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Abstract: Model selection methods are developed using the approach of hypothesis

testing. The technique of cross-validation has been used to make the procedures

fully automated. Simulation results are presented to show that the proposed meth-

ods work better than Akaike’s FPE, Mallows’ Cp or Schwartz’s BIC.
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1. Introduction

Model selection in regression and classification problems is one of the most
important topics is statistics. This is so because the exact model is rarely known
in practice. However, a class of reasonable models is often available and the
statistical problem then is to select a model that is considered to be the most
“appropriate”. For instance, one of the most important issues in a multiple
regression problem is to select a subset of variables that explains the response
variable well. In fitting polynomials one faces the problem of deciding which
degree polynomial describes the regression function best. In our discussion here
we deal with standard Gauss-Markov type model fitting and we describe the
columns as variables. It is worth noting that a large class of statistical problems
including analysis of variance models, multiple regression, spline or polynomial
(or any other finite element method) fitting can be viewed as Gauss-Markov
models.

Suppose we have a Gauss-Markov model with p variables. Two of the most
well known methods of model selection are Akaike’s FPE (1970) and Mallows’
Cp (1973). It is possible to view Akaike’s method as a special case of Mallows’.
The asymptotic theory of these model selection techniques have been studied in
great detail by many authors including Shibata (1981), Li (1987), Burman and
Chen (1989). All these theoretical studies assume that the number of competing
models grows with the sample size n, but only algebraically as fast as n (i.e.,
the number of competing models is no larger than ns for some s > 0). If the
order of importance of the variables is known, then the number of competing
models is p. A case like this is covered by the mathematical theories developed
in the literature. However, in the case of stepwise or all subsets methods, the
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number of competing models grows exponentially with p. In such cases it is
no longer clear that Akaike’s or Mallows’ methods are appropriate, especially
when p is not small. Let us discuss heuristically where these methods could have
problems. The methods of Akaike and Mallows assume that when we fit a model
with k variables, the loss in degrees of freedom is k. It is however not at all clear
that only k degrees of freedom is lost in fitting a k-variables model obtained in a
stepwise procedure. Intuitively, the loss of degrees of freedom should be higher
than k especially when p is large. Our simulation results bring out these points
clearly. The method proposed in this paper does not suffer from these difficulties.

We approach the problem of model selection here through the classical
method of testing. Suppose that we have under consideration a linear model
Y = Xβ + ε, where the columns are orthonormal. Note that any Gauss-Markov
model can be reformulated to have an orthogonal design after a suitable or-
thogonalization. Also, there are a number of methods in the literature where
orthogonal covariables arise rather naturally, e.g., principal components regres-
sion, regression with wavelets etc.. In the standard framework of hypothesis
testing, variable xj is kept in the model if |β̂j/sβ̂j

| is larger than a prespecified

value, where sβ̂j
is the estimated standard error of β̂j . However, selection of an

appropriate model would require simultaneous testing and the problems associ-
ated with simultaneous tests are well known. Our goal here is to use the classical
procedure for model building except that we approach it from the point of view
of model fitting rather than hypotheses testing. In our framework, we let the
data choose the cutoff point associated with the tests and thus make it a fully
automated procedure. We also present a more general method in which, instead
of “acceptance” or “rejection”, a smoothed version of the estimated β parameters
are used. Our simulation results show that our methods work better than those
of Akaike or Mallows (or their modifications due to Shibata (1984) and Zhang
(1992)).

Various methods of model selection including the proposed method are dis-
cussed in Section 2. Some simulation results are presented in Section 3. Finally,
in the appendix we obtain an approximation to the optimal smoothing function
used in defining our hypothesis-type method for model selection.

