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Abstract: A new goodness-of-fit test for Cox’s proportional hazards model is intro-

duced. The test is based on a transformation of the difference between nonpara-

metric and Cox model specific estimators of the doubly-cumulative hazard function

used by McKeague and Utikal (1991). The transformation is designed to give an

asymptotically distribution-free test. The test is shown to be consistent against all

alternatives except those in which the baseline hazard is linearly dependent on the

covariate.
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1. Introduction

Cox’s (1972) proportional hazards model specifies the conditional hazard
function of a survival time given a covariate z as λ(t|z) = λ0(t)eβ0z, where β0 is an
unknown regression parameter and λ0(t) is an unknown baseline hazard function.
Numerous goodness-of-fit tests and graphical techniques for checking specific
features of this model are available (see, e.g., the survey in Andersen, Borgan,
Gill and Keiding (1993), Ch. VII). The key features to check are proportional
hazards, i.e., λ(t|z) = λ0(t)r(z), where r(z) is some (unknown) relative risk
function, and log-linearity of the relative risk function, i.e., log r(z) = β0z.

Omnibus tests for detecting arbitrary departures from the Cox model have
been introduced recently, see McKeague and Utikal (1991) and Lin, Wei and
Ying (1993). However, the asymptotic null distributions in these tests are model
dependent and need to be estimated via Monte Carlo techniques.

In this paper we introduce a new goodness-of-fit test for the Cox model that
is asymptotically distribution-free and consistent against a large class of alterna-
tives. Our test is not omnibus, but it comes close to being so. Specifically, it is
consistent against all alternatives that are not of the form λ(t|z) = λ1(t, z)eβoz,
where λ1(t, z) is a linear function of z for each fixed t, i.e., λ1(t, z) = α0(t)+α1(t)z.
The asymptotic null distribution is of a standard form and Monte Carlo tech-
niques are not required. This property will be achieved via the transformation
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method of Khmaladze (1981, 1993). We restrict attention to continuous covari-
ates, but discrete covariates can be handled in an analogous fashion—see the
remarks following Theorem 3.1.

The approach is to transform the test statistic processX(t, z) =
√
n(Ã−Â) of

McKeague and Utikal (1991) in such a way that it converges weakly to Brownian
sheet. Here Ã is a nonparametric estimator of the doubly cumulative hazard
function A(t, z) =

∫ t
0

∫ z
0 λ(s|x) dxds, and Â is a Cox model based estimator of

A. Under the Cox model, X converges weakly to a Gaussian random field of the
form

m(t, z) =
∫ t

0

∫ z

0

√
hdW − b(z)

∫ t

0

∫ 1

0
g dW − c(t, z)

∫ 1

0

∫ 1

0
q dW, (1.1)

for (t, z) ∈ [0, 1]2, where W is a Brownian sheet on [0, 1]2 and h, b, c, g and q
are certain nonrandom functions. The Brownian sheet W is a continuous Gaus-
sian process with mean zero and covariance function cov(W (t, z),W (t′, z′)) =
min(t, t′)min(z, z′). The integrals with respect to W are defined in the L2 sense
(see Wong and Zakai (1974)).

We shall construct a transformation T that takes m to a Brownian sheet,
and provide an estimator T̂ of T such that T̂ (X) converges weakly to a Brownian
sheet. Then the Kolmogorov–Smirnov statistic computed from T̂ (X) will con-
verge weakly to sup |W (t, z)|. The exact distribution of the supremum of a Brow-
nian sheet is not known—only approximations are available (see Adler (1990)),
but critical values are easily obtained by simulation. McKeague, Nikabadze and
Sun (1995), henceforth MNS, found a transformation that takes Gaussian ran-
dom fields of the form (1.1), but with the last term missing, to a Brownian sheet.
They used such a transformation to develop an omnibus test for independence of
a survival time from a covariate. Another application, to nonparametric change-
point analysis, has been developed by McKeague and Sun (1996).

