For each case, the CPU time is rather minimum usually it takes no more
than a few seconds even in the case of n = 21.

7. Discussions

The results about the exact distributions of number of patterns obtained by
combinatorial, generating function, and recursive equation methods for i.i.d.
multi-state trials are usually difficult to extend to Markov chain dependent trials.
The recursive method of the renewal equation (see Schwager (1983)) could not be
used for searching the joint distribution of runs. On the contrary, from examples
in the previous sections, the results for i.i.d. trials obtained by using the Markov
chain imbedding technique can be easily extended to trials with one-step (or
m-step) Markov chain dependency. The basic idea of handling the one step (or
m-step) Markov chain dependence is to have an additional coordinate to indicate
the outcome of the last trial (or last m trials).

Suppose Xn(Λ), the number of patterns Λ in a sequence of n multi-state
trials, could be imbedded into a finite Markov chain {Yt : t = 1, . . . , n} defined
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on the state space

Ω = {(x, y) : x = 0, . . . , ln and y = 0, . . . ,mx − 1} = {Cx : x = 0, . . . , ln}, (7.1)

where ln = [n/k], k is the length of the pattern and mx and card(Cx), and having
transition matrices of the following form

Mt =




At(0) Bt(0)
At(1) Bt(1) 0

· ·
· ·

· ·
· ·

0 · Bt(ln−1)
At(ln)




(7.2)

for t = 1, . . . , n. There are many runs and patterns of interest whose transition
matrices do have the above form. For instance, all the transition matrices asso-
ciated with the run statistics Nn,k,Mn,k, Gn,k, (see Fu and Koutras (1994)) and
patterns Λ = b1b1b2 and Λ = b1b2 ∪ b3b1 (see Section 3) all have the form (7.2).

Denote vectors, αt(x) = (P (Yt = (x, 0)), . . . , P (Yt = (x,m − 1))) for t =
1, . . . , n. The probability of Xn(Λ) = x can be represented as

P (Xn(Λ) = x) = αn(x)1′, for all x = 0, 1, . . . , ln, (7.3)

where 1′ = (1, . . . , 1)′. Since Mt = Kt + Ht, where Kt is a diagonal matrix with
components At(x), for x = 0, 1, . . . , ln and Ht is an upper diagonal matrix with
components Bt(x), for x = 0, 1, . . . , ln−1, it follows from the fact π0(

∏t
j=1 Mj) =

π0(
∏t−1

j=1 Mj)Mt for every t = 1, . . . , n that the following recursive equations hold


αt(0) = αt−1(0)At(0)

αt(x) = αt−1(x − 1)Bt(x − 1) + αt−1(x)At(x), x = 1, . . . , ln,

(7.4)

for every t = 1, . . . , n. The above recursive formula (7.4) provides an efficient way
to compute the probabilities P (Xn(Λ) = x) = αn(x)1′, for all x = 0, 1, . . . , ln,
especially when the dimension of the transition matrix Mt is so large that the
formula π0(

∏n
t=1 Mt)U ′(Cx) takes longer time to do the computation. From back-

ward multiplication, the finite Markov chain imbedding technique always provides
a recursive equation like (7.4) automatically for the distribution of Xn(Λ) which
could not be easily obtained through the combinatorial or renewal equation meth-
ods. The recursive equation (7.4) provides a very useful tool to study the limiting
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distribution for the random variable Xn(Λ). In spite of their potential interests,
we will not pursuit these here.

The Markov chain imbedding method can also be modified to study the
distributions of certain runs and patterns on permutations of n symbols or per-
mutations of several symbols alike. The extensions of the method for these cases
are often non-trivial. Let {πn = (3, 2, n, . . . , 5)} be all permutation of n inte-
gers 1,2,. . . , n. Define the index functions of successions for i = 1, . . . , n − 1,
Ii(πn) = 1 if πn(i)+1 = πn(i+1), and 0 otherwise, where πn(i) is the number of
ith coordinate of the permutation πn and the number of successions in a random
permutation, Xn(πn) =

∑n
i=1 Ii(πn). By extending the Markov chain imbedding

technique to random permutation, Fu (1995) obtained the exact distribution for
the random variable Xn(πn), the number of successes, and also showed that the
limiting distribution is a Poisson distribution with parameter λ = 1.

For the compound pattern Λ = ∪s−1
i=1Λi, where Λi = bibi+1, i = 1, . . . , s−1, if

s = n and pi = 1/n for all i = 1, . . . , n we believe that the random variable Xn(Λ)
also has a Poisson distribution as n → ∞ for the same reason that the number
of successions in a random permutation of n integers has a Poisson distribution
as n → ∞. In practice, this means that when the number of states s in each
trial is very large, then the distribution of the number of patterns Λ can be
approximated by a Poisson distribution.

The finite Markov chain imbedding may not be unique. Often there are
several different ways to imbed a random variable. To find the best imbedded
Markov chain it requires experience and understanding the structure of the count-
ing process associated with the random variable. Sometimes in order to obtain
the distribution of a pattern Λ1, it may be more efficient and simpler to find the
joint distribution of pattern Λ1 and Λ2 first, then project the joint distribution
on the partition {Cx} associated with the pattern Λ1. This can be seen from the
procedure for finding the distribution of the total number of runs given in the
Section 4.

With today’s high speed computers, the exact distributions (also means and
variances) of runs and patterns can be obtained by the method of finite Markov
chain imbedding with ease. All our numerical results in Section 6 were carried
out on an IBM 386 PC with less then one minute in CPU time in each case.
For very large n, if the probability of pattern Λ occurring is very small, say
having an order of λ/n, then the distribution of the pattern Λ occurring can be
approximated by a Poisson distribution with parameter λ. This fact had been
broadly used in studying reliabilities of certain engineering systems when the
failure probabilities of components are very small, for instance the reliability of
consecutive-k-out-of-n : F system.
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