2. Methods of Model Selection

The basic model we look at is

Y = µ + ε,

where Y is the n dimensional vector of observations, µ is the vector of means and
ε is the error vector of i.i.d. errors with mean zero and variance σ2.
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Let us now assume that we have decided to fit the following linear model
with an orthogonal design

Y =
∑

1≤j≤p

xjβj + ε, (1)

where x1, . . . , xp are orthonormal. The form given in (1) arises naturally in
methods like principal components regression, regression with wavelets etc.. As
we have pointed out before, any Gauss-Markov model can be reexpressed in the
form given in (1) after a suitable orthogonalization. Note that no claim is being
made that the linear model we have decided to fit is correct. The statistical
problem here is to select the most appropriate submodel. We are especially
interested in the case when the number of variables p is not small compared to
the number of observations. It is important to point out that any Gauss-Markov
model can be rewritten in the form given above after a suitable orthogonalization.

We fit here a model of the form µ̂(c) =
∑

1≤j≤p xj β̂jI(|β̂j | > c) and our
goal is to choose that cutoff point c for which this fitted model is closest to
the true mean vector µ. Here I denotes the usual indicator function. Note
that the value of c determines which variables are kept in the model and which
variables are deleted. We also generalize this by fitting a smooth model of the
form µ̂(c) =

∑
1≤j≤p xjβ̂jG(|β̂j |/c), where G is a known distribution function on

[0,∞). It may also be worth noting here that the cutoff point c can be viewed as
a smoothing parameter. Our simulation results show that models with a smooth
G can often lead to better model fitting. Whether variable deletion is allowed
depends on the form of G. We have used two different smooth distribution
functions (one of which allows variable deletion) in our simulations and both of
them provide quite satisfactory model fitting (see Section 3). Since simulation
results show a smooth G leads to a better estimate for µ than an unsmooth
one, it leaves open the possibility that some function G is better than others.
If we restrict ourselves to distribution functions with support on a compact set,
then, under appropriate conditions, it can be shown that there is a distribution
function G∗ for which E[

∑
1≤t≤n{µ̂t(c)−µt}2] is minimum. In the Appendix, we

have given an approximation to the optimum G∗. However, it is difficult to find
an exact expression for G∗. This issue needs further research.

Let L(c) denote the squared error distance between the fitted vector µ̂(c)
and µ, i.e.,

L(c) =
∑

1≤t≤n

{µ̂t(c) − µt}2. (2)

Clearly, the best value of the cutoff point c∗ is obtained when L attains its
minimum. However, we do not know c∗ since L involves the unknown mean
vector µ and hence we need to estimate L. So if L̂ is an estimate of L and L̂
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attains its minimum at ĉ, then µ̂(ĉ) is declared to be the fitted mean vector. In
order to estimate L we use the method of cross validation developed by Stone
(1974). Note that

L(c) =
∑

1≤t≤n

{µ̂t(c)}2 − 2
∑

1≤t≤n

µtµ̂t(c) +
∑

1≤t≤n

µ2
t .

The first term on the right hand side of the above expression is known. Since
the last term does not involve c it does not play any role in the minimization.
The second term is unknown and has to be estimated. Following Stone (1974)
we estimate

∑
1≤t≤n µ̂tµt(c) by

∑
1≤t≤n Ytµ̂

(−t)
t (c), where µ̂

(−t)
t (c) is the estimate

of µt obtained by deleting the tth case. So an estimate of L(c) is given by

L̂1(c) =
∑

1≤t≤n

{µ̂t(c)}2 − 2
∑

1≤t≤n

Ytµ̂
(−t)
t (c) +

∑
1≤t≤n

µ2
t . (3)

The second estimate of L is rather straightforward. Recall that the errors εt in
model (1) have variance σ2. Another estimate of L(c) is given by

L̂2(c) =
∑

1≤t≤n

{Yt − µ̂
(−t)
t (c)}2 − nσ2. (4)

The approximations L̂1 and L̂2 are quite reasonable and they are almost unbiased
for L(c) (see Burman (1994)). In a forthcoming paper we will discuss mathemat-
ically involved arguments about Shibata-type optimality of these estimates.