The transformation T constructed here is a composition T = J2 ◦ J1 of two
transformations of the type introduced in MNS. The explicit forms of J1 and
J2 are given in Section 2. Estimators Ĵ1, Ĵ2 of J1, J2 are given in Section 3,
as well as our main result showing that T̂ (X) = Ĵ2(Ĵ1(X)) converges weakly to
Brownian sheet. The proof of this result is given in the Appendix.

2. Transformations

In this section we construct the transformation T of m given by (1.1) to a
Brownian sheet. First we give the general form of the transformations constructed
by MNS that we intend to use. A transformation that takes the sum of the first
two terms of (1.1) to a Brownian sheet has the form

J(ξ)(t, z) =
∫ t

0

∫ z

0
f1 dξ −

∫ t

0

∫ 1

0
f2 dξ, (2.2)
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where f1, f2 are nonrandom functions, f2 depends implicitly on z, and ξ is
any function for which the above integrals are defined in the sense of weak net
integration (Hildebrandt (1963), Section III.8). A transformation of this type,
for other choices of f1 and f2, transforms to a Brownian sheet a process of the
formW−ηK, where η is any random variable andK is any absolutely continuous
nonrandom function of t and z.

Write m = m0−ηc, where m0 is the sum of the first two terms in m, and η is
the stochastic integral part of the last term in (1.1). Let J1 be a transformation
of the form (2.2) that takes m0 to a Brownian sheet B. By linearity of J1, we
can write J1(m) = B − ηK, where K = J1(c). Then let J2 transform B − ηK to
a Brownian sheet, so that T (m) = J2(J1(m)) is a Brownian sheet, as required.

We can explicitly write the pairs of functions (f (j)
1 , f

(j)
2 ), j = 1, 2 used in

J1 and J2, respectively, by referring to MNS (Proposition 2.1 and Theorem 2.1).
This gives f (1)

1 = h−1/2,

f
(1)
2 (s, u, z) = h−1/2(s, u)

∫ z∧u

0
Q(s, u, x) dx,

and f (2)
1 = 1,

f
(2)
2 (s, u, z) = k(s, u)

∫ z∧u

0

k(s, x)∫ 1
x k

2(s, v) dv
dx. (2.3)

Here k(s, x) = ∂2K/∂s∂x and

Q(s, u, x) =
h−

1
2 (s, u)b′(u)h−

1
2 (s, x)b′(x)∫ 1

x h
−1(s, v)(b′(v))2dv

.

An explicit formula for T is given in the Appendix. We assume that h is bounded,
positive and bounded away from zero. Also, the various derivatives of b,K and c
used above are assumed to exist, and the denominators in f (2)

2 and Q are assumed
to be finite and positive for x < 1.

According to the above discussion we can state the following result:

Theorem 2.1. The process T (m) is a Brownian sheet on [0, 1]2.

Recall from the Introduction that we are going to apply an estimated version
of the transformation T to the process X =

√
n(Ã−Â). First we show that T (X)

converges weakly to a Brownian sheet, which will follow from the continuous
mapping theorem provided that T is continuous on C2, the space of continuous
functions on [0, 1]2. We need to modify T slightly to make it continuous. Note
that the denominator in Q vanishes at x = 1; so to ensure continuity of J1 we
restrict the domain of J1(ξ)(·) to be [0, 1] × [0, ρ], where ρ < 1. This means that
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the domain of J2 must be restricted to functions defined on [0, 1] × [0, ρ], which
in turn forces us to modify J2 because the range of integration for the second
integral in (2.2) is [0, t] × [0, 1]. We replace J2 by

J2(ξ)(t, z) =
∫ t

0

∫ z

0
f

(2)
1 dξ −

∫ t

0

∫ ρ

0
f

(2)
2 dξ, (t, z) ∈ [0, 1] × [0, ρ], (2.4)

where f (2)
2 is now defined by replacing the denominator in (2.3) by

∫ ρ
x k

2(s, v) dv.
Inspection of the proof of Proposition 2.1 of MNS shows that J2(B − ηK) is a
Brownian sheet on [0, 1]× [0, ρ]. From now on, the transformations J1 and J2 in
T = J2 ◦ J1 are taken to be the modified versions just described. Then T is well-
defined as a map from C2 ∪ BV2 to D([0, 1] × [0, ρ]) and it is continuous on C2.
Here BV2 is the subspace of D[0, 1]2 consisting of functions ξ for which ξ, ξ(0, ·)
and ξ(·, 0) have bounded variation. By the continuous mapping theorem, T (X)
converges weakly to a Brownian sheet on [0, 1] × [0, ρ].