In order to develop the next two estimates we need to explain a little back-
ground. Let us first note that β̂j =

∑
1≤t≤n Ytxtj . It is easy to see that the mean

and variance of β̂j are βj and σ2 respectively. If we rank the absolute values
of β̂j in increasing order of magnitude, then we naturally obtain a sequence of
p models. The smallest model will include that variable which has the highest
absolute value of β̂’s. The next model will include those two variables with the
two highest absolute values of β̂’s and so on. Let us denote the kth fitted model
by µ̂k, k = 1, . . . , p. Stretching the notation a little, we will denote by L(k) the
squared error distance between the kth fitted model and the true mean vector µ.
So

L(k) =
∑

1≤t≤n

{µ̂kt − µt}2. (5)

Once again the best model is obtained by minimizing L(k) over 1 ≤ k ≤ p.
Since L involves the unknown mean vector µ, we need to estimate it. Following
Mallows (1973) we get an estimate of L(k) which is given by

L̂(k) =
∑

1≤t≤n

{Yt − µ̂kt}2 + 2kσ̂2,
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where σ̂2 is a reasonable estimate of σ2. If σ̂2 is taken to be the mean squared
error for the kth model, then one obtains Akaike’s final predictor error (FPE)
estimate of L(k). Shibata (1984) suggested using estimates of the form

L̂(k) =
∑

1≤t≤n

{Yt − µ̂kt}2 + λkσ̂2,

where λ is between 2 and 5, and σ̂2 is an estimate of σ2. We have obtained two
Shibata type criteria by using two different estimates of σ2. The first criterion
L̂3(k) is obtained by estimating σ2 by σ̂2

p, the mean square error for the largest
model involving all the variables. We get the second Shibata type criterion L̂4(k)
by employing Akaike’s idea of estimating σ2 by the mean square error of the kth
fitted model. These estimates are given by

L̂3(k) =
∑

1≤t≤n

{Yt − µ̂kt}2 + λkσ̂2
p (6)

L̂4(k) = [(n + (λ − 1)k)/(n − k)]
∑

1≤t≤n

{Yt − µ̂kt}2. (7)

Our simulation results show that Shibata-type estimates work well, but different
values of λ are needed for different cases. For instance λ = 2 is good in some
examples, but it can be quite inadequate for others. Similarly, λ = 8 seem to be
quite good in some cases, but can lead to very unsatisfactory results in others.
Typically, the larger the value of p the higher the value of λ is needed. But an
appropriate value of λ also depends on the coefficients βj . This makes it difficult
to use Shibata type estimates for model selection.

Finally, we write down the “Bayesian Information Criterion” (BIC) for model
selection due to Schwartz (1978). Let σ̂k = n−1 ∑

1≤t≤n{Yt − µ̂kt}2. Then the
BIC criterion for normal error model is

L̂(k) = n log(σ̂k) + (1/2) log(n)k.

A first order approximation will reveal that BIC is roughly equivalent to a Shibata
type criterion with λ = log(n). Our simulation results show that BIC sometimes
does well, but other times its performance is not satisfactory.

3. Numerical Results

3.1. An example

We first consider the problem of estimating a regression function from a data
set given in Chapter 1 of the book by Mardia, Kent and Bibby (1979). The data
consists of analysis(X) and statistics(Y ) scores of 88 students. This data was
analyzed in Burman and Chen (1989) using a kernel method. Here we consider
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estimating the regression function using the method outlined in Section 2. All
the analysis scores are between 9 and 70. We will consider a cubic spline with
10 equispaced knots between 5 and 75. Define the design matrix X by

xij = (Xi − 5)j−1, j = 1, . . . , 3, and
xij = (Xi − 5 − 70tj)3+, j = 4, . . . , 13, i = 1, . . . , 88,

where tj = (j − 4)/10, and u+ = max(u, 0) for any real number u. The columns
of X can be orthogonalized by many methods including Gram-Schmidt, QR,
singular value decomposition. Here we obtain an orthogonal basis by using the
singular value decomposition given in LINPACK subroutine. Note that since the
design matrix is of order 88 by 13, when we use our method given in Section 2, we
are in essence considering 213 models. This is in contrast to the method in which
one considers 13 models; where the kth model has k knots (either equispaced or
at the sample quantiles), k = 1, . . . , 13.

In order to get an idea about the range in which the smoothing parameter
c should be looked at, it is useful to have a rough estimate of σ (the standard
deviation of the errors εi’s). A preliminary estimate of σ is obtained by fitting
the full model and it turned out to be about 13. We calculate the criterion
function

∑
1≤t≤n{Yt − µ̂

(−t)
t (c)}2 = L̂2(c) + nσ2 for the values of c between 1

and 150 over a grid of 150 equispaced values. The criterion function attains its
minimum at ĉ = 22. Here we have used G2(u) = (u− .5)2+/[1+ (u− .5)2+], u > 0,
as our smoothing function. The raw data and the estimated regression function
are given in the graph below.

Raw data and fitted values
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3.2. Simulation results

In this section we present a number of results based on simulation in support
of our proposed estimates L̂1 and L̂2. The model we use is

Yt =
∑

1≤j≤p

xtjβj + εt, t = 1, . . . , 100,

where the vectors x1, . . . , xp are orthonormalized from p vectors on R100 with
entries as i.i.d. Uniform[0, 1] variates and εt’ are i.i.d. Normal(0, 1). Four differ-
ent values of p (5, 25, 50 and 75) have been considered here. For each value of
p, we have considered two different sets of values for the β’s:

(i) βj = 10/j, j = 1, . . . , p and (ii) βj = 10/j2, j = 1, . . . , p.

For each value of p and {βj}, we consider three estimates of the form

(I)
∑

1≤j≤p

xtj β̂jI(|β̂j | > c), (II)
∑

1≤j≤p

xtj β̂jG1(|β̂j |/c), and

(III)
∑

1≤j≤p

xtj β̂jG2(|β̂j |/c),

where G1(u) = u2/(1 + u2), and G2(u) = 0, 0 ≤ u ≤ .5, and G2(u) = (u −
.5)2/[1 + (u− .5)2] for u > .5. Note that a model fitting method with G1 retains
all the variables, whereas the use of G2 allows for variable deletion in a smooth
manner.

It is important to point out that all the models have been fitted without
any intercept term. For each p and {βj}, we calculate c∗ and k∗ which are
minimizers of L(c) and L(k) respectively (defined in (2) and (5) respectively).
Note that L(c∗) and L(k∗) should be the same. However, since we evaluate L(c)
at 51 values of c between 0 and 5, they turn out to be slighty different. We have
calculated the mean, median and standard deviations of L(c∗) and L(k∗). But
we report only the summary statistics for L(k∗).

Note that ĉ1 and ĉ2 are the minimizers of L̂1 and L̂2 respectively (defined
in (4) and (5)). Also ĉ2G1 and ĉ2G2 are the minimizers of L̂2 when smoothed
estimated (II) and (III) above are used. In the same way k̂BIC is defined to be
the minimizer of the BIC criterion. Performances of various criteria are judged
by the behaviour of L(ĉ1), L(ĉ2), L(ĉ2G1), L(ĉ2G2) and L(k̂BIC). Similarly, k̂3

and k̂4 are the minimizers of Shibata-type estimates L̂3 and L̂4 (defined in (6)
and (7)). We have calculated the summary statistics of L(k̂3) and L(k̂4) for
various values λ between 2 and 12. All the estimates given in the tables have
been calculated on the basis of 2500 repeats.
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Table 1. p = 5
Mean, standard deviation and median of the true error L for various model
selection methods

βj = 10/j, j = 1, . . . , 5 βj = 10/j2, j = 1, . . . , 5

Mean (SD) Median Mean (SD) Median
L(k∗) 4.91 (3.08) 4.31 3.72 (2.44) 3.03
L(ĉ1) 6.11 (4.12) 5.28 5.51 (3.38) 4.53
L(ĉ2) 6.20 (4.22) 5.33 5.51 (3.39) 4.50
L(ĉ2G1 ) 5.10 (3.32) 4.40 5.05 (3.05) 4.44
L(ĉ2G2 ) 5.14 (3.40) 4.41 5.34 (3.26) 4.50
L(ĉBIC) 9.46 (5.51) 8.52 6.25 (3.55) 5.97