3. Cox Model Goodness-of-Fit Test

In this section we construct an estimator T̂ of the transformation T and
show that T̂ (X) converges weakly to a Brownian sheet. This will lead to our
distribution-free goodness-of-fit test for the Cox model. We also identify a class
of alternatives for which the test is consistent.

Some preliminaries are needed. First we set up our notation for the random
censorship model. Suppose that (Ui, Ci, Zi), i ≥ 1, are i.i.d. copies of a generic
triple (U,C,Z) consisting of a failure time U , a censoring time C, and a covariate
Z such that U and C are conditionally independent given Z. The conditional
hazard function of U given Z is denoted λ(t|z). The observations consist of the
(possibly right censored) failure times Ũi = min(Ui, Ci) and the failure indicators
δi = I(Ui ≤ Ci), for i = 1, . . . , n.

Next we define the estimators Ã and Â. As in McKeague and Utikal (1991),
partition the interval [0, 1] into dn covariate strata Ir = [xr−1, xr), r = 1, . . . , dn,
where xr = rwn and wn = 1/dn is the width of each stratum. Let Iz = Ir for
z ∈ Ir. The nonparametric estimator of the doubly cumulative hazard function
A is

Ã(t, z) =
∫ z

0

∫ t

0

N (n)(ds, x)
Y (n)(s, x)

dx,

where N (n)(t, z) =
∑n

i=1 I(Ũi ≤ t, δi = 1, Zi ∈ Iz) is the number of observed
failures and Y (n)(t, z) =

∑n
i=1 I(Ũi ≥ t, Zi ∈ Iz) is the size of the risk set at time

t, for the covariate stratum containing z. By convention, 1/0 = 0.
The Cox model based estimator of A is Â(t, z) = Λ̂0(t)

∫ z
0 e

β̂x dx, where β̂ is
Cox’s maximum partial likelihood estimator of β0 and Λ̂0 is Breslow’s estimator
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of the cumulative baseline hazard function Λ0(t) =
∫ t
0 λ0(s) ds. Suppose that

the covariate subdistribution function F (t, ·) = P (Z ≤ ·, Ũ ≥ t) has sub-density
f(t, ·) for each fixed t, that f is positive and continuous on [0, 1]2, and that
the baseline hazard function λ0 is Lipschitz. Also assume that nw2

n → 0 and
nw1+δ

n → ∞ for some 0 < δ < 1. Then, under the Cox model, McKeague and
Utikal (1991) showed that X =

√
n(Ã − Â) converges weakly to m defined by

(1.1), where h = λ/f , b(·) =
∫ ·
0 e

β0x dx, and

c(t, z) = Σ−1
[
Λ0(t)

∫ z

0
xeβ0x dx− b(z)

∫ t

0

(
s(1)(β0, u)
s(0)(β0, u)

)2

λ0(u) du
]
.

Here Σ−1 is the asymptotic variance of β̂, and s(0), s(1) are standard notations
from Andersen and Gill (1982).

3.1. The estimator T̂

Note that the transformation J1 has unknown components λ0, β0 and f . A
simple calculation shows that K = J1(c1), where c1 is first term in the definition
of c. Also note that Σ−1 appears as a factor in K due to its presence in c1,
but, being constant, it disappears from J2. Thus the only unknown components
of J2 are λ0, β0 and f . Hence, to estimate T , it suffices estimate these three
components of the model. Naturally, β̂ is used to estimate β0.