λ = 2 L(k̂3) 6.16 (3.98) 5.47 5.36 (3.44) 4.30
L(k̂4) 6.09 (3.94) 5.39 5.34 (3.42) 4.29

λ = 4 L(k̂3) 8.62 (5.14) 7.63 6.02 (3.57) 5.20
L(k̂4) 8.12 (5.00) 7.18 5.97 (3.55) 5.12

λ = 6 L(k̂3) 11.61 (6.06) 10.97 6.75 (3.51) 8.04
L(k̂4) 10.54 (6.04) 9.93 6.63 (3.51) 8.04

λ = 8 L(k̂3) 14.50 (6.97) 12.78 7.41 (3.24) 8.14
L(k̂4) 12.95 (7.08) 11.56 7.25 (3.28) 8.12

λ = 10 L(k̂3) 17.31 (7.92) 16.08 7.98 (2.79) 8.24
L(k̂4) 15.35 (8.17) 13.28 7.78 (2.91) 8.21

λ = 12 L(k̂3) 19.85 (8.81) 21.43 8.41 (2.38) 8.33
L(k̂4) 17.68 (9.39) 15.88 8.22 (2.53) 8.28

Table 2. p = 25
Mean, standard deviation and median of the true error L for various model
selection methods

βj = 10/j, j = 1, . . . , 25 βj = 10/j2, j = 1, . . . , 25

Mean (SD) Median Mean (SD) Median
L(k∗) 21.07 (5.56) 20.45 5.91 (3.06) 5.40
L(ĉ1) 27.22 (7.30) 26.29 12.15 (8.10) 9.39
L(ĉ2) 27.76 (7.35) 26.74 11.24 (7.40) 9.05
L(ĉ2G1 ) 19.62 (5.90) 18.82 7.75 (3.67) 7.34
L(ĉ2G2 ) 21.70 (6.55) 20.73 7.89 (4.32) 7.77
L(ĉBIC) 27.60 (7.19) 26.62 11.06 (6.63) 9.53

λ = 2 L(k̂3) 26.00 (7.03) 25.11 16.97 (7.68) 16.24
L(k̂4) 25.76 (7.04) 24.85 18.23 (7.76) 17.44

λ = 4 L(k̂3) 27.17 (7.17) 26.16 11.74 (6.91) 10.68
L(k̂4) 26.79 (7.05) 26.02 12.86 (7.35) 11.78

λ = 6 L(k̂3) 28.93 (7.46) 27.86 9.39 (5.57) 8.57
L(k̂4) 28.15 (7.40) 27.05 10.00 (6.11) 8.74

λ = 8 L(k̂3) 30.74 (7.81) 29.20 8.64 (4.48) 8.43
L(k̂4) 30.10 (7.87) 28.73 8.85 (4.81) 8.46

λ = 10 L(k̂3) 32.63 (8.27) 31.82 8.67 (3.60) 8.47
L(k̂4) 32.24 (8.84) 31.18 8.61 (3.80) 8.46

λ = 12 L(k̂3) 34.85 (9.13) 35.86 8.82 (2.86) 8.55
L(k̂4) 34.59 (10.07) 35.62 8.73 (3.14) 8.51
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Table 3. p = 50
Mean, standard deviation and median of the true error L for various model
selection methods

βj = 10/j, j = 1, . . . , 50 βj = 10/j2, j = 1, . . . , 50

Mean (SD) Median Mean (SD) Median
L(k∗) 27.65 ( 5.94) 26.91 6.63 ( 3.13) 8.09
L(ĉ1) 37.58 (10.72) 36.39 14.53 (11.77) 9.81
L(ĉ2) 35.38 ( 9.29) 34.80 11.86 ( 8.19) 9.13
L(ĉ2G1 ) 26.34 ( 6.87) 25.40 9.61 ( 4.37) 8.89
L(ĉ2G2 ) 27.17 ( 7.01) 26.08 8.55 ( 3.85) 8.31
L(ĉBIC) 36.03 ( 9.51) 35.27 18.32 ( 9.99) 17.03

λ = 2 L(k̂3) 42.09 (10.10) 41.07 31.74 (11.18) 31.12
L(k̂4) 45.12 (10.20) 44.51 38.49 (11.15) 38.00

λ = 4 L(k̂3) 36.44 ( 9.59) 35.47 18.65 ( 9.88) 17.52
L(k̂4) 40.31 (10.36) 39.56 25.41 (12.11) 24.25

λ = 6 L(k̂3) 34.20 ( 8.81) 34.03 12.65 ( 7.74) 10.60
L(k̂4) 36.33 ( 9.86) 35.38 15.72 (10.00) 14.08

λ = 8 L(k̂3) 33.94 ( 8.37) 32.75 10.29 ( 5.93) 8.88
L(k̂4) 35.00 ( 9.10) 33.76 11.24 ( 7.20) 9.16

λ = 10 L(k̂3) 35.10 ( 8.74) 34.63 9.43 ( 4.48) 8.64
L(k̂4) 35.39 ( 9.21) 34.81 9.68 ( 5.11) 8.69

λ = 12 L(k̂3) 36.73 ( 9.24) 37.61 9.16 ( 3.44) 8.62
L(k̂4) 36.87 ( 9.92) 37.62 9.18 ( 3.82) 8.61

Table 4. p = 75
Mean, standard deviation and median of the true error L for various model selection
methods

βj = 10/j, j = 1, . . . , 75 βj = 10/j2, j = 1, . . . , 75

Mean (SD) Median Mean (SD) Median
L(k∗) 29.83 ( 6.26) 28.80 6.88 ( 3.02) 8.25
L(ĉ1) 43.73 (15.89) 39.33 16.84 (16.61) 9.35
L(ĉ2) 38.09 (10.02) 38.32 10.78 ( 6.80) 8.71
L(ĉ2G1 ) 33.63 ( 8.24) 32.78 11.16 ( 4.84) 10.40
L(ĉ2G2 ) 32.66 ( 8.24) 31.48 9.12 ( 3.88) 8.71
L(ĉBIC) 46.50 (13.31) 45.15 30.28 (14.67) 28.58

λ = 2 L(k̂3) 57.23 (13.65) 56.56 46.35 (15.33) 45.83
L(k̂4) 68.66 (13.24) 68.01 64.76 (13.85) 64.30

λ = 4 L(k̂3) 44.58 (12.65) 43.52 26.61 (13.93) 25.14
L(k̂4) 62.43 (14.87) 62.19 51.15 (18.60) 51.15

λ = 6 L(k̂3) 39.05 (10.84) 37.90 16.97 (10.93) 14.86
L(k̂4) 52.56 (17.17) 51.23 30.69 (21.02) 25.47

λ = 8 L(k̂3) 37.47 ( 9.71) 36.68 12.60 ( 8.22) 9.47
L(k̂4) 43.71 (15.89) 39.71 16.37 (14.10) 10.79

λ = 10 L(k̂3) 37.45 ( 9.41) 37.89 10.66 ( 6.25) 8.75
L(k̂4) 39.53 (12.65) 38.40 11.13 ( 8.11) 8.75