We shall need a uniformly consistent estimator of λ0. Moreover, methods
from stochastic calculus are to be applied to martingale integrals involving this
estimator, so it needs to be predictable. Following Ramlau-Hansen (1983), we
use a kernel estimator of the form

λ̂0(t) =
1
bn

∫ 1

0
κ

(
t− s

bn

)
dΛ̂0(s),

where bn is a bandwidth parameter, κ is a Lipschitz kernel function having sup-
port [0, 1] and integral 1. This estimator is predictable and can be shown to
be uniformly OP (bn)-consistent over intervals strictly contained within [0, 1] if
bn = n−δ, where 0 < δ < 1/4. Thus, to be able to use λ̂ we need to restrict
the entire analysis to a time interval strictly contained within [0, 1]. However, to
preserve the earlier notation we assume that [0, 1] is strictly contained within a
larger follow-up interval, say [−ε, 1 + ε], for some ε > 0, so that λ̂ is uniformly
consistent over the whole of [0, 1].

We estimate f in a similar fashion, using the kernel estimator

f̂(t, z) =
1
bn

∫ 1

0
κ

(
z − x

bn

)
dF̂ (t, x),
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where F̂ is the empirical estimator of F . It is readily shown, using the tightness
criterion in Bickel and Wichura (1971), that

√
n(F̂ − F ) converges weakly to a

Gaussian random field on [0, 1]2. This implies, using the technique of Ramlau-
Hansen (1983), Proof of Theorem 4.1.2, that f̂ is uniformly OP (bn)-consistent
over regions that are contained within [−ε, 1 + ε]× [0, 1] and bounded away from
its edges. To use f̂ we need to restrict the analysis to such a region. But again,
to preserve our earlier notation, we assume that the covariate data are collected
over the interval [−ε′, 1 + ε′], for some ε′ > 0, so that f̂ is uniformly consistent
over the whole of [0, 1]2. Note that this consistency holds for general λ, not only
for the Cox model.

Our estimator of T = T (f, λ0, β0) is T̂ = T (f̂ , λ̂0, β̂0).

3.2. The test statistic

Our goodness-of-fit test statistic is taken to be the Kolmogorov-Smirnov
statistic S = supt,z |T̂ (X)(t, z)|, where the supremum is over [0, 1]× [0, ρ0]. Here
ρ0 < ρ < 1. Note that we have enlarged the original unit square over which
data is collected in order to estimate T consistently, as discussed above. The
further restriction of z to [0, ρ0] is required to ensure that J2 is continuous, for
which the denominator in f (2)

2 , namely
∫ ρ
x k

2(s, v) dv, must be bounded away from
zero. The latter is guaranteed by restricting z to a smaller interval [0, ρ0], where
0 < ρ0 < ρ, and assuming that f and λ0 are bounded away from 0. To show that
the transformation T is a continuous map from C2 ∪BV2 to D([0, 1]× [0, ρ0]) we
further assume that f and λ0 are Lipschitz continuous and f ∈ BV2.

We now state the main result of the paper. The proof is given in the Ap-
pendix.

Theorem 3.1. Under the Cox model, T̂ (X) converges weakly to a Brownian
sheet in D([0, 1] × [0, ρ0]).

To calculate P -values based on S, refer to the distribution of S∗ =
supt,z |W (t, z)|, where the supremum is over [0, 1]× [0, ρ0]. This distribution can
be found accurately by simulation of Brownian sheet. For ρ0 = .9, the 5% critical
level is 2.2811.

Can we extend our approach to discrete covariates? A direct extension is not
possible because the assumption of a continuous covariate is crucial for obtaining
the Brownian sheet limit of the “test process” T̂ (X). This is comparable to the
situation in standard survival analysis where it is necessary to have a continuous
survival time to to be able to express the asymptotic distribution of the Nelson–
Aalen estimator in terms of a continuous time-changed Brownian motion. We
briefly indicate how discrete covariates can be handled using a modification of
our approach.
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For discrete covariates it is unnatural to integrate over z (as in Ã), but
rather one should consider each covariate level separately. Suppose that there
are p covariate levels z1, . . . , zp. The idea is to compare general and Cox-model
based estimators of the p-vector of cumulative conditional hazard functions

A(t) =
(∫ t

0
λ(s|z1) ds, . . . ,

∫ t

0
λ(s|zp) ds

)
.