λ = 12 L(k̂3) 38.67 (10.31) 38.50 9.94 ( 5.88) 8.64
L(k̂4) 39.41 (11.48) 38.60 9.84 ( 6.23) 8.62
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It is clear that the best model is µ̂(c∗) [or µ̂(k∗) since µ̂(c∗) = µ̂(k∗)] and
hence L(c∗) is the smallest error we find between the true mean vector and any
fitted model. Note that when λ = 2, L̂3 and L̂4 are the Mallows and Akaike’s
estimates. The simulation results clearly show that Akaike’s or Mallows’ methods
do not work well when p is not small. The performances of Shibata-type estimates
are somewhat spotty. They are clearly good for some λ, but that “right” value
of λ varies from case to case. The performances of L(ĉ1) and L(ĉ2) are quite
good, but we believe they could be improved. The functions L̂1 and L̂2 are quite
rough. By using fairly simple smoothing methods, L̂1 and L̂2 could be smoothed
and then the behaviour of L(ĉ1) and L(ĉ2) might improve. The behaviour of the
BIC criterion is also spotty. In many cases it does well, but in other cases its
performance is not satisfactory. It is worth noting here that the performance of
L(ĉ2G1) and L(ĉ2G2) are perhaps the most satisfactory in all the cases. What
is more important is that it can be substantially better than all others in some
cases.

The simulation results clearly show that µ̂(ĉ1), µ̂(ĉ2) and µ̂(ĉ2G) are doing
uniformly well, with µ̂(ĉ2G1) and µ̂(ĉ2G2) clearly the best. The estimates obtained
using Akaike’s or Mallows’ methods can sometimes be very inadequate especially
when p is not small. The Shibata-type estimates do work well, but different
values of λ are needed for different cases. At this point of time there is no guide
to tell us which value of λ is appropriate for a given data set, and hence it is
difficult to recommend using Shibata-type criteria.
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Appendix. Optimal Choice of the Cutoff Point c and the Smoothing
Function G

The section will be devoted to a discussion on the choice of the cutoff point
c and the smoothing function G. There are a number of approaches to this
problem and we present only one of them. At this point of time we are unable
to provide a definitive answer on how to obtain the exact form of the optimum
G. This issue needs further research. Here we obtain an approximate value of
the optimal cutoff point c for a reasonably broad class of coefficients {βj} and
then we derive a form for the optimal smoothing function G. In order to save
space, we provide only an outline of the arguments and delete the mathematical
details.
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For the discussion here we change the notations a little. Assume here that
X ′X = nI and consider estimates of the form

µ̂t(c,G) =
∑

1≤j≤p

xtj β̂jG(
√

nβ̂j/c), t = 1, . . . , n.

We first find the value of the cutoff point c which minimizes L(c,G) = n−1 ∑
1≤t≤n

{µ̂t(c,G)−µt}2. Without loss of generality assume that βj ’s are nonnegative and∑
β2

j < ∞. Also assume that βj is given by βj = β(1/j), where β is a nonnegative
smooth function on [0, 1] with β(0) = 0. Let s be such that β(j)(0) = 0, j =
1, . . . , s − 1, β(s)(0) �= 0. Then, by Taylor series we get β(u) = dsu

s + O(us+1),
for some constant ds, 0 ≤ u ≤ 1. In order to keep the calculations simple, assume
that β(u) = us. Note that there is no need for s to be an integer. It is enough
to have s > 1/2 so that

∑
β2

j < ∞.
Consider the problem of estimating βj with an estimate of the form dβ̂j ,

where d is a constant. Then the quantity E[dβ̂j − βj ]2 is minimized at d =
β2

j /(σ2/n + β2
j ). This suggests that a reasonable weight function is of the form

G̃(u) = u2/(b+u2), where b is a constant. We show that, under some restrictions,
the optimal weight function is indeed of this form. In the subsequent discussion
we consider a weight function of the form G(u) = u2H(u), where H is square in-
tegrable and H(0) �= 0. Assuming that the errors in model (1) are i.i.d. N(0, σ2)
we get

L(c,G) =
∑

E{β̂jG(
√

nβ̂j/c)−βj}2 = n−1
∑

E{(Z + γj)G(Z/c+ γj/c)− γj}2,

(A.1)
where γj =

√
nβj and Z is a N(0, σ2) variable. Assuming that c → ∞ but

c/
√

n → 0, we get
∑[

E{(Z + γj)G(Z/c + γj/c)} − γj

]2

=
∑[

E{c−2(Z + γj)3H(Z/c + γj/c)} − γj

]2

≈
∑[

E{c−2(Z + γj)3H(γj/c)} − γj

]2

=
∑[

3c−2σ2γjH(γj/c) + γj{(γj/c)2H(γj/c) − γj}
]2

= 9c−4σ4
∑[

γjH(γj/c)
]2

+
∑

γ2
j

[
(γj/c)2H(γj/c) − γj

]2

+6c−2σ2
∑

γ2
j H(γj/c)

[
(γj/c)2H(γj/c) − γj

]
= I1 + I2 + I3, say.

Denoting the interval [(
√

n/c)p−s,
√

n/c] by T , we get

I1≈9c−4σ4
∫ p

1
[(
√

nu−s)H(
√

nu−s/c)]2du=9c−2σ4s−1(
√

n/c)1/s
∫

T
t1−1/sH2(t)dt.



600 PRABIR BURMAN

Similar arguments show

I2 ≈ s−1c2(
√

n/c)1/s
∫

T
t1−1/s[t2H(t) − 1]2dt

I3 ≈ 6σ2s−1(
√

n/c)1/s
∫

T
t1−1/sH(t)[t2H(t) − 1]dt.

Note that the interval T converges to (0,∞) as n → ∞. Assuming that J1(H) =∫ ∞
0 t1−1/sH2(t)dt < ∞ and J0(H) =

∫ ∞
0 t1−1/s[t2H(t) − 1]2dt < ∞, and by

keeping only the dominant term, which is I2 here, we get
∑[

E{(Z + γj)G(Z/c + γj/c) − γj}
]2 ≈ s−1c2(

√
n/c)1/sJ0(H). (A.2)

Similarly, if we also assume that J2(H) =
∫ ∞
0 t3−1/sH2(t)dt < ∞, then it can be

shown that by keeping only the dominant term the following is true
∑

Var
(
(Z + γj)G(Z/c + γj/c) − γj

)
≈ c−4p15σ6H2(0). (A.3)

Assume that p/n → τ , where 0 < τ ≤ 1. Combining (A.1), (A.2) and (A.3) we
get,

L(c,G) ≈ n−1(1/s)c2(
√

n/c)1/sJ0(H) + c−4τ15σ6H2(0).

It is easy to verify that L(c,G) is minimized at

c∗ = n1−1/(2s)[60τσ6H2(0)/{(2 − s−1)s−1}]s/(6s−1). (A.4)

By denoting r = (2s − 1)/(6s − 1), the value of the error L(c,G) at c = c∗ is

L(c∗, G) ≈ d0n
−2r[J0(H)]1−r[H2(0)]r [60τσ6/{(2 − s−1)s−1}]r(1.5s−1 − .25s−2).

The expression for L(c∗, G) given above tells us that in order to obtain the
optimal weight function we need to minimize the functional J0(H) with respect
to the square integrable function H, with the side condition H(0) = h0 �= 0.
However, this minimum is zero and it will be obvious from the following example.
Let Hδ(u) = u−2, u > δ, but Hδ(u) = h0, u ≤ δ. Then J0(Hδ) → 0 as δ → 0,
but J1(Hδ) and J2(Hδ) converge to ∞. However, the optimum value of c given
in (A.4) was obtained on the basis of the assumption that J1(H) and J2(H) are
finite. This suggests that we should minimize J0(H) subject to the constraints
that J1(H) and J2(H) are bounded. This leads to the following minimization
problem:
Minimize J0(H) + λ1J1(H) + λ2J2(H) subject to the constraint H(0) = h0. A
calculus of variations technique tells us that the minimum is attained at H∗(u) =
u3/(λ1u + λ2u

3 + u5). The constraint H(0) = h0 �= 0 forces λ1 = 0, λ2 = 1/h0.
Consequently, the optimal weight function is

G∗(u) = u2H∗(u) = u2/(1/h0 + u2).
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