The general estimator of the jth component of A(t) is of Nelson–Aalen type:

Ãj(t) =
∫ t

0

N (n)(ds, zj)
Y (n)(s, zj)

and the Cox-model based estimator is Âj(t) = Λ̂0(t)eβ̂zj . By adapting the proof
of Theorem 3.1 of McKeague and Utikal (1991), it can be shown that X ≡√
n(Ã − Â) converges weakly to a p-variate Gaussian process m that can be

expressed as a sum of stochastic integrals with respect to a p-dimensional Wiener
process W = (W1, . . . ,Wp). The form of m is analogous to (1.1) except that the
Brownian sheetW is replaced by W and there is no integration over the covariate.
Next, use an innovation martingale approach (cf. MNS, Section 2) to construct
a transformation T such that T(m) is a p-dimensional Wiener process. Let T̂j

be a consistent estimator of the jth component of T. Then the test statistic
to be used in the discrete covariate case is supt,j |T̂j(X)(t)|, which converges in
distribution to supt,j |Wj(t)|.

3.3. Consistency

First note that under general alternatives, β̂ and Λ̂0(t) converge in proba-
bility to some nonrandom β∗ and Λ∗

0(t)=
∫ t
0 λ

∗
0(s) ds, respectively (see Lin and

Wei (1989)). Thus Â(t, z) converges in probability to A∗(t, z) = Λ∗
0(t)

∫ z
0 e

β∗x dx.
Moreover, it can be seen that T̂ = T̂ (f̂ , λ̂0, β̂) estimates T ∗ = T (f, λ∗0, β∗) under
general alternatives. It follows (cf., MNS, Proof of Theorem 3.3) that our test is
consistent provided

T ∗(A−A∗)(t, z) 
= 0

for some (t, z) ∈ [0, 1] × [0, ρ0]. By solving T ∗(A − A∗) = 0 for λ we can iden-
tify alternatives for which our test may fail to be consistent. This leads to the
following result.

Theorem 3.2. The test based on S is consistent against all alternatives λ that
are not of the form λ(t|z) = (α0(t) +α1(t)z)eβz over the rectangle [0, 1]× [0, ρ0],
where α0 and α1 are arbitrary functions of t.
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Proof. Let J∗
1 denote J1 with λ0 and β0 replaced by λ∗0 and β∗, similarly for J∗

2 .
Slightly abusing our earlier notation, h, k, Q and b are now considered to have
λ0 and β0 replaced by λ∗0 and β∗ .

We first show that if J∗
2 (ξ) = 0 then ψ(t, z) ≡ ∂2ξ/∂t∂z = γ(t)k(t, z) for

some function γ. Suppose J∗
2 (ξ) = 0. Then, differentiating J∗

2 (ξ)(t, z) with
respect to t and z, we obtain

ψ(t, z)
∫ ρ

z
k2(t, v) dv = k(t, z)

∫ ρ

z
k(t, v)ψ(t, v) dv (3.5)

for z < ρ.
Taking partial derivatives w.r.t. z on both sides, multiplying both sides by

the derivatives, and solving the resulting differential equation, we find that ψ has
the stated form.

Now set ξ = J∗
1 (A−A∗). Then T ∗(A−A∗) = 0 implies that ψ = γk, which

can be written explicitly as

h−1/2(t, z)η(t, z) −
∫ 1

z
h−1/2(t, u)Q(t, u, z)η(t, u) du

= γ(t)
{
h−1/2(t, z)λ∗0(t)ze

β∗z −
∫ 1

z
h−1/2(t, u)Q(t, u, z)λ∗0(t)ue

β∗u du

}
,

where η(t, z) = λ(t|z) − λ∗0(t)eβ
∗z. Rearranging this equation gives

ζ(t, z)
∫ 1

z
h−1(t, v)(b′(v))2 dv = b′(z)

∫ 1

z
h−1(t, u)b′(u)ζ(t, u) du,

where ζ(t, z) = λ(t|z) − γ(t)λ∗0(t)zeβ
∗z. The above equation can be solved for ζ

in the same way that (3.5) was solved for ψ, to give ζ(t, z) = α0(t)eβ
∗z. This

completes the proof.

Remark. The alternatives of the form

λ(t|z) = (α0(t) + α1(t)z)eβ0z (3.6)

represent perturbations of the Cox model in which the baseline hazard function
λ0 is linearly dependent on the covariate. By a Taylor series argument, linear
perturbations provide a satisfactory approximation to general hazards of the
form λ(t|z) = λ0(t, z)eβ0z, provided the dependence of λ0(t, z) on z is relatively
mild. It would be of interest to investigate the model (3.6) in its own right. A
test of α1 ≡ 0 would provide a means of detecting simple linear violations of the
proportional hazards assumption. Aalen’s (1980) additive risk model is contained
in (3.6) (take β = 0). Thus, the new model gives a joint generalization of both
the Cox and Aalen models.
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Appendix. Proof of Theorem 3.1

As discussed in Section 2, we first need to show that T :C2∪BV2 → D([0, 1]×
[0, ρ0]) is continuous on C2, where ρ0 < ρ < 1. To do this we write T (ξ), for
ξ ∈ C2, explicitly as

T (ξ) =
∫ t

0

∫ z

0
φ1 dξ −

∫ z

0

∫ t

0

∫ 1

u
φ2, dξ(s, x)du

−
∫ z

0

∫ t

0

∫ ρ

u
φ3 dξ(s, x)du+

∫ z

0

∫ ρ

v

∫ t

0

∫ 1

u
φ4 dξ(s, x)dudv,

where

φ1(s, x, β) =
[
λ0(s)eβx/f(s, x)

]−1/2

φ2(s, x, u, β) =
f(s, x)f1/2(s, u)e

1
2
βu

λ
1/2
0 (s)

∫ 1
u f(s, v)eβ0v dv

I(u ≤ x ≤ 1)

φ3(s, x, u, β) = φ1(s, x, β)
k(s, x)k(s, u)∫ ρ
u k

2(s, v) dv
I(u ≤ x ≤ ρ)

φ4(s, x, u, v, β) = φ2(s, x, u, β)
k(s, u)k(s, v)∫ ρ
v k

2(s,w) dw

k(s, x) =
[
f(s, x)λ0(s)eβx

]1/2
∫ 1
x f(s, y)(x− y)eβy dy∫ 1

x f(s, v)eβv dv

and β is set to β0. Under our assumptions that f and λ0 are Lipschitz and
bounded away from zero, and f ∈ BV2, it follows that all the integrands φi are
continuous and have bounded variation in (s, x), uniformly in (u, v). The desired
continuity of T then follows from the integration by parts formula for weak net
integrals (see, e.g., Lemma 2 of MNS).

The proof can be completed by showing that ‖(T − T̂ )(X)‖ P−→0, where ‖ · ‖
is the supremum norm on D([0, 1] × [0, ρ0]). There is a term corresponding to
each of the four terms in the above explicit representation of T . Taking the first
term, we need to show that∥∥∥∥

∫ ·

0

∫ ·

0
(φ̂1 − φ1) dX

∥∥∥∥ P−→0,

where φ̂1 is the estimated version of φ1. The decomposition of X given in McK-
eague and Utikal (1991, (8.8)) can be used to split the above integral into a sum of
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martingale integrals and integrals with respect to t and z. Martingale techniques
cannot be used directly to bound the martingale integrals since φ̂1 involves β̂, so
the integrand is not predictable. It is necessary to Taylor expand φ̂1(β) about
β = β0, and bound the remainder term of order (β̂ − β0)2 = OP (n−1). Details
are given in Sun and McKeague (1995), Proof of Theorem 3.2. The integrals
involving φ̂2, φ̂3 and φ̂4 can be treated in a similar fashion.
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